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Abstract: Safflower (Carthamus tinctorius L.) is a promising oilseed crop with potential
applications in the food, pharmaceutical, and industrial sectors. Understanding the oil
content and fatty acid composition of safflower germplasm is crucial for breeding programs
aimed at enhancing its agronomic and nutritional traits. This study assessed the oil content
and fatty acid composition in 87 safflower accessions. Significant variations were observed,
with the oil content ranging from 36.88% to 18.44%. Genotype Egypt 1 exhibited the
highest oil content. Among fatty acids, China 1 had the highest myristic acid (0.170%)
content, while Remzibey had the lowest (0.100%). Palmitic acid ranged from 6.13% to
8.20%, with Egypt 3 and Bangladesh 3 at the extremes. For palmitoleic acid, Jordan 5 had
the highest content (0.53%) and Bangladesh 2/Portugal 2 the lowest (0.03%). Linoleic acid
varied from 37.7% (China 7) to 77.73% (Iran 1). A correlation analysis indicated strong
positive correlations between protein and oil content, as well as between palmitic and
myristic acids, and between palmitic and linoleic acids. Conversely, protein exhibited
highly negative correlations with myristic, palmitic, and palmitoleic acids. The protein
percentage showed a high heritability but a low genetic advance, while palmitic acid,
oil percentage, stearic acid, linoleic acid, palmitoleic acid, and oleic acid showed a high
heritability and a moderate genetic advance as a percentage of the mean. These findings
can aid in developing cultivars with enhanced fatty acids, oil quality, and nutritional value,
facilitating sustainable production for a wide range of industrial applications.

Keywords: safflower; fatty acid; oil content; linoleic acid; germplasm diversity; breeding
programs; sustainable production

1. Introduction
Safflower (Carthamus tinctorius L.) is a plant belonging to the Compositeae family with

a chromosome number of 2n = 24. It has a long history of cultivation as an oil crop in the
Middle East, dating back approximately 3000 years [1]. Safflower is primarily cultivated
in arid agricultural regions to produce cooking oil, as it exhibits a greater adaptability to
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dry conditions and lower rainfall compared to other oil crops. Additionally, safflower
demonstrates relatively favorable resistance to cold temperatures [2]. This minor oilseed
crop exhibits versatility and holds the potential to provide numerous advantages to rainfed
cereal-based cropping systems. This is primarily attributed to its ability to withstand
adverse environmental conditions such as cold, drought, and salinity, as well as its reduced
dependency on external inputs [3–5]. The cultivation of this plant is feasible in arid, semi-
arid, and rainfed environments due to its extensive root system [6]. Safflower exhibits the
capacity to thrive under water stress without experiencing a substantial decline in oil and
seed yield, thus reinforcing its status as a promising crop in such challenging environments.

Comparatively, safflower exhibits enhanced disease resistance and the ability to es-
tablish soil cover earlier, thereby reducing the risks associated with nitrogen leaching and
soil erosion, when compared to sunflower. Recently, safflower has garnered attention
from researchers due to the intriguing characteristics of its oil for both food and non-food
applications [7,8]. Safflower is grown in over 25 countries. However, the Russian Feder-
ation, Kazakhstan, India, Argentina, Mexico, the USA, Uzbekistan, and Türkiye are the
primary countries cultivating safflower [9]. The cultivation of safflower exhibits signifi-
cant growth potential in Turkey, particularly in regions characterized by continental and
Mediterranean climates [10,11]. The provision of substantial agricultural subsidies by the
Turkish government to safflower producers, with the aim of decreasing Turkey’s reliance on
imported vegetable oil has played a crucial role in the advancement of safflower cultivation
in Türkiye [10]. The plant possesses significant economic and medicinal value due to its
seed oil and extract from its flowers [12].

The efficacy of safflower oil in various applications such as food, pharmaceutical, and
cosmetic industries has been substantiated by multiple studies [13–16]. The significance of
this crop is primarily supported by its high content of unsaturated fatty acids, specifically
oleic and linoleic acids [17–20]. The consumption of safflower seed oil can provide various
health advantages to individuals due to its elevated concentration of unsaturated fatty
acids. As an illustration, the functional activities associated with monounsaturated fatty
acid, specifically oleic acid, encompass a reduction in cardiovascular disease risk through
the lowering of systolic blood pressure. This acid is preferred by consumers due to its
notable stability and bland flavor [21].

The introduction of this crop to semi-arid regions could serve as an alternative for
the development of oilseed crops due to its strong ability to adapt to drought and high
temperatures [22]. The efficacy of this approach necessitates research to assess the impact
of this context on the quality of the supplied oil. The composition of safflower oil primarily
consists of unsaturated fatty acids, namely linoleic (C18:2), oleic (C18:1), and linolenic acids
(C18:3), with a relatively low proportion of saturated fatty acids. Among the saturated fatty
acids present, palmitic (C16:0) and stearic (C18:0) are the most abundant [16]. Safflower oil
is known for its high tocopherol content, which contributes to its functional properties as a
food with potential anti-cholesterol effects and cardiovascular protective benefits [23,24].

Safflower oil has been identified as a potential source of natural polymers that can
be utilized in various industrial and pharmaceutical applications [24,25]. In addition, the
substantial quantities of safflower by-products, such as seed meal, have the potential to be
utilized as feed rations for livestock [26] and energy production [27], thereby augmenting
the overall value chain of the safflower crop. The yield and fatty acid composition of
safflower, which determine the crop’s suitability for nutritional, industrial, or pharmaceu-
tical applications, are significantly influenced by the genotype [28] as well as agronomic
practices including irrigation, fertilization, sowing date, and harvest date [29–32].

Similarly, the combination of genotypes and environmental factors, specifically mois-
ture and temperature, during the process of seed maturation has an impact on the synthesis
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of fatty acids and the relative proportions of oleic and linoleic acids in the seeds [33,34].
Safflower has demonstrated significant adaptability to the arid and semi-arid regions of
the Mediterranean region, making it a potential candidate for inclusion in crop rotation
systems alongside winter wheat or annual legumes [35,36]. The incorporation of safflower
as an alternative and drought-tolerant oilseed crop into conventional rainfed cereal-based
cropping systems presents a viable option that can potentially enhance the productivity of
agricultural systems and enable farmers to mitigate the adverse effects of climate variability
and economic uncertainties. The current study involved a comparison of 87 genotypes to
assess their seed quality characteristics, specifically focusing on the composition of oil, pro-
tein, and fatty acids. The acquired information will prove valuable to safflower breeders in
devising effective breeding strategies for the development of novel and improved cultivars.

2. Materials and Methods
Eighty-seven distinct safflower genotypes, sourced from various countries, constituted

the plant material for this investigation (Table 1). The accessions used in the present
research were provided by Plant Genetic Resources Institute (PGRI) Pakistan, The Turkish
Central Research Institute for Field Crops, and the United States Department of Agriculture
(USDA) [37].

Table 1. Passport data of 87 safflower accessions collected from 11 different countries.

