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Abstract: This research evaluates 20 advanced convolutional neural network (CNN) archi-
tectures for classifying mushroom diseases in Agaricus bisporus, utilizing a custom dataset
of 3195 images (2464 infected and 731 healthy mushrooms) captured under uniform white-
light conditions. The consistent illumination in the dataset enhances the robustness and
practical usability of the assessed models. Using a weighted scoring system that incorpo-
rates precision, recall, F1-score, area under the ROC curve (AUC), and average precision
(AP), ResNet-50 achieved the highest overall score of 99.70%, demonstrating outstanding
performance across all disease categories. DenseNet-201 and DarkNet-53 followed closely,
confirming their reliability in classification tasks with high recall and precision values.
Confusion matrices and ROC curves further validated the classification capabilities of the
models. These findings underscore the potential of CNN-based approaches for accurate
and efficient early detection of mushroom diseases, contributing to more sustainable and
data-driven agricultural practices.

Keywords: Agaricus bisporus; mushroom diseases; deep learning; image processing; preci-
sion agriculture; smart farming; convolutional neural networks

1. Introduction
The cultivation of mushrooms, particularly Agaricus bisporus (J.E. Lange) Imbach—

commonly referred to as the cultured mushroom, white-capped cultivated mushroom,
meadow mushroom, or “champion mushroom”—is of profound economic and nutritional
importance worldwide. Produced in more than seventy countries [1,2], A. bisporus is in-
creasingly favored due to its low calorie, sodium, fat, and cholesterol content; its high levels
of protein, carbohydrates, fiber, vitamins, and amino acids; its pleasant taste; widespread
availability; and its evaluation as a functional food [3,4]. These attributes have intensified
global demand, fostering growth in the mushroom market and supporting food security
and sustainable agricultural practices.

Despite these advantages, A. bisporus cultivation faces substantial challenges from
various fungal diseases—such as bacterial blotch (Pseudomonas tolaasii) [5], dry bubble
(Verticillium fungicola) [6], cobweb (Cladobotryum mycophilum) [7], and wet bubble (Mycogone
perniciosa) [8]—which severely reduce yield and quality if not identified and managed
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promptly [9,10]. Such diseases undermine the economic viability of producers and limit
consumer access to nutritious food. In response to increasing disease prevalence and pest
pressure, the use of chemical pesticides has escalated. However, in regions like Turkey,
the Ministry of Agriculture and Forestry has authorized only a limited range of pesticides
for mushroom production [11]. This regulatory constraint compels producers to employ
unapproved chemicals, posing significant risks. Moreover, the short growth cycle of button
mushrooms can result in pesticide residues on the harvested product, raising potential
health concerns for consumers [12].

Improving productivity and ensuring public health require rapid and accurate detec-
tion of diseased mushrooms. Early diagnosis allows for the prompt removal of infected
compost or the application of suitable remedies, preventing further contamination and
reducing the need for chemical interventions. This approach not only diminishes economic
losses but also advances sustainable agricultural practices. Nonetheless, conventional
diagnostic methods remain time-consuming, costly, labor-intensive, and subjective. Such
inefficiencies highlight the urgent need for automated and objective detection systems
capable of precise, swift, and cost-effective identification of fungal pathogens.

Convolutional Neural Networks (CNNs) [13] have revolutionized plant disease detec-
tion in crops like apples [14], tomatoes [15], and wheat [16] by enabling early intervention
through accurate classification based on subtle visual differences. Their strength in ex-
tracting complex patterns from images makes CNNs well-suited for detecting minute
distinctions between healthy and infected specimens [17,18].

However, while transformer-based architectures also show remarkable performance in
computer vision, practical constraints in agricultural applications can limit their feasibility—
reinforcing the appropriateness of CNNs for our study. Our study specifically focused on
CNN architectures due to their proven efficiency in handling datasets of similar scales and
their successful track record in agricultural applications. CNNs offer an optimal balance
between accuracy and computational efficiency, making them particularly well-suited for
the practical requirements of crop disease detection systems. However, we acknowledge the
potential of transformer-based models and consider their evaluation as a valuable direction
for future research, particularly as computational resources become more accessible and
dataset sizes expand.

