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Abstract: Objectives: Semen analysis is universally regarded as the gold standard for
diagnosing male infertility, while ultrasonography plays a vital role as a complementary di-
agnostic tool. This study aims to assess the effectiveness of artificial intelligence (AI)-driven
deep learning algorithms in predicting semen analysis parameters based on testicular
ultrasonography images. Materials and Methods: This study included male patients aged
18–54 who sought evaluation for infertility at the Urology Outpatient Clinic of our hospital
between February 2022 and April 2023. All patients underwent comprehensive assessments,
including blood hormone profiling, semen analysis, and scrotal ultrasonography, with
each procedure being performed by the same operator. Longitudinal-axis images of both
testes were obtained and subsequently segmented. Based on the semen analysis results,
the patients were categorized into groups according to sperm concentration, progressive
motility, and morphology. Following the initial classification, each semen parameter was
further subdivided into “low” and “normal” categories. The testicular images from both
the right and left sides of all patients were organized into corresponding folders based
on their associated laboratory parameters. Three distinct datasets were created from the
segmented images, which were then augmented. The datasets were randomly partitioned
into an 80% training set and a 20% test set. Finally, the images were classified using the
VGG-16 deep learning architecture. Results: The area under the curve (AUC) values for the
classification of sperm concentration (oligospermia versus normal), progressive motility
(asthenozoospermia versus normal), and morphology (teratozoospermia versus normal)
were 0.76, 0.89, and 0.86, respectively. Conclusions: In our study, we successfully predicted
semen analysis parameters using data derived from testicular ultrasonography images
through deep learning algorithms, representing an innovative application of artificial intel-
ligence. Given the limited published research in this area, our study makes a significant
contribution to the field and provides a foundation for future validation studies.

Keywords: semen analysis; deep learning; artificial intelligence; testicular ultrasonography

1. Introduction
Infertility affects approximately 15% of the global population, with its prevalence

believed to be increasing over time [1]. Recent studies indicate a gradual decline in sperm
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count over the past two decades [2]. Male infertility accounts for approximately 50% of all
infertility cases and is linked to a range of factors, both congenital and acquired, including
genetic influences [3,4].

Diagnostic approaches for male infertility include physical examinations, laboratory
assessments, and radiological imaging [5]. Despite significant advancements in these
methodologies, the etiology of male infertility remains unexplained in approximately
30–40% of cases [6]. While semen analysis is considered the cornerstone of male infertility
evaluation, it offers an incomplete representation of the patient’s overall fertility status [7].
The main limitations of semen analysis include patients’ reluctance to provide samples,
anxiety associated with hospital environments, variability in results due to interobserver
and intraobserver differences, the time-consuming nature of the procedure, and its inability
to consistently assess an individual’s fertility potential [8].

Testicular ultrasonography serves as a valuable adjunct to semen analysis, playing a
significant role in identifying the causes of infertility and detecting concomitant conditions,
such as testicular tumors [5]. The ultrasonographic parameters commonly associated with
fertility status include testicular volume and the presence of varicocele [9]. Research has
primarily focused on testicular volume, with several studies demonstrating a correlation
between testicular volume and steroidogenic function [10,11]. Although the testicular
parenchyma is crucial for both spermatogenesis and steroidogenesis, no standardized
radiological parameter has been established to directly assess the parenchyma itself [12].

Additionally, studies have investigated various qualitative parameters of the testis,
such as ultrasonographic echogenicity and structural homogeneity/heterogeneity [13].
Research suggests that testicular hypoechogenicity in ultrasonography is associated with
impaired spermatogenesis, while testicular heterogeneity has been linked to testicular
dysfunction in the context of male infertility [14]. A significant limitation of these studies is
the operator dependency involved in characterizing the parenchymal structure of the testis
during ultrasonography [5]. In addition, conventional ultrasonography has limitations,
including the inability to detect some microstructural changes such as testicular parenchy-
mal abnormalities or mild vascular changes and ultrasonography artifacts [15]. The use of
artificial intelligence aims to overcome these problems [16].