Sr. No Genotype Code Genotype Name Sr. No Genotype Code Genotype Name

1 P1-198990 Isreal 1 45 P1-314650 Kazakhstan 1
2 P1-209287 Romania 1 46 P1-340086 Turkey 5
3 P1-239042 Morocco 1 47 P1-367833 Argentina 1
4 P1-250082 Egypt 1 48 P1-369846 Uzbekistan 2
5 P1-250194 Pakistan 1 49 P1-369853 Uzbekistan 3
6 P1-250201 Pakistan 2 50 P1-386174 Syria 3
7 P1-250345 Pakistan 3 51 P1-387821 Thailand 1
8 P1-250346 Pakistan 4 52 P1-405958 Iran 2
9 P1-250351 Pakistan 5 53 P1-405967 Iran 3

10 P1-250353 Pakistan 6 54 PI-401478 Bangladesh 1
11 P1-250481 Pakistan 7 55 PI-401480 Bangladesh 2
12 P1-250528 Egypt 2 56 PI-199878 India 5
13 P1-250532 Egypt 3 57 PI-220647 Afghanistan 2
14 P1-250540 Egypt 4 58 PI-235660 Australia 1
15 P1-250601 India 1 59 PI-237538 Turkey 6
16 P1-250605 Egypt 5 60 PI-250474 Pakistan 8
17 P1-250608 Egypt 6 61 PI-250478 Pakistan 9
18 P1-250720 Iran 1 62 PI-250840 Iran 4
19 P1-251284 Jordan 1 63 PI-251265 Jordan 3
20 P1-251285 Jordan 2 64 PI-251267 Jordan 4
21 P1-253386 Isreal 2 65 PI-251268 Jordan 5
22 P1-253388 Spain 1 66 PI-251290 Israel 3
23 P1-253391 Spain 2 67 PI-251978 Turkey 7
24 P1-253394 Spain 3 68 PI-251984 Turkey 8
25 P1-253395 Spain 4 69 PI-253519 Austria 1
26 P1-253553 Portugal 1 70 PI-288983 Hungary 1
27 P1-253556 Portugal 2 71 PI-393499 Libya 1
28 P1-253564 Portugal 3 72 PI-401470 Bangladesh 3
29 P1-253764 Afghanistan 1 73 PI-406010 Iran 5
30 P1-253571 Portugal 4 74 PI-406701 Turkey 9
31 P1-253892 Isreal 3 75 PI-406702 Turkey 10
32 P1-253900 Syria 1 76 PI-426521 Pakistan 10
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Table 1. Cont.

Sr. No Genotype Code Genotype Name Sr. No Genotype Code Genotype Name

33 P1-253898 Syria 2 77 PI-543979 China 3
34 P1-262435 Uzbekistan 1 78 PI-543982 China 4
35 P1-262452 China 1 79 PI-544001 China 5
36 P1-262453 China 2 80 PI-568809 China 6
37 P1-304498 Turkey 1 81 PI-568874 China 7
38 P1-304502 Turkey 2 82 PI 576985 France 1
39 P1-304504 Turkey 3 83 BVAL-901352 Austria 2
40 P1-304505 Turkey 4 84 Control Control
41 P1-305195 India 2 85 Remzibey Remzibey C

42 P1-305535 Russia 1 86 Dincer Dincer C

43 P1-306941 India 3 87 Balci Balci C

44 P1-306976 India 4
C: Cultivar.

2.1. Experimental Design and Statistical Analysis

The field experiment was conducted according to an augmented block design at
the experimental area of Çukurova University in Adana, Türkiye, which has a typical
Mediterranean climate characterized by mild, rainy winters and hot, dry summers [38].
This was a one-year field study performed under the natural prevailing conditions of
the region, which were consistent for all genotypes under study (Figure 1). To ensure
uniform conditions across all genotypes, the experiment was conducted within a single
growing season, with all genotypes planted in the field simultaneously. Standard agronomic
practices were applied consistently throughout the study.
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Figure 1. Weather conditions during the experiment.

Fertilizers were applied uniformly before planting at a rate of 250 kg/ha of 20-20-0
(providing 50 kg/ha N and 50 kg/ha P) alongside urea (46% N) at 200 kg/ha. Sowing was
carried out manually in the second week of December 2021, with each accession allotted a
5 m row length, a row spacing of 70 cm, and an intra-row spacing of 15 cm. Harvesting
was conducted in the last week of June 2022. Although environmental factors were not
artificially controlled, conditions such as temperature and rainfall were monitored to ensure
consistency, thus minimizing any environmental variation that could influence the results.
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2.2. Oil Extraction and GC Analysis

The samples of 87 safflower genotypes were subjected to oil extraction using a Soxhlet
apparatus and the gravimetric method. For oil content determination, 5 g of clean, mature
seed samples was weighed and extracted in triplicate to assess repeatability. The Soxhlet
apparatus (FOSS) was used with petroleum ether (99.9%, Merck, Rahway, NJ, USA) as the
solvent, and extraction continued for 3 h following the method developed by Kurt [39]. The
precision of the extraction was confirmed by calculating the coefficient of variation across
triplicate samples, with values below 5% indicating a high repeatability of the method. This
validation step aligns with Soxhlet extraction standards for oilseed analyses, confirming
the reliability of the data produced.

An oil sample of 500 mg was dissolved in 2 mL isooctane followed by 1.5 mL of 0.5 M
methanolic NaOH (99.6%, Sigma, Setagaya City, Japan). The tube was then vortexed, held
in boiling water for 7 min, and cooled to room temperature. Two ml of BF3 (99.99% Boron
trifluoride, Sigma) were added, vortexed, and held in boiling water for 5 min and allowed
to come to room temperature. After adding 5 mL NaCl (Merck), the tube was vortexed,
and centrifuged at 4000 rpm for 10 min. The supernatant was used for GC analyses [40].

The fatty acid (FA) composition was analyzed using a GC Clarus 500 with an auto
sampler (Perkin Elmer, Waltham, MA, USA) equipped with a flame ionization detector
and a fused silica capillary SGE column (30 m • 0.32 mm, ID • 0.25 lm, BP20 0.25 UM,
USA). The oven temperature was brought to 140 ◦C for 5 min, then raised to 200 ◦C at a
rate of 4 ◦C/min and to 220 ◦C at a rate of 1 ◦C/min, while the injector and the detector
temperatures were set at 220 ◦C and 280 ◦C, respectively [39]. Moreover, FA analysis
was conducted with rigorous quality control measures to ensure data consistency and
accuracy. These included the use of internal standards and the routine calibration of the
gas chromatography (GC) equipment, following established protocols [41,42]. Internal
standards were added to each sample prior to extraction, and calibration of the GC was
regularly performed to minimize analytical variation. These procedures ensured reliable
comparisons across genotypes and accurately reflect the observed variation in the fatty
acid composition.

2.3. Protein Analysis

Crude protein content was determined using the micro-Kjeldahl method with a FOSS
autoanalyzer, including three independent replications to ensure accuracy. This method
calculates protein content based on nitrogen quantification, with the results expressed as
crude protein [43].

2.4. Statistical Analysis

The statistical analysis was performed according to an augmented randomized com-
plete block design [44] using the statistical software R studio 4.3.2. The package used for
analysis was the “Augmented RCBD” package [45], Moreover, broad-sense heritability
and genetic advance as a percentage of the mean (GAM) were also estimated for all traits
using R. The statistical software XLSTAT, version 2021.3.1 (www.xlstat.com) was used to
perform descriptive analysis, including mean, maximum, minimum, and standard devia-
tion calculations for all seven traits under investigation. Pearson’s correlation analysis was
conducted to examine relationships between traits, with significance assessed at p ≤ 0.05
and p ≤ 0.01. Furthermore, we constructed a spider plot to check the genetic variability.
Principal component analysis (PCA) was performed in XLSTAT to explore data variability,
and the first two principal components, which captured the most significant variability,
were used to construct a genotype vs. trait biplot. This biplot is particularly useful for
visualizing complex relationships between genotypes and traits, allowing for the grouping

www.xlstat.com
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of accessions based on their fatty acid composition and illustrating how the genotypes
differed in their fatty acid profiles. A hierarchical clustering tree analysis (dendrogram)
was also constructed using JMP software (version 15.2) to illustrate genetic relationships
among genotypes.

3. Results
The analysis of variance (ANOVA) revealed significant differences among the geno-

types for most traits except for myristic acid content (Table 2). A diverse array of variations
in fatty acid composition was observed throughout the course of the study. The mean value
of oil % was 29.49 while minimum and maximum were found in China 1 (18.44%) and
Egypt 1 (36.88%). The maximum protein percentage was found in the genotype “Dincer”
while the minimum was reported in “China 1”. Furthermore, among the different fatty
acids analyzed, China 1 exhibited the highest concentration of myristic acid at 0.170%, while
the lowest concentration, 0.100%, was observed in Remzibey; the palmitic acid content in
Egypt 3 showed a maximum of 8.20%, contrasting with the minimum of 6.13% found in
Bangladesh 3. For palmitoleic acid, the highest concentration, 0.53%, was found in Jordan
5, while the lowest, 0.03%, was noted in Bangladesh 2 and Portugal 2. Regarding stearic
acid, Argentina 1 had the highest level at 3.51%, while Bangladesh 2 exhibited the lowest at
1.90%. The maximum oleic acid percentage recorded was 52.5% in China 7, whereas the
minimum, 12.22%, was detected in Iran 1. The linoleic acid percentage was 77.73% in Iran 1,
while China 7 had the lowest content at 37.7%. The average values of all examined fatty
acids in 87 safflower accessions are presented in Table 3. The statistical analysis involved
examining the mean, standard deviation, minimum, and maximum values of all traits, and
tests were conducted to gain insights into the variations in the fatty acids in the safflower
germplasm under study (Table 4 and Figure 2).