Despite these advances, the control of mushroom diseases has received comparatively
little attention in current research. The unique challenges of mushroom farming—controlled
growing environments, morphological similarities among diseases, and limited compre-
hensive studies—have inhibited the adaptation of CNN-based methods in this domain [19].

Our study shows that incorporating deep learning methodologies into detecting and
classifying fungal diseases in Agaricus bisporus cultivation leads to faster, more efficient, and
more objective results than traditional manual monitoring methods. By reducing diagnostic
errors and facilitating timely interventions, these technologies can reduce chemical usage,
enhance food safety, bolster economic stability for producers, and support sustainable
agricultural systems [20]. This underscores the imperative for focused research to apply
CNN-based solutions to the specific challenges of mushroom disease management.

This study aims to address critical gaps in the diagnosis and classification of mushroom
diseases by focusing on three primary objectives:

Custom Dataset Development: The research involves constructing a high-quality
dataset comprising 3195 images—2464 depicting diseased mushrooms and 731 representing
healthy specimens. All images are captured under standardized conditions of lighting,
color temperature, brightness, exposure, white balance, distance, and camera angle. This
controlled setup not only simulates authentic agricultural scenarios but also ensures that
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the resulting dataset is both durable and broadly applicable [21]. It thus provides a reliable
foundation for training and evaluating machine learning models [22].

Comprehensive Evaluation Metric: This study systematically compares 20 cutting-
edge CNN architectures, including DenseNet-201 [23], ResNet-50 [24], DarkNet-53 [25],
EfficientNet-b0 [26], and MobileNet-v2 [27], to determine their effectiveness in mushroom
disease classification. Multiple performance indicators—accuracy, precision, recall, F1-score,
area under the ROC curve (AUC), and average precision (AP)—are employed. A weighted
scoring method is introduced to synthesize these metrics into a single comprehensive
indicator, thereby capturing each model’s overall balance between accuracy and efficiency.

Enhanced Analytical Framework: By capitalizing on the strengths of both MATLAB
and Python (version 3.9), the research adopts a hybrid analytical pipeline. MATLAB (ver-
sion R2023b) is utilized for data preprocessing, model training, and generating advanced
visualizations such as ROC and precision-recall curves. Python (version 3.9) supplements
these efforts with additional visualization and analytical tools. This integrated approach
enhances analytical precision, reproducibility, and operational efficiency [28].

The effective detection of diseases in Agaricus bisporus is of critical importance due
to its significant role as a nutritional source and its substantial share in the food industry.
The short cultivation cycle of Agaricus bisporus increases the risk of chemical residues from
pesticide use, which can negatively impact human health. This highlights the urgent need
for systems that can facilitate automated disease detection. While this study does not
directly automate disease detection, it lays a solid foundation for future developments in
this direction, offering significant potential to reduce producers’ losses in terms of time,
effort, and financial resources, thereby contributing to sustainable production practices.

In the existing literature, there are no studies that feature such a comprehensive and
unique dataset for detecting Agaricus bisporus diseases. The novelty of our work lies in the
creation of this dataset, which was developed over a period of more than one year through
direct engagement with mushroom production facilities across various regions of Turkey.
This extensive data collection effort ensured that the dataset transcended local limitations
and provided a broad representation, significantly enhancing its value.

Furthermore, the custom dataset was subjected to training and evaluation using
20 different pre-trained deep learning models, an approach rarely seen in similar studies.
Among these models, ResNet-50 achieved an impressive accuracy of 99.70%, underscoring
the reliability and robustness of the dataset. This study not only advances the field of disease
classification for mushrooms but also serves as a benchmark for agricultural classification
problems more broadly. The unprecedented scope of model experimentation further
underscores the study’s contribution and sets it apart in the academic literature.

Additionally, prior investigations in plant pathology underscore the importance of
early and accurate disease detection in various crops, illustrating how deep learning and
imaging methodologies can significantly improve yield out comes and overall sustainability.