Image processing using artificial intelligence represents an innovative engineering
approach that extracts quantitative features from digital images, providing insights beyond
human visual perception. Artificial intelligence applications in reproductive medicine rep-
resent a rapidly developing field in recent years and include many innovative technologies.
Current studies in this field generally focus on infertility treatment, embryo evaluation,
genetic screening, and patient management. Artificial intelligence is also used in various
fields of medicine, but its use in male infertility is limited [17]. By applying quantitative
analysis to parameters obtained from testicular ultrasonography, AI can reduce subjective
interpretation, thus enabling more accurate and reliable assessments of correlations with
testicular function [18,19].

The objective of this study was to enhance the utility of scrotal ultrasonography,
improve patient assessment, reduce interobserver variability, and facilitate the prediction
of semen analysis outcomes and individual fertility status. This was accomplished by
employing deep learning algorithms in artificial intelligence to predict semen analysis
parameters based on testicular ultrasonography images.

2. Material and Methods
This study was conducted with approval from the institutional ethics committee

(approval number: 2023/215; approval date: 20 September 2023).
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2.1. Patient Selection

The study cohort consisted of male patients aged 18–54 years who presented to
the Andrology Outpatient Clinic of our hospital with infertility complaints, despite at
least one year of unprotected intercourse. Upon presentation, all patients underwent
an initial evaluation by a urologist. The inclusion criteria required the absence of the
following conditions: substance abuse, history of anabolic steroid use, testicular asymmetry,
undescended testis, inguinal hernia, prior genitourinary trauma, acute infections, or any
chronic or congenital diseases.

A total of 289 male patients were evaluated. Of these, 1 patient was diagnosed with
a testicular tumor, 20 exhibited microlithiasis, and 19 were identified with azoospermia.
These individuals were excluded from the study due to conditions that could poten-
tially compromise the reliability of the results. As a result, the final cohort consisted of
249 patients, with a total of 498 testicular images included for analysis.

The weight and height of each patient were measured, and the body mass index
(BMI) was calculated. Additionally, a comprehensive diagnostic assessment was conducted,
which included a detailed medical history, semen analysis, biochemical evaluation, and
scrotal ultrasonography.

2.2. Laboratory Tests

Blood samples were collected from all participants between 8:00 a.m. and 12:00 p.m.
following an overnight fast. Serum concentrations of sex steroid hormones, including the
follicle-stimulating hormone (FSH), the luteinizing hormone (LH), and testosterone (T),
were measured using the Chemiluminescent Microparticle Immunoassay (CMIA) method
on the Abbott Architect i2000 autoanalyzer (Abbott Laboratories, Abbott Park, IL, USA).

The data were categorized according to the semen analysis criteria established by
the World Health Organization (WHO). Values exceeding these thresholds were classified
as normal [19].

2.3. Semen Analysis

Semen samples were collected through masturbation into sterile containers after
a 2–7 day period of sexual abstinence, under appropriate conditions. Semen analysis
was performed by two experienced biologists in the Andrology Unit laboratory. The
samples were incubated at 37 ◦C during liquefaction. Semen volume was determined by
estimating its weight, assuming a sperm density of 1 g/mL, using the gravimetric method.
Sperm concentration (106/mL) was measured using a Neubauer Improved hemocytometer
(Shanghai Qijing Biochemical Instrument Co., Ltd., Shanghai, China), and the total sperm
count was then calculated. Progressive motility (WHO grades A + B) was assessed, and
sperm morphology was evaluated according to Kruger’s strict criteria.

The data were categorized according to the 2021 World Health Organization (WHO)
semen analysis reference values. A sperm concentration below 15 million/mL was classified
as oligospermia, a progressive motility below 30% as asthenozoospermia, and a sperm
morphology below 4% as teratozoospermia. Values exceeding these thresholds were
considered normal [20].

2.4. Testicular Ultrasonography

Ultrasonography examinations for all patients in this study were performed by a single
radiologist using the Samsung RS85 Prestige Ultrasonography device with the LA2-14A
linear probe. The testicular preset, THI mode, and 13.0 MHz parameters were standardized
for all patients. To ensure consistency and avoid altering grayscale values, the Tissue
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Gain Compensation (TGC) was kept constant, and the gain settings were not modified for
any patient.