Table 2. Analysis of variance in the studied traits for various safflower germplasms.

Source df
Mean Squares

Oil (%) Protein (%) Miristic Palmitic Palmitoleic Stearic Oleic Linoleic

Treatment (ignoring Blocks) 86 ** ** ns ** ** ** ** **

Treatment: Check 3 ** ** ns ** ns ** ** **

Treatment: Test 82 ** ** ns ** ** ** ** **

Treatment: Test vs. Check 1 ** ** ns ** ** ** ** **

Block (eliminating
Treatments) 4 ns ns ns ns ns ns ns ns

Residuals 12

**: Significant, ns: non significant.

Table 3. Oil, protein content, and fatty acid composition for safflower accessions.

Genotypes Oil (%) Protein (%) Miristic Palmitic Palmitoleic Stearic Oleic Linoleic

Isreal 1 28.46 ± 0.479 16.31 ± 0.34 0.13 ± 0.002 7.45 ± 0.28 0.05 ± 0.02 2.41 ± 0.05 17.39 ± 0.388 71.76 ± 1.9

Romania 1 27.78 ± 0.617 16.26 ± 0.402 0.12 ± 0.004 6.81 ± 0.25 0.04 ± 0.01 2.35 ± 0.04 15.03 ± 0.16 75.63 ± 1.94

Morocco 1 30.09 ± 0.838 16.92 ± 0.466 0.12 ± 0.005 6.91 ± 0.28 0.04 ± 0.01 2.33 ± 0.05 15.06 ± 0.14 75.53 ± 2.05

Egypt 1 36.89 ± 0.865 16.22 ± 0.454 0.12 ± 0.005 7.17 ± 0.3 0.04 ± 0.01 2.25 ± 0.06 15.81 ± 0.25 74.2 ± 2.24

Pakistan 1 31.87 ± 0.438 16.37 ± 0.542 0.13 ± 0.003 7.51 ± 0.29 0.05 ± 0.02 2.17 ± 0.03 16.63 ± 0.15 73.33 ± 1.29

Pakistan 2 30.42 ± 0.553 15.55 ± 1.529 0.14 ± 0.008 7.58 ± 0.26 0.05 ± 0.02 2.38 ± 0.05 13.58 ± 0.33 76.1 ± 1.42

Pakistan 3 31.59 ± 0.521 17 ± 0.531 0.13 ± 0.002 6.99 ± 0.27 0.04 ± 0.01 2.33 ± 0.04 15.07 ± 0.3 74.75 ± 2.06

Pakistan 4 29.12 ± 0.469 16.18 ± 0.345 0.11 ± 0.004 7.01 ± 0.17 0.11 ± 0.02 2.53 ± 0.04 16.52 ± 0.34 73.22 ± 1.44
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Table 3. Cont.

Genotypes Oil (%) Protein (%) Miristic Palmitic Palmitoleic Stearic Oleic Linoleic

Pakistan 5 26.67 ± 0.804 15.65 ± 0.582 0.11 ± 0.003 6.82 ± 0.17 0.26 ± 0.03 2.42 ± 0.04 18.71 ± 0.25 71.58 ± 1.61

Pakistan 6 30.13 ± 0.799 16.54 ± 0.408 0.13 ± 0.002 6.56 ± 0.18 0.19 ± 0.01 2.42 ± 0.03 18.19 ± 0.31 71.63 ± 1.59

Pakistan 7 30.52 ± 0.908 15.89 ± 0.676 0.12 ± 0.004 6.58 ± 0.16 0.18 ± 0.03 2.44 ± 0.03 14.86 ± 0.4 74.97 ± 1.73

Egypt 2 34.92 ± 0.846 16.66 ± 0.432 0.13 ± 0.002 7.56 ± 0.33 0.11 ± 0.03 1.93 ± 0.031 14.32 ± 0.34 75.24 ± 1.16

Egypt 3 27.57 ± 0.459 16.1 ± 0.273 0.14 ± 0.008 8.2 ± 0.28 0.17 ± 0.02 2.31 ± 0.011 13.74 ± 0.28 74.96 ± 1.19

Egypt 4 32.11 ± 0.235 15.78 ± 0.415 0.12 ± 0.004 7.22 ± 0.35 0.1 ± 0.01 2.28 ± 0.017 14.94 ± 0.28 74.59 ± 1.51

India 1 28.97 ± 0.897 16.71 ± 0.57 0.14 ± 0.005 7.52 ± 0.23 0.15 ± 0.01 2.32 ± 0.012 13.99 ± 0.36 75 ± 1.31

Egypt 5 25.27 ± 0.391 15.79 ± 0.555 0.12 ± 0.004 7.28 ± 0.27 0.11 ± 0.01 2.46 ± 0.012 15.85 ± 0.2 73.44 ± 0.56

Egypt 6 30.84 ± 0.879 16.3 ± 0.327 0.13 ± 0.002 7.31 ± 0.23 0.12 ± 0.02 1.97 ± 0.013 14.21 ± 0.32 75.53 ± 1.25

Iran 1 30.57 ± 9.303 16.41 ± 0.33 0.12 ± 0.004 7.46 ± 0.14 0.17 ± 0.01 2.01 ± 0.012 12.22 ± 0.36 77.73 ± 1.77

Jordan 1 29.91 ± 1.018 16.41 ± 0.306 0.11 ± 0.004 6.71 ± 0.23 0.05 ± 0.02 2.49 ± 0.014 19.09 ± 0.2 71.29 ± 1.21

Jordan 2 33.88 ± 0.864 16.17 ± 0.354 0.16 ± 0.006 7.76 ± 0.18 0.12 ± 0.03 2.05 ± 0.016 17.01 ± 0.22 72.21 ± 0.65

Isreal 2 29.15 ± 0.384 15.73 ± 0.467 0.14 ± 0.008 7.46 ± 0.18 0.05 ± 0.01 2.17 ± 0.025 18.21 ± 0.3 71.26 ± 1.15

Spain 1 29.15 ± 0.519 16.42 ± 0.387 0.12 ± 0.004 6.97 ± 0.18 0.04 ± 0.01 2.08 ± 0.016 19.17 ± 0.35 70.92 ± 1.04

Spain 2 30.69 ± 0.476 16.51 ± 0.473 0.13 ± 0.003 7.05 ± 0.23 0.06 ± 0.02 2.02 ± 0.015 14.93 ± 0.26 75.14 ± 1.11

Spain 3 31.56 ± 0.632 16.71 ± 0.465 0.15 ± 0.009 7.54 ± 0.19 0.05 ± 0.02 2.16 ± 0.006 16.03 ± 0.17 73.39 ± 0.74

Spain 4 28.05 ± 0.336 15.89 ± 0.531 0.13 ± 0.003 7.04 ± 0.16 0.04 ± 0.01 2.41 ± 0.011 15.93 ± 0.26 74.21 ± 0.65

Portugal 1 28.32 ± 0.435 16.6 ± 0.406 0.13 ± 0.002 6.95 ± 0.26 0.1 ± 0.01 2.27 ± 0.012 16.4 ± 0.31 73.49 ± 0.63

Portugal 2 32.35 ± 0.384 17.09 ± 0.417 0.13 ± 0.003 6.83 ± 0.2 0.03 ± 0.01 2.55 ± 0.009 16.2 ± 0.32 74.03 ± 0.99