Over the last decade, a wealth of research has focused on leveraging advanced imag-
ing techniques, convolutional neural networks (CNNs), and various machine learning
(ML) methods to diagnose and classify diseases across a wide range of crops. Among
these, imaging has shown significant potential in detecting plant diseases before fatal
symptoms appear. For instance, Pane et al. utilized image analysis combined with Ran-
dom Forest modeling to distinguish between healthy and powdery mildew-infected wild
rocket leaves [29], demonstrating the potential of machine learning in disease classification.
However, compared to the high accuracy achieved by DenseNet-201 in our study (99.98%),
Random Forest’s performance is limited by its reliance on manually selected features and
less robust handling of diverse datasets. This highlights the advantage of deep learning
models like DenseNet-201 in capturing complex patterns directly from raw image data,
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offering superior scalability and precision for real-world applications. Similarly, Xie et al.
highlighted that imaging can potentially identify wheat crown rot infections at an early
stage, thus supporting preventative management strategies by using SVM [30].

Additionally, rice production has faced numerous challenges in recent years, where
traditional methods are still being used to detect rice diseases. A recent study developed
an automated rice blast disease diagnosis technique using deep learning, image processing,
and transfer learning with pre-trained models such as Inception V3, VGG16, VGG19, and
ResNet-50. The dataset included 2000 images (1200 blast-infected and 800 healthy). Among
the models, ResNet-50 demonstrated the highest accuracy of 99.75%, with a loss rate of
0.33, and achieved superior validation metrics, including an F1-score of 99.70 and AUC
of 99.83%. These findings underscore the applicability of ResNet-50 in high-precision
agricultural disease detection scenarios, further supporting its potential for integration into
automated systems [31].

Moreover, in medicinally significant crops such as black pepper, recent work has
shown that transfer learning approaches (e.g., Inception V3, GoogleNet, SqueezeNet,
and ResNet18) can achieve up to 99.67% accuracy in detecting various leaf diseases. By
employing carefully selected hyperparameters and real-time annotated leaf images, such
methods effectively diagnose anthracnose, slow wilt, and early phytophthora infection,
thereby contributing to timely intervention in black pepper cultivation [32].

Deep learning, especially CNN-based frameworks, has emerged as a leading approach
for plant disease detection. Chen et al. presented BLSNet, a UNet-based semantic segmen-
tation network optimized with attention mechanisms and multi-scale feature extraction,
to detect bacterial leaf streaks in rice [33]. However, compared to DenseNet-201, which
demonstrated an accuracy of 99.98% in mushroom disease classification, BLSNet achieved
a slightly lower accuracy of 99.33%, highlighting DenseNet-201’s superior performance
in handling complex inter-class similarities and achieving precise disease detection in
challenging scenarios.

Chowdhury et al. adopted EfficientNet-based architectures and segmentation models
(U-Net and modified U-Net) for tomato leaf disease classification, demonstrating high
accuracy when trained on segmented leaf images [34]. Similar advancements were reported
by Bansal et al. and Tan et al. for apple and tomato leaf disease classification, respectively,
confirming the general effectiveness of CNNs in plant pathology [35,36].