Following semen sample collection, all the patients underwent ultrasonography on the
same day. Each patient was examined in the supine position, with the penis positioned in
the suprapubic region. Initially, grayscale ultrasonography was used to assess the location,
contours, echogenicity, and dimensions of both testes.

The short and long axes of the testes were measured, and the testicular volumes were calcu-
lated using the following ellipsoid formula: [length (cm) × width (cm) × depth (cm) × 0.71] [9].
However, this ellipsoid formula may not fully account for natural irregularities or asymmetries
in testicular shape. Variability in the precision of the measurements and differences in testicular
morphology may lead to inaccuracies in volume estimation. In addition, conditions such as
testicular atrophy, hydrocele, or the presence of tumors can cause significant deviations from
the idealized ellipsoid shape, further limiting the accuracy of the formula [21]. Images were
captured along the longitudinal axis of the testis, ensuring that the mediastinum testis was
excluded and that the entire testicular contour was encompassed (Figure 1).
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2.5. Image Preprocessing

The images obtained from the ultrasonography along the longitudinal axis of the
testis were converted to PNG format. To remove patient information and minimize the
influence of irrelevant areas on the results, the testicular contours were manually outlined
and cropped by a single user using a paint program (Figure 2).
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was used for classification. At this stage, the fully connected and output layers of the VGG-
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2D layer and a dense layer with a sigmoid activation function for binary classification. The 
VGG-16 model was trained using the Adam optimization algorithm. During training, the 
learning rate and batch size were set to 0.001 and 32, respectively, and the maximum num-
ber of epochs was set to 10. The loss function used for the model was binary cross-entropy 
(binary_crossentropy). The model�s performance was then evaluated using the test set, 
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2.6. Study Design

Based on the data obtained from the semen analysis, the patients were grouped
and categorized under the categories of sperm concentration, progressive motility, and
morphology. Subfolders were created within each semen parameter folder, dividing them
into “low” and “normal” categories. The right and left testicular images of all the patients
were then uploaded to the respective folders according to the laboratory parameters.

2.7. Deep Learning

After the dataset was compiled for this study, augmentation techniques, including hor-
izontal flipping and 90-degree rotation, were applied to the subgroups with fewer images
within each of the three classification categories. The reason why augmentation was applied
only to the less represented group instead of the entire dataset was to minimize its impact
on the model’s output values. In other words, artificially inflating the model’s performance
was avoided. The number of images before and after augmentation is presented in Table 1.

Table 1. Number of images before and after data augmentation.

Parameter Before Augmentation After Augmentation

Sperm Concentration Oligospermia 152 456
Normal 340 340

Motility Asthenozoospermia 104 312
Normal 388 388

Morphology Teratozoospermia 310 310
Normal 182 364

After image augmentation, the entire dataset was randomly split into 80% training and
20% test sets. The VGG-16 deep learning model, pre-trained on the ImageNet dataset, was
used for classification. At this stage, the fully connected and output layers of the VGG-16
model were removed. A new model was created by adding a Global Average Pooling
2D layer and a dense layer with a sigmoid activation function for binary classification.
The VGG-16 model was trained using the Adam optimization algorithm. During training,
the learning rate and batch size were set to 0.001 and 32, respectively, and the maximum
number of epochs was set to 10. The loss function used for the model was binary cross-
entropy (binary_crossentropy). The model’s performance was then evaluated using the
test set, and metrics such as area under the curve (AUC), accuracy, precision, specificity,
sensitivity, and F1 scores were obtained (Figure 3).
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Figure 3. Flowchart of the study.Figure 3. Flowchart of the study.
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3. Results
A total of 249 patients were included in this study. Due to missing data in some

patients’ hormonal and semen analysis results, each group was matched accordingly
(Tables 2 and 3).

Table 2. Distribution of descriptive, laboratory, and ultrasonography data of the participants.