Portugal 3 29.09 ± 0.357 15.58 ± 0.361 0.12 ± 0.004 7.29 ± 0.26 0.21 ± 0.04 2.5 ± 0.1 15.38 ± 0.42 73.59 ± 0.59

Afghanistan 1 28.23 ± 0.397 15.8 ± 0.54 0.13 ± 0.006 7.32 ± 0.27 0.2 ± 0.01 2.69 ± 0.011 14.88 ± 0.81 73.8 ± 0.8

Portugal 4 29.55 ± 0.472 15.2 ± 0.42 0.13 ± 0.002 7.13 ± 0.25 0.27 ± 0.03 2.44 ± 0.012 14.75 ± 0.52 75.21 ± 0.65

Isreal 3 29.06 ± 0.289 15.54 ± 0.375 0.15 ± 0.009 7.6 ± 0.14 0.21 ± 0.05 2.11 ± 0.011 15.13 ± 0.26 74.23 ± 0.75

Syria 1 28.07 ± 0.682 15.95 ± 0.428 0.13 ± 0.007 7.86 ± 0.13 0.11 ± 0.03 2.12 ± 0.016 14.37 ± 0.5 74.6 ± 0.6

Syria 2 30.12 ± 0.332 15.83 ± 0.469 0.15 ± 0.008 7.58 ± 0.16 0.04 ± 0.01 1.97 ± 0.005 18.59 ± 0.35 71.33 ± 0.46

Uzbekistan 1 27.28 ± 0.398 15.52 ± 0.278 0.13 ± 0.006 7.56 ± 0.15 0.23 ± 0.04 1.93 ± 0.013 15.29 ± 0.14 74.66 ± 0.87

China 1 18.44 ± 0.58 13.17 ± 0.39 0.17 ± 0.005 7.98 ± 0.16 0.45 ± 0.04 2.3 ± 0.013 20.43 ± 0.27 68.1 ± 1.1

China 2 30.35 ± 0.436 15.99 ± 0.506 0.15 ± 0.007 8.03 ± 0.18 0.26 ± 0.01 2.3 ± 0.018 15.6 ± 0.22 73.3 ± 0.89

Turkey 1 28.42 ± 0.539 15.61 ± 0.347 0.13 ± 0.002 7.24 ± 0.18 0.11 ± 0.02 2.19 ± 0.012 15.73 ± 0.17 73.84 ± 0.84

Turkey 2 26.45 ± 0.516 15.26 ± 0.241 0.13 ± 0.003 7.66 ± 0.24 0.05 ± 0.01 2.47 ± 0.014 21.98 ± 0.27 67.16 ± 0.68

Turkey 3 27.16 ± 0.375 15.32 ± 0.329 0.15 ± 0.007 7.87 ± 0.24 0.17 ± 0.03 2.09 ± 0.015 16.2 ± 0.2 73.17 ± 0.71

Turkey 4 27.43 ± 0.79 15.43 ± 0.368 0.14 ± 0.005 7.69 ± 0.23 0.05 ± 0.03 2.45 ± 0.014 17.25 ± 0.38 72.02 ± 0.96

India 2 29.67 ± 0.66 16.36 ± 0.384 0.12 ± 0.004 7.11 ± 0.24 0.05 ± 0.01 2.26 ± 0.016 18.09 ± 0.26 72.02 ± 1.14

Russia 1 23.5 ± 0.651 15.03 ± 0.406 0.13 ± 0.006 7.52 ± 0.16 0.05 ± 0.02 2.42 ± 0.012 14.88 ± 0.17 74.66 ± 0.69

India 3 31.32 ± 0.394 16.76 ± 0.527 0.11 ± 0.004 7.29 ± 0.17 0.04 ± 0.01 2.49 ± 0.012 17.25 ± 0.25 72.07 ± 1.05

India 4 26.65 ± 0.615 15.6 ± 0.317 0.12 ± 0.004 7.27 ± 0.14 0.04 ± 0.01 2.35 ± 0.012 18.15 ± 0.19 72.03 ± 1.05

Kazakhstan 1 29.16 ± 0.39 15.17 ± 0.384 0.11 ± 0.004 7.39 ± 0.13 0.04 ± 0.01 2.39 ± 0.014 15.14 ± 0.36 74.26 ± 1.2

Turkey 5 26.17 ± 0.483 15.82 ± 0.471 0.13 ± 0.006 6.99 ± 0.17 0.11 ± 0.02 2.47 ± 0.012 17.33 ± 0.29 72.57 ± 0.71

Argentina 1 30.02 ± 0.581 16.77 ± 0.359 0.14 ± 0.008 7.68 ± 0.16 0.14 ± 0.01 3.51 ± 0.011 21.04 ± 0.946 67.29 ± 0.64

Uzbekistan 2 29.64 ± 0.66 16 ± 0.339 0.13 ± 0.006 7.58 ± 0.1 0.05 ± 0.01 2.4 ± 0.013 13.85 ± 0.29 75.18 ± 0.62

Uzbekistan 3 28.75 ± 1.713 16.16 ± 0.342 0.13 ± 0.003 7.14 ± 0.22 0.17 ± 0.02 2.33 ± 0.013 14.1 ± 0.31 75.69 ± 0.83

Syria 3 33.98 ± 0.864 16.71 ± 0.333 0.14 ± 0.004 7.68 ± 0.21 0.13 ± 0.02 2.33 ± 0.018 14.22 ± 0.1 74.81 ± 0.95

Thailand 1 31.81 ± 1.728 16.44 ± 0.36 0.13 ± 0.006 7.1 ± 0.18 0.04 ± 0.01 2.44 ± 0.016 12.4 ± 0.19 77.12 ± 1.12

Iran 2 33.36 ± 0.589 17.26 ± 0.333 0.13 ± 0.004 6.92 ± 0.13 0.04 ± 0.02 2.23 ± 0.011 18.7 ± 0.18 71.43 ± 0.98

Iran 3 30.99 ± 0.869 16.6 ± 0.429 0.15 ± 0.007 7.47 ± 0.11 0.04 ± 0.01 2.29 ± 0.017 16.54 ± 0.12 72.94 ± 0.89

Bangladesh 1 31.94 ± 0.661 16.11 ± 0.281 0.13 ± 0.006 6.54 ± 0.09 0.19 ± 0.01 1.92 ± 0.016 35.57 ± 0.09 55.2 ± 1.11
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Table 3. Cont.

Genotypes Oil (%) Protein (%) Miristic Palmitic Palmitoleic Stearic Oleic Linoleic

Bangladesh 2 28.14 ± 0.622 15.74 ± 0.401 0.11 ± 0.005 6.4 ± 0.08 0.03 ± 0.02 1.9 ± 0.002 30.79 ± 0.23 60.17 ± 1.17

India 5 26.73 ± 0.838 15.5 ± 0.324 0.13 ± 0.006 7.1 ± 0.21 0.34 ± 0.03 2.08 ± 0.016 17.61 ± 0.16 71.84 ± 0.84

Afghanistan 2 26.53 ± 0.614 15.31 ± 0.444 0.13 ± 0.003 7.47 ± 0.11 0.11 ± 0.01 2.3 ± 0.016 15.33 ± 0.25 74.03 ± 0.94

Australia 1 28.97 ± 0.804 16.33 ± 0.447 0.14 ± 0.005 7.57 ± 0.09 0.1 ± 0.01 2.4 ± 0.006 13.93 ± 0.25 75.11 ± 1.11

Turkey 6 34.99 ± 0.627 16.38 ± 0.407 0.13 ± 0.004 7.37 ± 0.09 0.17 ± 0.01 2.62 ± 0.006 13.66 ± 0.25 75.77 ± 0.88

Pakistan 8 28.92 ± 0.511 16.18 ± 0.347 0.12 ± 0.004 7.35 ± 0.06 0.05 ± 0.02 2.31 ± 0.005 13.9 ± 0.19 75.77 ± 0.77

Pakistan 9 29.75 ± 0.754 16.28 ± 0.41 0.12 ± 0.006 7.68 ± 0.12 0.19 ± 0.01 2.51 ± 0.009 17.04 ± 0.23 72.32 ± 0.64