In addition, Zhao et al. integrated attention mechanisms into CNNs to improve tomato
disease diagnosis, achieving an average accuracy of 96.81% and real-time performance with
a diagnosis speed of 31.68 ms [37]. However, compared to their results, our DenseNet-201-
based model achieved a significantly higher accuracy of 99.98%, demonstrating its superior
robustness and precision in disease classification. Peng et al. proposed a fused deep-feature
approach combined with SVM classifiers for grape leaf disease identification, showing that
the integration of multiple feature sets can lead to more robust disease recognition [38].
Studies by Li et al. and Wan et al. emphasized the importance of hyperspectral analysis in
non-destructive and early disease detection [39,40]. Lin et al. and Wang et al. focused on
lightweight models such as GrapeNet or optimized YOLOv5 architectures, which ensure
efficient, real-time detection [41,42]. However, these models often trade off accuracy for
efficiency. For instance, GrapeNet achieves an accuracy of 86.29% with only 2.15 million
parameters, making it suitable for mobile and embedded systems. In contrast, DenseNet-
201, as evaluated in our study, demonstrated a significantly higher accuracy of 99.98%
across all mushroom disease categories. While DenseNet-201 has a larger parameter count,
its superior performance highlights its capability to deliver exceptional precision and
reliability, making it more suitable for applications where accuracy is paramount, such as
early disease detection in critical agricultural systems.
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Furthermore, multi-disease detection has recently become a prominent research topic,
especially regarding sustainability goals and global food security. In one study, a set of nine
pre-trained CNNs (e.g., DenseNet201, ResNet50, EfficientNetB7) was combined through
early-fusion and voting-ensemble strategies, yielding accuracy scores as high as 97.79% on
the PlantVillage dataset, which comprises 15 diverse classes. This ensemble methodology
has been reported to enhance generalization and mitigate overfitting, a challenge frequently
faced in plant disease detection workflows [43].

Wu et al. introduced DS-DETR, a model based on the DETR framework, which
achieved a classification accuracy of 96.4% by efficiently segmenting and evaluating tomato
leaf diseases through advanced pre-training and spatially modulated co-attention mech-
anisms. However, this accuracy is lower compared to the 99.98% accuracy achieved by
DenseNet-201, highlighting the superior classification performance of the latter [44].

Yin et al. designed DISE-Net, a deep convolutional network incorporating attention
mechanisms, to precisely classify maize leaf spots [45], achieving an accuracy of 97.12%;
however, DenseNet-201 surpasses this with an accuracy of 99.98%, demonstrating superior
performance in classification precision and feature extraction.

Zendler et al. applied shallow convolutional networks to assess downy mildew
severity on grapevine leaf discs, achieving a validation accuracy of 95% [46]. However,
DenseNet-201 demonstrated superior performance with an accuracy of 99.98% in our work,
showcasing its advanced ability to handle complex visual patterns and achieve higher
precision in classification tasks.

Beyond common field crops, recent work has extended to niche agricultural products
like mushrooms. Zahan et al. explored deep learning models, including ResNet15, to
classify several mushroom diseases, finding an accuracy of 88.40% [47]. Furthermore,
Albayrak et al. constructed a comprehensive image-based dataset for Agaricus bisporus
diseases, paving the way for CNN applications in mushroom disease detection and classifi-
cation [3]. Gu et al., Orchi et al., and Mehmood et al. demonstrated high-precision results
in multi-disease detection scenarios, achieving accuracies of 99.72%, 99.64%, and 99.00%,
respectively, using various DL and ML architectures [48–50].

Likewise, in the domain of grape leaf disease detection, a strategy incorporating CNNs
with Gaussian noise augmentation was shown to reduce overfitting and attain 99.88%
accuracy when using PlantVillage data and various pre-trained models (e.g., VGG16,
ResNet50, InceptionV3, DenseNet121). This approach broadens data diversity and has
been noted to substantially improve model generalization [51].

Additionally, image segmentation techniques have proven essential for improving clas-
sification performance in complex backgrounds, as shown by Ngugi et al., who achieved an
accuracy of 97.66% using their KijaniNet model, and Zhang et al., whose CRF_ResUNet++
model attained an accuracy of 99.11%, both of which emphasized effective image prepro-
cessing methods [52,53]. Zhao et al. and Jiang et al. focused on tasks ranging from spore
segmentation to weed and crop recognition, demonstrating that integrated feature extrac-
tion and semi-supervised learning approaches can further enhance precision agriculture
technologies [54,55].

Overall, current literature underscores the capabilities of deep learning techniques,
combined with advanced imaging methods and feature fusion strategies, in accurately
diagnosing plant diseases. Such methodologies, adapted to specific species—from common
field crops to niche produce like mushrooms—provide a foundation for implementing
efficient, real-time disease management solutions in modern agriculture.