Parameter Mean ± SD (Range)

Age 33.7 ± 7.3 (18–54)
BMI 26.9 ± 4.4 (16–43)
FSH (n = 231) 4.6 ± 3.8 (0.3–23.0)
LH (n = 230) 4.3 ± 2.4 (0.8–27.0
Testosterone (n = 231) 428.1 ± 181.8 (47.0–1451.6)
Seminal Volume 3.8 ± 1.7 (0.8–13.0)
Sperm Concentration 40.5 × 106 ± 34.6 × 106 (105–163 × 106)
Progressive Motility 37.6 ± 14.0 (0–68)
Morphology 2.8 ± 2.2 (0–9)
Right Testis Volume 17.4 ± 6.0 (4.0–35.4)
Left Testis Volume 15.9 ± 5.9 (2.2–32.9)

Table 3. Correlation between semen parameters and total testicular volume.

Total Testis Volume

Correlation Coefficient (r) p

Volume −0.067 0.295
Sperm Concentration 0.403 0.001
Progressive Motility 0.204 0.001
Morphology 0.314 <0.001

Spearman correlation test.

The VGG-16 deep learning architecture was utilized for the classification of sperm
parameters, including sperm concentration, progressive motility, and morphology, using
ultrasonography images. For each group, 80% of the dataset was used for training, while
the remaining 20% was allocated for testing. The number of images used during the
training and testing phases is provided in Table 4. The classification results for the test set
utilizing the VCG-16 deep learning architecture are presented in Table 5.

Table 4. Number of images in the training and test sets after data augmentation.

Parameter Training Test

Sperm concentration 638 160
Progressive motility 560 140
Morphology 539 135

Table 5. Classification results of the test set using the VGG-16 deep learning architecture.

AUC Accuracy Precision Specificity Recall F1 Score

Sperm concentration 0.76 0.68 0.62 0.59 0.79 0.69
Progressive motility 0.89 0.83 0.78 0.76 0.90 0.84
Morphology 0.86 0.79 0.77 0.81 0.77 0.77

Examining the confusion matrix for the test set of the sperm concentration group,
the VGG-16 model correctly classified 51 out of 87 patients with oligospermia. Among
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73 patients with normal values, the model identified 58 correctly as normal and misclassified
15 as oligospermic (Figure 4).
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Examining the confusion matrix for the test set of the progressive motility group, the
VGG-16 model correctly classified 54 out of 71 patients with asthenozoospermia. Among
69 patients with normal values, the model accurately identified 62 as normal and misclassi-
fied 7 as asthenozoospermic (Figure 5).
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Examining the confusion matrix for the test set of the morphology group, the VGG-16
model correctly classified 61 out of 75 patients with teratozoospermia. Among 60 patients
with normal values, the model accurately identified 46 as normal and misclassified 14 as
teratozoospermic (Figure 6).

The ROC curves obtained from the test set for the sperm concentration, motility, and
morphology groups are presented in Figure 7.
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4. Discussion
In this study, we explored whether testicular ultrasonography could serve as an

alternative to semen analysis by employing artificial intelligence, specifically deep learn-
ing techniques. Using data obtained from testicular ultrasound images, we successfully
predicted semen analysis parameters. A total of 498 testicular ultrasound images from
249 patients with infertility were collected. The VGG-16 deep learning architecture was uti-
lized to classify semen analysis parameters. The highest area under the curve (AUC) value
observed in this study was for the classification of progressive motility, which achieved
an AUC of 0.89, effectively distinguishing between the group with asthenozoospermia
and that with normal values. This was followed by the morphology classification (terato-
zoospermia vs. normal), with an AUC of 0.86, and the sperm concentration classification
(oligospermia vs. normal), which yielded an AUC of 0.76. The reason why sperm con-
centration is relatively low compared to the other parameters is that it can be a difficult
parameter to directly correlate with ultrasound images. Characteristics such as motility
and morphology may be more clearly related to testicular structure and function, whereas
concentration may result from more indirect influences.