Iran 4 31.59 ± 0.706 16.85 ± 0.467 0.13 ± 0.006 7.41 ± 0.12 0.04 ± 0.01 2.34 ± 0.008 15.42 ± 0.36 73.93 ± 0.93

Jordan 3 27.99 ± 0.861 15.5 ± 0.303 0.16 ± 0.006 7.88 ± 0.12 0.05 ± 0.01 2.58 ± 0.306 17.45 ± 0.43 71.61 ± 0.58

Jordan 4 25.19 ± 0.717 15.07 ± 0.449 0.14 ± 0.005 7.73 ± 0.06 0.08 ± 0.01 2.43 ± 0.011 21.91 ± 0.42 67.7 ± 0.82

Jordan 5 26.78 ± 0.772 16.03 ± 0.241 0.14 ± 0.008 6.91 ± 0.11 0.53 ± 0.02 1.91 ± 0.01 16.85 ± 0.2 73.66 ± 0.87

Israel 3 27.49 ± 0.663 16.55 ± 0.463 0.15 ± 0.008 7.38 ± 0.17 0.21 ± 0.01 2.07 ± 0.012 16.77 ± 0.23 72.57 ± 0.57

Turkey 7 27.52 ± 0.603 15.98 ± 0.338 0.14 ± 0.006 7.64 ± 0.15 0.23 ± 0.01 2.21 ± 0.008 16.49 ± 0.25 72.61 ± 0.76

Turkey 8 30.27 ± 0.543 16.28 ± 0.446 0.12 ± 0.006 7.25 ± 0.16 0.21 ± 0.01 2.56 ± 0.01 16.23 ± 0.23 72.91 ± 0.93

Austria 1 28.33 ± 0.669 16.45 ± 0.368 0.13 ± 0.006 7.07 ± 0.15 0.15 ± 0.02 2.24 ± 0.002 14.85 ± 0.37 74.7 ± 0.7

Hungary 1 30.97 ± 0.688 16.52 ± 0.488 0.12 ± 0.007 7.2 ± 0.12 0.17 ± 0.02 2.3 ± 0.009 14.87 ± 0.28 74.59 ± 0.72

Libya 1 27.17 ± 0.539 15.32 ± 0.402 0.14 ± 0.005 7.33 ± 0.12 0.19 ± 0.01 2.23 ± 0.009 14.37 ± 0.26 75.12 ± 1.12

Bangladesh 3 29.06 ± 0.591 17.07 ± 0.381 0.11 ± 0.005 6.13 ± 0.12 0.17 ± 0.01 1.94 ± 0.008 33.22 ± 0.01 57.85 ± 0.87

Iran 5 30.42 ± 0.693 16.28 ± 0.411 0.12 ± 0.006 7.02 ± 0.08 0.15 ± 0.02 2.34 ± 0.006 20.42 ± 0.16 69.23 ± 1.23

Turkey 9 28.07 ± 0.376 15.71 ± 0.388 0.14 ± 0.008 7.48 ± 0.12 0.15 ± 0.01 2.33 ± 0.006 15.88 ± 0.23 73.55 ± 0.76

Turkey 10 30.53 ± 0.703 16.41 ± 0.431 0.13 ± 0.006 6.93 ± 0.11 0.13 ± 0.01 2.3 ± 0.007 15.58 ± 0.2 74.21 ± 1.14

Pakistan 10 29.47 ± 0.717 16.57 ± 0.402 0.13 ± 0.003 7.26 ± 0.1 0.05 ± 0.02 2.08 ± 0.01 18.64 ± 0.15 70.66 ± 0.85

China 3 24.84 ± 0.772 15.35 ± 0.474 0.13 ± 0.004 7.6 ± 0.12 0.11 ± 0.01 2.44 ± 0.009 15.09 ± 0.22 73.99 ± 0.99

China 4 29.87 ± 0.754 16.76 ± 0.467 0.12 ± 0.007 7.17 ± 0.25 0.11 ± 0.01 2.35 ± 0.005 16.04 ± 0.16 73.79 ± 0.71

China 5 27.79 ± 0.774 16.93 ± 0.48 0.12 ± 0.005 6.7 ± 0.14 0.03 ± 0.01 2.25 ± 0.011 19.15 ± 0.15 70.98 ± 0.98

China 6 30.98 ± 0.618 16.1 ± 0.429 0.13 ± 0.006 7.48 ± 0.13 0.04 ± 0.01 2.15 ± 0.01 25.5 ± 0.5 63.5 ± 0.72

China 7 36.8 ± 0.67 16.39 ± 0.469 0.13 ± 0.003 7.03 ± 0.15 0.05 ± 0.01 1.97 ± 0.008 52.5 ± 0.7 37.7 ± 0.7

France 1 30.26 ± 0.555 16.7 ± 0.456 0.15 ± 0.008 7.59 ± 0.17 0.04 ± 0.02 2.2 ± 0.006 17.71 ± 0.2 71.43 ± 0.76

Austria 2 31.87 ± 0.651 16.51 ± 0.429 0.16 ± 0.006 8.15 ± 0.19 0.05 ± 0.01 2.64 ± 0.01 17.33 ± 0.25 70.67 ± 10.81

Control 30.29 ± 0.583 16.55 ± 0.401 0.14 ± 0.008 7.77 ± 0.12 0.05 ± 0.01 2.64 ± 0.006 18.41 ± 0.29 70.15 ± 11.15

Remzibey C 31.99 ± 0.629 16.96 ± 0.444 0.1 ± 0.005 6.61 ± 0.13 0.05 ± 0.01 2.39 ± 0.005 20.73 ± 0.24 69.46 ± 0.83

Dincer C 31.23 ± 0.662 17.36 ± 0.482 0.13 ± 0.006 7.35 ± 0.13 0.05 ± 0.01 2.17 ± 0.006 19.9 ± 0.19 70.14 ± 1.14

Balci C 31.9 ± 0.68 16.8 ± 0.43 0.14 ± 0.005 6.83 ± 0.15 0.05 ± 0.01 2.21 ± 0.01 19.84 ± 0.16 70.14 ± 1.06

C: Cultivar.

Table 4. Maximum, minimum, mean and standard deviation (Std) for 8 different traits determined in
the studied germplasm.

Oil (%) Protein (%) Miristic Palmitic Palmitoleic Stearic Oleic Linoleic

Maximum 36.885 17.362 0.17 8.2 0.53 3.51 52.5 77.73
Minimum 18.44 13.17 0.1 6.13 0.03 1.9 12.22 37.7

Mean 29.496 16.136 0.131 7.294 0.11 2.302 17.533 72.061
Std 2.735 0.634 0.013 0.399 0.09 0.23 5.396 5.235

A correlation analysis was conducted to examine the relationship between the studied
fatty acids. A highly significant correlation (p > 0.05) was observed among the vari-
ous fatty acids studied, which enhances the statistical power of the tests. Only values
above 0.05 will be discussed in this context. There was a strong and positive correlation
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(r = 0.673*) observed between protein and oil. Conversely, protein exhibited a highly
negative correlation with myristic, palmitic, and palmitoleic acids, as indicated in Figure 3.
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and Myristic acid” (0.655*) and “Palmitic acid and Linolic acid” (0.251*). While a highly
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negative correlation was found among “Oleic and linoleic acid, Palmitoleic acid with Oil
and Protein, Oleic acid with Palmitic acid and Stearic acid”. The correlation between “Oleic
and Linoleic acid” was also found to be highly negative (−0.995*) (Figure 3). The spider
plot illustrates the comparative variation in oil, protein, and fatty acid characteristics among
safflower genotypes, normalized to the panel’s mean. Marked variability was noted, with
particular genotypes displaying the highest (↑) and lowest (↓) values for each characteristic.
China 7 exhibited a high oleic acid content (positive response), whereas Iran 1 displayed the
lowest oleic acid value (negative response). In contrast, Iran 1 had superior performance in
terms of linoleic acid, whereas China 7 recorded the lowest value.