The current study stands out as a novel contribution to this field by presenting the
most comprehensive and unique dataset developed specifically for the classification of
Agaricus bisporus diseases. Unlike previous studies, our work incorporates the use of 20 pre-
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trained deep learning models for analysis, offering an unprecedented exploration of model
performance in this domain. Among these models, ResNet-50 demonstrated exceptional
results, achieving an impressive accuracy of 99.70%. This study not only provides a
robust framework for the detection and classification of Agaricus bisporus diseases but also
facilitates a comprehensive evaluation of the performance of existing pre-trained models in
this context. By addressing the limitations of prior research, this work sets a new benchmark
in agricultural disease classification and contributes significantly to the development of
automated systems for disease detection and management.

2. Materials and Methods
2.1. Dataset Creation Methodology

To capture high-quality mushroom images for dataset creation, a custom-designed
portable imaging apparatus was developed, as illustrated in Figures 1–3. This apparatus
was engineered to ensure controlled and uniform lighting conditions essential for consistent
and reliable image acquisition.
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The interior surfaces of the imaging device were coated with matte black bases and
matte white walls to optimize lighting quality by reducing glare and reflections [56].
Adjustable lighting channels equipped with white diffusers provided homogeneous illumi-
nation, while a consistent 45◦ angle of light incidence minimized specular reflections and
enhanced the visibility of critical features required for accurate disease classification [57,58].
The mushroom samples were positioned on a sturdy matte black felt background to main-
tain consistent visual context, which is visible in the imaging setup in Figures 2 and 3.

The imaging process was specifically designed to address the rapid progression of
diseases in mushrooms, which begins immediately after harvest. To ensure that the disease
characteristics were accurately documented in their early stages without delays that could
compromise the integrity of the visual data, images had to be captured directly at the
production facilities. To eliminate reliance on external lighting and power sources, the
device was equipped with its own battery-powered lighting system.
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Due to the need for portability and on-site image capture, a smartphone camera was
chosen as the imaging device. While this decision was driven by practical constraints,
the selected smartphone featured advanced lens technology and imaging capabilities that,
in many cases, rival or surpass industrial cameras. This ensured that high-resolution
images could be captured effectively in field conditions. Additionally, to preserve the raw
integrity of the images, all automatic software corrections by the smartphone were disabled,
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and a fully isolated and controlled lighting environment was created to prevent external
light interference.

To support extended field operations, a 12 V battery was integrated into the system,
enabling the device to function independently in various agricultural environments. This
portable power supply, visible in the left compartment of Figure 1, provided the necessary
energy for consistent and reliable imaging under field conditions.

The apparatus’ modular design, as presented in Figure 1, includes clearly defined com-
partments for lighting and imaging systems, ensuring minimal interference and consistent,
high-quality image acquisition. These carefully implemented measures enabled reliable
dataset creation across diverse farming settings, establishing a robust basis for training and
evaluating machine learning models. The development process of the portable imaging
apparatus designed within the scope of this study is presented in Figure 3.

2.2. Dataset Composition

The dataset consisted of 3195 images classified into five categories: Healthy (731), Bac-
terial Blotch (576), Dry Bubble (665), Cobweb (664), and Wet Bubble (559). These categories
are visually represented in Figure 4, showcasing examples of each condition captured
under controlled white-light conditions. Images were taken at multiple stages of disease
progression and from various angles, as illustrated in Figure 5, to ensure diversity and
enhance the robustness of the dataset for training, validation, and testing. The inclusion of
random angles (α◦) for diversity and upright positions (90◦) provided a comprehensive
representation of the mushroom samples, allowing the models to better capture disease
characteristics. Proportional balancing among the classes, as depicted in Figure 4, en-
sured that each condition was sufficiently represented, enabling the models to generalize
effectively across all disease categories.
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2.3. Challenges and Mitigation Techniques

Inter-Class Similarities: Certain diseases, such as Dry Bubble and Cobweb, exhibit
similar visual features [59]. To address this, expert mycologists guided the annotation
process, and images highlighting key distinguishing traits were selected, thereby improving
accurate class separation.