To the best of our knowledge, this is the first study in the literature to predict semen
analysis parameters from ultrasound images using deep learning-based models, contribut-
ing both innovation and originality to the existing body of research. Various studies over
the years have focused on predicting hormonal levels and semen analysis values based on
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testicular echogenicity. The general conclusion of these studies suggests that an increase
in testicular echogenicity correlates negatively with testicular volume and semen parame-
ters [22–24]. However, none of these studies have overcome user subjectivity in ultrasound
imaging. This limitation has led to the exploration of alternative approaches. Recently,
artificial intelligence has gained considerable attention and offers significant potential in
integrating both qualitative and quantitative data derived from ultrasound evaluations.
This approach not only mitigates user dependency but also facilitates the acquisition of
objective and consistent data [19].

A recent review article reported the findings of a systematic literature search aimed at
identifying studies that employed artificial intelligence in testicular imaging. The search
revealed a limited number of relevant articles. Among these, the majority focused on the
classification of malignant and benign tumors in testicular masses using cross-sectional
imaging techniques or predicting lymph node histopathology following chemotherapy. To
date, only a single study has explored the application of artificial intelligence to correlate
testicular imaging with semen analysis data [25]. In this investigation, De Santi et al. [26]
evaluated the relationship between semen parameters and testicular imaging data using
radiomics in a cohort of 85 male patients with infertility. The study reported AUC values
of 0.62, 0.50, and 0.73 for distinguishing groups based on sperm concentration, motility,
and morphology, respectively.

In the study conducted by De Santi et al., the classification performance for sperm
concentration, motility, and morphology was limited, likely due to the small sample size
and the application of machine learning methods. In contrast, our research utilized a
larger patient dataset and employed advanced deep learning algorithms, resulting in
significantly higher accuracy rates. While machine learning focuses on analyzing data to
identify fundamental relationships, deep learning uncovers more complex data structures,
leading to enhanced accuracy [27]. In this study, deep learning demonstrated superior
performance compared to machine learning in predicting semen analysis parameters from
testicular ultrasound images. By providing user-independent and objective results, this
approach offers a more reliable and reproducible method for clinical decision making.

Although high-quality images were obtained using high-frequency probes in this
study, a notable limitation was the evaluation of only a single section of the testis. To
achieve more comprehensive results, future research could incorporate three-dimensional
segmentation of the testicular parenchyma. Another significant limitation was the imbal-
ance in the number of images across subgroups of each semen analysis parameter (low vs.
normal). To address this issue, image augmentation techniques were applied to the groups
with fewer images, thus balancing the dataset.

Our study was designed as a single-center study, which limits the external validity of
the results due to the inability to generalize the findings to broader populations. Patient
characteristics, such as demographics, lifestyle factors, or regional health patterns, may
vary significantly across different centers, potentially influencing the outcomes. Therefore,
to enhance the generalizability of the findings, future studies should involve multi-center
collaborations encompassing diverse patient populations.

In our study, specific patient groups, such as those with testicular tumors, microlithi-
asis, azoospermia, or other conditions which could affect the interpretation of testicular
ultrasonography images and semen analysis, were excluded. While this exclusion ensured
that the model focused on patients without severe pathologies which could alter the results,
it also narrowed the scope of this study. Future research could include these patient groups
to evaluate the utility of the model in more complex and heterogeneous populations.

Operator dependency in image acquisition can significantly affect the generalizability
of deep learning models, as differences in imaging techniques, positioning, and experience
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between operators can lead to an inconsistent image quality. This variability can affect
the model’s ability to learn the correct features to estimate semen analysis parameters and
potentially degrade the model’s performance when applied to images captured by different
operators. To minimize this in multi-center studies, standardizing imaging protocols by
including images from multiple operators in the training dataset and using data augmenta-
tion techniques may help improve the robustness of the model and ensure its applicability
in a variety of clinical settings.

5. Conclusions
The findings of our study suggest that artificial intelligence has significant potential for

predicting specific sperm parameters using only ultrasound imaging in the context of male
infertility. This innovative approach could serve as a non-invasive screening tool, offering a
potential alternative to traditional semen analysis, which is often criticized for its variability
and operational challenges. However, to fully harness the potential of this technology,
future research should focus on large-scale, multi-center, and prospective studies to validate
its effectiveness and generalizability.
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