In terms of total oil percentage, China 7 exhibited the greatest value, whereas China
1 recorded the lowest. The protein content exhibited the most extensive variation, with
the Dincer cultivar attaining the greatest value and China 1 the lowest. Traits such as
stearic and palmitic acid exhibited significant disparities, with Argentina 1 and Bangladesh
2 demonstrating superiority in terms of their stearic acid contents, whereas Egypt 3 and
Bangladesh 3 represented the extreme values for palmitic acid content (Figure 4). A selection
of superior genotypes based on the desired traits was also carried out and these genotypes
are presented in Table 5. The results of the study revealed a relatively high broad-sense
heritability for all traits assessed. Notably, protein percentage exhibited a high heritability
but a low genetic advance as a percentage of the mean (GAM). In contrast, palmitic acid, oil
percentage, stearic acid, and linoleic acid showed a high heritability with moderate GAM.
On the other hand, palmitoleic acid and oleic acid demonstrated both a high heritability
and a high GAM, suggesting that there is a greater potential for genetic improvement in
these traits (Table 6).
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Table 5. Most superior genotypes based on desired traits among the studied germplasms.

Genotypes Oil (%) Protein (%) Myristic Palmitic Palmitoleic Stearic Oleic Linoleic

Egypt 1 36.89 16.22 0.12 7.17 0.04 2.25 15.81 74.2

China 7 36.8 16.39 0.13 7.03 0.05 1.97 52.5 37.7

Turkey 6 34.99 16.38 0.13 7.37 0.17 2.62 13.66 75.77

Egypt 2 34.92 16.66 0.13 7.56 0.11 1.93 14.32 75.24

Syria 3 33.98 16.71 0.14 7.68 0.13 2.33 14.22 74.81

Jordan 2 33.88 16.17 0.16 7.76 0.12 2.05 17.01 72.21

Iran 2 33.36 17.26 0.13 6.92 0.04 2.23 18.7 71.43

Portugal 2 32.35 17.09 0.13 6.83 0.03 2.55 16.2 74.03

Egypt 4 32.11 15.78 0.12 7.22 0.1 2.28 14.94 74.59

Remzibey C 31.99 16.96 0.1 6.61 0.05 2.39 20.73 69.46
C: Cultivar.

Table 6. Genetic parameters for various traits of safflower.

Trait PV GV EV GCV GCV.category PCV PCV.category hBS hBS.category GAM GAM.category

Oil (%) 7.65 7.54 0.11 9.31 Low 9.37 Low 98.58 High 19.1 Medium

Protein (%) 0.39 0.38 0 3.83 Low 3.85 Low 99.06 High 7.87 Low

Palmitic 0.16 0.15 0.01 5.31 Low 5.41 Low 96.65 High 10.8 Medium

Palmitoleic 0.01 0.01 0 75.52 High 79.65 High 89.9 High 148 High

Stearic 0.05 0.05 0 9.81 Low 10.08 Medium 94.64 High 19.7 Medium

Oleic 30.3 30.3 0 31.37 High 31.37 High 99.98 High 64.7 High

Linoleic 28.5 28.5 0 7.41 Low 7.41 Low 99.99 High 15.3 Medium

Notes: phenotypic variance (PV), genetic variance (GV), environmental variance (EV), genotypic coefficient of
variation (GCV), phenotypic coefficient of variation (PCV), broad-sense heritability (hBS), and genetic advance as
a percentage of the mean (GAM).

To explore the range of variation within the safflower germplasm under investigation,
PCA was conducted on the fatty acids studied, utilizing a correlation matrix. We computed
the eigenvalues associated with each principal component, which represent the amount of
variability explained by each component. For clarity and interpretability, we focused on the
principal components that together explained a substantial portion of the total variance in
the data. Specifically, we retained the first five principal components (PCs) based on their
cumulative contribution of 92.92% to the total observed variations, a threshold indicating
that the major patterns of variation are effectively captured by these components (Table 7).

Table 7. Eigenvectors, eigenvalues, and individual and cumulative percentages of variation explained
by the first five principal components (PCs) of safflower germplasm.

F1 F2 F3 F4 F5

Oil (%) 0.368 0.320 0.391 −0.227 0.301
Protein (%) 0.375 0.433 0.181 −0.183 0.297

Miristic −0.324 −0.215 0.601 −0.182 0.143
Palmitic −0.421 −0.038 0.549 0.079 −0.097

Palmitoleic −0.251 −0.342 −0.307 −0.322 0.759
Stearic −0.157 0.255 0.022 0.827 0.456
Oleic 0.434 −0.484 0.142 0.191 0.042

Linoleic −0.406 0.496 −0.192 −0.228 −0.068
Eigenvalue 2.644 1.863 1.287 0.983 0.657

Variability (%) 33.054 23.281 16.093 12.287 8.212
Cumulative % 33.054 56.335 72.428 84.716 92.927
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The first principal component (PC1) explained the highest proportion of the variance
at 33.05%, with oleic acid identified as the main contributor to this component, representing
the variation associated with oleic acid levels. The second component (PC2) accounted
for 23.48% of the total variation, with linoleic acid identified as its primary contributor,
capturing variations in linoleic acid levels. PC3 and PC4 contributed 16.09% and 12.28% of
the total variance, respectively, with myristic and stearic acids as the main contributors,
reflecting variations in these fatty acids. By selecting these components, we ensured that
the primary sources of variability in the dataset were represented, providing insights into
the relationship between fatty acid composition and safflower genotype characteristics.

To further examine the patterns of variation among the studied materials, the first
two principal components (PC1 and PC2), which captured the most significant variabil-
ity, were used to construct a genotype vs. trait biplot (GT Biplot) (Figure 5). This biplot
facilitated the grouping of accessions based on their fatty acid composition, including myris-
tic, palmitic, palmitoleic, stearic, oleic, and linoleic acids, illustrating how the genotypes
differed in their fatty acid profiles.
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In order to comprehend the correlation between fatty acids, a dendrogram was con-
structed (Figure 6). The dendrogram based on oil, protein, and fatty acid composition traits
separated the 87 studied accessions into two populations. The first population consisted of
four accessions, with all three accessions from Bangladesh clustered together in population
A. The remaining accessions fell into population B, which was further divided into two
sub-populations, B1 and B2. Population B1 consisted of 53 accessions, further classified
into B1A and B1B with 31 and 22 accessions, respectively. Population B2 consisted of
30 accessions, further classified into B2A and B2B with 20 and 10 accessions, respectively.
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4. Discussion
In agricultural experiments, the primary objective is to assess the adaptability of new

plant germplasms to specific climate conditions and determine their potential yield and
performance in each cultivation area. These evaluations determine farmers’ decisions
regarding the incorporation of new germplasm into their cropping systems, to enhance
variety selection and increase agricultural income. In this investigation, 87 safflower
genotypes sourced from various origins were evaluated in an area traditionally dedicated
to cereal cultivation, such as durum wheat and barley. Notably, substantial disparities were
observed in the oil and fatty acid composition among the tested genotypes over the course of
the study. These variations can be attributed to a combination of genetic and environmental
factors. Importantly, the study ensured uniform climate conditions and cultivation practices
across all safflower genotypes, thereby establishing that the observed differences in oil
and fatty acid composition were primarily influenced by genotype responses to prevailing
environmental conditions.

Vegetable oils play a crucial role in human nutrition and find extensive applications in
various industries as well as cosmetics and biofuel production [46]. The utilization of oils
across various domains depends significantly on their compositional attributes. The fatty
acid composition of oils is intricately linked to the presence and functionality of enzymes
involved in their biosynthesis [46]. Safflower, an emerging oilseed crop, has garnered
attention for its superior oil quality and favorable agronomic characteristics, including
tolerance to drought and cold, rendering it well-suited for Mediterranean climates [11].
The significance attributed to safflower primarily stems from the high-quality oil extracted
from its seeds [22], with particular emphasis on the variability in fatty acid content. The
growing interest in oilseed crops for agro-industrial research and development initiatives
has been notable in the Mediterranean region in recent years [28].