Consistent Imaging Conditions: Achieving uniform lighting, angle, and distance
conditions across multiple farms proved challenging. This was mitigated by stringent
pre-collection calibration of the imaging device and adherence to standardized imaging
protocols, ensuring stable, glare-free illumination and reducing variability among collected
images [60].

Disease Diversity and Temporal Sampling: Over a 12-month period, the research team
conducted multiple visits to several farms to capture a wide range of disease manifesta-
tions. Timing these visits to align with the 25–30 day mushroom growth cycle and the
critical 2–3 day “flush period” ensured comprehensive coverage of disease stages and
phenotypes [20].

Farm Access and Engagement: Initial access restrictions, often due to biosecurity
concerns or lack of familiarity, were overcome through consistent communication, reassur-
ance of hygienic measures, and relationship-building with farm owners. This approach
ultimately facilitated data collection and enriched the dataset.

2.4. Annotation Methodology

Manual annotation by expert mycologists ensured the precise classification of im-
ages according to disease characteristics. Cross-validation of annotations by a panel of
specialists further minimized errors and clarified ambiguities, thereby enhancing overall
dataset quality.

2.5. Experimental Configuration and Preprocessing Workflow

A standardized preprocessing pipeline was implemented to prepare the dataset for
training, as outlined in Figure 6. All images were resized to the input dimensions re-
quired by each CNN architecture (typically 224 × 224 pixels) while preserving aspect
ratios to avoid distortion [61]. Pixel intensity values were normalized to a range of [0, 1],
improving numerical stability and ensuring more efficient convergence during training [62].
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Background cleaning techniques were applied to reduce noise and isolate the mushroom
subjects, allowing the models to focus on disease-relevant features. Notably, no data aug-
mentation was applied; the models were trained and evaluated on the original dataset
without synthetic transformations, such as rotations, flips, or brightness adjustments [63].
This approach ensured that the models’ classification capabilities were assessed based
solely on the inherent qualities of the dataset, as depicted in the preprocessing workflow of
Figure 6.
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2.6. Training Parameters

All Convolutional Neural Network (CNN) architectures were trained using uniform
parameters to ensure fair and consistent comparisons. A batch size of 11 was selected to
optimize memory usage and maintain stable gradient updates throughout the training
process [62]. The learning rate was set to 0.001, facilitating steady and controlled opti-
mization progress [64]. Stochastic Gradient Descent (SGD) with a momentum of 0.9 was
employed as the optimizer, promoting robust convergence and enhancing the models’
ability to navigate the loss landscape effectively. Each model underwent training for a total
of 8 epochs without the use of early stopping techniques, ensuring that all architectures
experienced an identical training duration. This standardized approach provided a bal-
anced framework for evaluating the performance of the different CNN architectures under
comparable training conditions [61].
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A concise summary of each model’s implementation details, including the pre-trained
source, hyperparameters, and total number of trainable parameters, is provided in Table 1

Table 1. Implementation Details of the 20 Evaluated CNN Models, Including Pre-Trained Source,
Key Hyperparameters, and Approximate Parameter Counts.

Model Pre-Trained Source Key Hyperparameters Total Trainable Parameters

ResNet-50 ImageNet (TorchVision) LR = 0.001, Momentum = 0.9,
Batch = 11, Epochs = 8 ~24 M

DenseNet-201 ImageNet (TorchVision) LR = 0.001, Momentum = 0.9,
Batch = 11, Epochs = 8 ~20 M

DarkNet-53 ImageNet (Darknet Repo) LR = 0.001, Momentum = 0.9,
Batch = 11, Epochs = 8 ~42 M

Inception-v3 ImageNet (TorchVision) LR = 0.001, Momentum = 0.9,
Batch = 11, Epochs = 8 ~22 M

VGG-16 ImageNet (TorchVision) LR = 0.001, Momentum = 0.9,
Batch = 11, Epochs = 8 ~138 M

VGG-19 ImageNet (TorchVision) LR = 0.001, Momentum = 0.9,
Batch = 11, Epochs = 8 ~144 M

MobileNet-v2 ImageNet (TorchVision) LR = 0.001, Momentum = 0.9,
Batch = 11, Epochs = 8 ~3.5 M