Mediterranean farmers, predominantly reliant on monocultures of winter cereals, seek
low-input and alternative winter crops to diversify their cropping systems and advance
agricultural sustainability [7]. The diversification of cropping systems stands as a cor-
nerstone of the agroecological transition, yet comprehensive local assessments regarding
potential new species, notably alternative oilseed crops, are largely absent, particularly
under real on-farm circumstances [7]. Safflower has emerged as a notable candidate among
various crop alternatives due to its wide environmental adaptability, minimal input re-
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quirements, robust plant vigor, even in marginal soil conditions, and capacity to withstand
low temperatures.

Numerous factors, including climatic conditions, plant variety, and geographic lo-
cation, exert significant influence on the oil content of safflower seeds [47,48]. Previous
research indicates a wide range of oil contents spanning from 14.0% to 48.3%, reflecting
substantial variability [48]. This variability is largely attributable to the genetic potentials of
safflower genotypes and their adaptive capacities. In our study, we observed the oil content
ranging from 18.44% to 36.88%. Notably, Zemour et al. [22] documented oil content varia-
tions ranging from 15% to 40% among safflower genotypes, while Abou Chehade et al. [11]
reported a range of 20.3% to 35.8%. The oil content of safflower seeds is predominantly
influenced by genetic traits, environmental conditions, and agronomic practices, like other
oilseed crops [7]. In research conducted by Zanetti et al. [7], the oil content of safflower
genotypes exhibited a range spanning from 36.6% to 40.2%. Our own findings closely align
with these previously reported results, particularly those documented in Mediterranean
regions [11,28,49].

Additionally, studies in arid and semi-arid regions have also reported oil concentra-
tions ranging from 17% to 43% in safflower genotypes [28,34,50]. However, the genetic
inheritance pattern of seed oil content in safflower remains to be fully elucidated [51]. Our
results demonstrate that safflower seeds exhibit a substantial oil content under semi-arid
conditions, with the cultivar selection playing a critical role [52–54].

The protein content of safflower seeds serves as a significant metric for seed quality,
particularly due to its valuable application in livestock feed. Previous studies by La
Bella et al. [28] and Shahrokhnia and Sepaskhah [55] have documented protein contents
ranging from 10% to 22%, a range consistent with the findings of the current investigation,
which yielded protein contents between 13.17% and 17.36%. Despite this consistency,
our study revealed an inconsistent protein content across different safflower genotypes.
Such inconsistencies may stem from the contrasting responses of seed protein content to
varying environmental conditions. However, it is noteworthy that genotype × environment
interactions may contribute to diverse cultivar responses, given that protein concentration
is a trait subject to quantitative inheritance [56].

The variability in fatty acid content within safflower seed oil makes this oleaginous
species a subject of significant interest [28,57]. This composition is influenced by both the
cultivars employed and the prevailing climatic conditions throughout the crop cycle [22].
Previous studies have substantiated this dependence [11,17,58,59]. Consequently, exploring
the genetic diversity of safflower holds promise for germplasm conservation and utilization
strategies, thereby enhancing breeding programs tailored to semi-arid regions to foster
sustainable crop production [60,61]. The industrial value of vegetable oil is intricately tied
to its fatty acid profile. Conventional safflower oil typically comprises 6–8% palmitic acid,
2–3% stearic acid, 16–20% oleic acid, and 71–75% linoleic acid [33].

Previous research has documented variations in the content of palmitic acid (PA) and
stearic acid among different safflower genotypes. Johnson et al. [62] reported PA contents
ranging from 3.9% to 6.8%, while Uysal et al. [63] and Zemour et al. [22] observed ranges
of 6.0% to 8.5% and 6.6% to 7.15%, respectively. In our study, the PA content ranged from
6.13% to 8.2%, aligning with these previous findings. Similarly, the variability in stearic
acid content reported by Johnson et al. [62] (1.1% to 4.5%) and Uysal et al. [63] (2.0% to
3.1%) corresponds closely to our observations.

Variations were also noted in linoleic acid ranging from 37.7% to 77.7% and oleic
acid from 12.2% to 52.5%, consistent with the findings of Zemour et al. [22]. Oleic and
linoleic acids are pivotal for safflower oil quality and human health. The predominance
of these acids underscores their significance in characterizing the safflower germplasm,
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both agronomically and economically [28]. Safflower genotypes exhibiting elevated levels
of oleic and linoleic acids represent valuable genetic resources for enhancing safflower oil
quality in the Mediterranean region. Conventionally, safflower oil comprises primarily
palmitic acid (4–8%), stearic acid (2–3%), oleic acid (8–18%), and linoleic acid (73–84%) [16].
Genotypes with a high oleic acid content, compared to linoleic acid, are deemed significant
for oil quality owing to their influence on oil stability and human health.

The literature reports variations in both oleic and linoleic acid among safflower geno-
types. For instance, Murthy and Anjani [64] explored the seed oil compositions of seven
Carthamus species from Pakistan, revealing oleic acid and linoleic acid ranges of 11.3–23.4%
and 61.4–82.1%, respectively. Similarly, Sabzalian et al. [65] noted oleic acid levels between
12.2% and 19.8%, and linoleic acid levels ranging from 62.5% to 76.1% across different
genotypes. Kurt et al. [39] reported oleic acid content varying from 7.14% to 14.05% and
linoleic acid content ranging from 74.65% to 84.13% among various safflower genotypes.

In previous research, the oleic acid content fluctuated between 6.2% and 81.9% [62],
62.7% and 82.1% [66], and 7.8% and 30.6% [63]. Similarly, the linoleic acid content ranged
from 11.0% to 83.1% [62], 70.3% to 78.8% [66], and 60.0% to 81.6% [63]. The findings of this
study corroborate previously reported data, particularly highlighting the economic signifi-
cance of safflower oil with high oleic acid content (>75%) due to its enhanced oxidative
stability, compared to typical safflower oil rich in polyunsaturated fatty acids [67,68].

The spider plot demonstrates the genetic potential of safflower genotypes for enhanc-
ing critical attributes, including oil and protein content, along with fatty acid profiles.
Genotypes like China 7, which consistently demonstrate elevated oleic acid and total oil
percentages, are optimal selections for breeding efforts aimed at enhancing oil stability and
health benefits. In contrast, genotypes such as Iran 1, which are rich in linoleic acid, present
prospects for nutritional markets focused on polyunsaturated fats. The negative correlation
observed between oleic and linoleic acids reflects their metabolic trade-off, suggesting
the need for a balanced selection approach when targeting both stability and nutritional
quality. Similarly, the variability in traits like protein content and saturated fatty acids
(e.g., stearic and palmitic acids) demonstrates the complexity of optimizing multiple traits
simultaneously. Spider plots provide visual clarity for identifying superior genotypes and
potential outliers, aiding breeders in making informed decisions and developing cultivars
for industrial, nutritional, and environmental demands.

Heritability and variance components play a pivotal role in designing effective breed-
ing programs, predicting responses to selection, and constructing selection indices. In this
study, high heritability was observed for oil content and fatty acids, indicating that these
traits are largely governed by genetic factors and minimally influenced by environmental
conditions. This supports the feasibility of selection based on phenotypic observations of
these traits.

A high heritability combined with a low GAM for protein percentage suggests a greater
role of environmental factors rather than genetic components, making selection less effective
for this trait. Conversely, traits such as oil percentage, palmitic acid, stearic acid, and
linoleic acid exhibited a high heritability with moderate GAM, indicating the involvement
of both additive and non-additive gene actions. These traits may benefit from population
improvement strategies such as reciprocal recurrent selection. The combination of high
heritability and high GAM observed for palmitoleic acid and oleic acid is particularly
significant. This suggests strong genetic control and substantial potential for genetic
improvement through selection, making these traits ideal targets in breeding programs.
Consistent with these findings, prior research has reported high heritability values for oil
content (67.6%) and fatty acids, with oleic acid and linoleic acid showing a heritability
of 99.4% and 99.3%, respectively [69]. This highlights the potential for selective breeding
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to enhance the oil yield and fatty acid profile of crops like safflower, as demonstrated in
studies by Golkar and Karimi [70]. Collectively, these findings emphasize the importance
of leveraging traits with a high heritability and GAM in breeding programs, particularly
for improving oil quality and productivity in oilseed crops.

High-oleic-content safflower oil is gaining prominence, particularly among health-
conscious consumers [51]. A notable negative correlation between oleic and linoleic acid
levels has been observed [71], consistent with the findings of this investigation. This
correlation alongside reports of an insignificant relationship between oil content and
individual fatty acid levels [72], underscores the feasibility of breeding high-oleic-content
safflower varieties with elevated oil contents [43,71,73,74]. Similar trends have been noted
in high-oleic-content sunflowers, where no significant association between oleic acid and oil
content was observed, but a significant negative correlation between oleic acid and linoleic
acid was present. This trend aligns with previous findings, where oleic and linoleic acid
concentrations exhibit an inverse relationship due to their shared biosynthetic pathway. In
safflower, the enzyme ∆12 desaturase catalyzes the conversion of oleic acid (18:1) to linoleic
acid (18:2). Thus, higher ∆12 desaturase activity leads to increased linoleic acid levels
and reduced oleic acid levels, explaining the observed inverse relationship. This balance
between oleic and linoleic acid content is of agronomic significance, as higher oleic acid
levels contribute to oil stability, while a higher linoleic acid content enhances nutritional
value [51,71,73,75–77].

As can be seen in the dendrogram (Figure 6), the accessions in group A and those in
group B have similar values except for oleic and linoleic acid content. The four accessions
in group A exhibit the highest oleic acid and lowest linoleic acid values, distinguishing
them from the other groups. These findings have the potential to enhance knowledge of
cultivar responses under Mediterranean conditions and offer valuable insights for breeders
regarding their integration into selection programs. Additionally, the results serve to
identify promising safflower genotypes suitable for cultivation in the Mediterranean region
and for incorporation into future breeding initiatives.

While the findings of this study generally align with previous research on safflower
genotypes, some observed differences in fatty acid profiles, including oleic, linoleic, and
other fatty acids, may stem from variations in environmental conditions, genetic diversity,
and methodological approaches. Environmental factors such as temperature and rainfall,
particularly within the Mediterranean climate of Adana, Türkiye, are known to influence
the biosynthesis of fatty acids in oilseed crops. Such climatic conditions may partly explain
the observed variations when compared to studies conducted in other regions with different
environmental profiles. Additionally, this study employed Soxhlet extraction for oil analysis
and was conducted over a single growing season, while other studies may have used
different extraction methods (e.g., cold pressing or supercritical CO2 extraction) or spanned
multiple growing seasons. These methodological and environmental factors are crucial
to consider when interpreting comparative results, as they may impact the phenotypic
expression of various fatty acid traits, influencing the overall oil content and composition
in safflower genotypes. The data from this study provide actionable insights for breeding
programs focused on improving safflower oil quality and yield. Specifically, accessions
with a higher oleic acid content could be prioritized in breeding programs for enhanced
oil stability and shelf life, which is particularly beneficial for industrial oil applications.
Conversely, genotypes with elevated linoleic acid levels could be targeted for nutritional
breeding programs, given linoleic acid’s recognized health benefits. By leveraging the
observed genetic variability in fatty acid profiles, breeders can select parent lines with
complementary traits to enhance genetic diversity and achieve desirable trait combinations
in progeny. These findings inform breeding strategies to develop safflower varieties
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tailored to meet specific industrial or nutritional standards, thus aligning breeding goals
with market demands.

Selection of Superior Genotypes

One of the main objectives of this study was the identification and selection of high-
performing safflower genotypes based on desirable traits. Safflower oil, the primary
product of this crop, is valued for its high oil and protein content, which are beneficial for
human nutrition. The selection process focused on genotypes with superior traits, such
as increased oil and protein content, coupled with reduced concentrations of palmitic and
myristic acids. These fatty acids, when present in lower concentrations, contribute to the
nutritional value of the oil.

Among the evaluated accessions, Egypt 1, China 7, Turkey 6, Egypt 2, Syria 3, Jordan 2,
Iran 2, Portugal 2, Egypt 4, and Remzibey demonstrated superior performances, exhibiting
higher oil and protein percentages. This is further supported by the strong positive cor-
relation observed between oil and protein content. In terms of fatty acid composition,
these accessions also showed low levels of myristic and palmitic acids, aligning with the
selection criteria.

To ensure the robustness of these findings, multi-year and multi-location yield trials
are currently underway to validate the performance of the selected genotypes. Following
successful characterization and evaluation, the superior accessions will be submitted for
registration with the Seed Registration and Certification Center of the Agriculture and
Forestry Ministry of Turkey. These characterized accessions are available for use by the
safflower breeding community under the jurisdiction of the Turkish Seed Transfer Act,
facilitating further breeding and research initiatives.

5. Conclusions
In conclusion, this study has provided valuable insights into the oil content and fatty

acid composition of the safflower (Carthamus tinctorius L.) germplasm. Significant variations
were observed among the safflower accessions, with genotype Egypt 1 displaying the
highest oil content. The correlation analysis revealed strong associations between protein
and oil content, as well as between certain fatty acids. These findings underscore the
importance of characterizing safflower germplasm diversity for developing cultivars with
improved oil quality and nutritional value. Such advancements hold promise for enhancing
sustainable production and meeting the diverse needs of the food, pharmaceutical, and
industrial sectors. Further research and breeding efforts focused on exploiting the genetic
diversity within safflower germplasm can contribute to the development of high-yielding
and nutritionally rich cultivars, thereby advancing the utilization and commercialization of
safflower as a valuable oilseed crop.
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1. Erbaş, S.; Mutlucan, M. Investigation of flower yield and quality in different color safflower genotypes. Agronomy 2023, 13, 956.

[CrossRef]
2. Askin, E.; Erbas, S. Superior lines for agro-technological traits in safflower (Carthamus tinctorius L.). Turk J. Field Crops 2020,

25, 50–56. [CrossRef]
3. Kolanyane, M.O. The influence of nitrogen and phosphorus nutrition on growth and yield components of safflower (Carthamus

tinctorius L. Doctoral Dissertation, Botswana University of Agriculture & Natural Resources, Gaborone, Botswana, 2022.
4. Pasban Eslam, B. Effect of Early and Late Season Drought Stress on Agronomic Characteristics, Seed and Oil Yield of Safflower

(Carthamus tinctorius L.) Genotypes in Marginal and Saline Soils around Lake Urmia. Seed Plant J. 2022, 38, 91–108.
5. Culpan, E. Identification of cold tolerance and some agronomic traits of advanced safflower genotypes developed by hybridization.

J. Am. Oil Chem. Soc. 2023, 100, 915–926. [CrossRef]
6. Bhattarai, B.; Singh, S.; Angadi, S.V.; Begna, S.; Saini, R.; Auld, D. Spring safflower water use patterns in response to preseason

and in-season irrigation applications. Agric. Water Manag. 2020, 228, 105876. [CrossRef]
7. Zanetti, F.; Angelini, L.G.; Berzuini, S.; Foschi, L.; Clemente, C.; Ferioli, F.; Vecchi, A.; Rossi, A.; Monti, A.; Tavarini, S. Safflower

(Carthamus tinctorius L.) a winter multipurpose oilseed crop for the Mediterranean region: Lesson learnt from on-farm trials. Ind.
Crop. Prod 2022, 184, 115042. [CrossRef]

8. Hosseinzadeh-Bandbafha, H.; Nazemi, F.; Khounani, Z.; Ghanavati, H.; Shafiei, M.; Karimi, K.; Lam, S.S.; Aghbashlo, M.;
Tabatabaei, M. Safflower-based biorefinery producing a broad spectrum of biofuels and biochemicals: A life cycle assessment
perspective. Sci. Total Environ. 2022, 802, 149842. [CrossRef]

9. FAOSTAT. FAOSTAT Online Database. 2022. Available online: http://faostat3.fao.org/saffower (accessed on 2 February 2024).
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