EfficientNet-b0 ImageNet (TorchVision) LR = 0.001, Momentum = 0.9,
Batch = 11, Epochs = 8 ~5.3 M

NasNet-Large ImageNet LR = 0.001, Momentum = 0.9,
Batch = 11, Epochs = 8 ~88 M

NasNet-Mobile ImageNet LR = 0.001, Momentum = 0.9,
Batch = 11, Epochs = 8 ~5.3 M

ShuffleNet ImageNet LR = 0.001, Momentum = 0.9,
Batch = 11, Epochs = 8 ~2.3 M

SqueezeNet ImageNet LR = 0.001, Momentum = 0.9,
Batch = 11, Epochs = 8 ~1.2 M

Xception ImageNet LR = 0.001, Momentum = 0.9,
Batch = 11, Epochs = 8 ~22.9 M

GoogleNet ImageNet LR = 0.001, Momentum = 0.9,
Batch = 11, Epochs = 8 ~6.8 M

AlexNet ImageNet LR = 0.001, Momentum = 0.9,
Batch = 11, Epochs = 8 ~61 M

ResNet-18 ImageNet LR = 0.001, Momentum = 0.9,
Batch = 11, Epochs = 8 ~11.7 M

ResNet-101 ImageNet LR = 0.001, Momentum = 0.9,
Batch = 11, Epochs = 8 ~44.5 M

Inception-ResNet-v2 ImageNet LR = 0.001, Momentum = 0.9,
Batch = 11, Epochs = 8 ~55.9 M

DarkNet-19 ImageNet (Darknet Repo) LR = 0.001, Momentum = 0.9,
Batch = 11, Epochs = 8 ~20 M

Places365-GoogLeNet Places365 LR = 0.001, Momentum = 0.9,
Batch = 11, Epochs = 8 ~6.8 M

2.7. Data Splitting

The dataset was systematically partitioned into training and validation subsets, com-
prising 80% and 20% of the total data, respectively. The training set, representing the larger
portion, was utilized for parameter optimization through the backpropagation algorithm,
enabling the models to learn and adjust their weights effectively. Meanwhile, the vali-
dation set, constituting the remaining 20%, served as a benchmark for assessing model
performance during the training phase and for tuning hyperparameters. In addition to
the training and validation subsets, a separate test set was not utilized in this study due to
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the limited size of the dataset. Instead, the validation set was employed to evaluate model
performance during training and fine-tuning. While this approach effectively assessed
the models’ learning progress, the inclusion of a dedicated test set in future studies could
provide a more robust evaluation of generalization capabilities. This strategic division
ensured that the models were exposed to a substantial amount of data for learning while
maintaining a separate, unbiased subset for evaluating their generalization capabilities and
optimizing their configurations [62].

2.8. Aggregate Score Calculation and Evaluation Metrics

Model performance was assessed using a weighted aggregate score that integrates
multiple evaluation metrics to provide a comprehensive measure of classification effective-
ness [65]. The following metrics were employed, each assigned a specific weight reflecting
their importance in mushroom disease classification:

Precision (20%): This metric measures the accuracy of positive predictions, thereby
reducing the incidence of false positives. High precision ensures that the model reliably
identifies only those samples that are truly diseased [66,67].

Recall (30%): Also known as sensitivity, recall focuses on identifying all relevant
positive instances, minimizing the occurrence of false negatives. This is crucial for ensuring
that infected mushrooms are not overlooked [66,67].

F1-Score (30%): The F1-Score harmonizes precision and recall, providing a balanced
measure that addresses class imbalances. By considering both false positives and false neg-
atives, the F1-Score offers a more nuanced evaluation of the model’s performance [66,67].

Area Under the ROC Curve (AUC) (10%): AUC assesses the model’s ability to discrim-
inate between classes across various threshold settings. It provides an aggregate measure
of performance across all classification thresholds, indicating the model’s overall ability to
distinguish between diseased and healthy mushrooms [66,67].

Average Precision (AP) (10%): AP evaluates the trade-offs between precision and recall
at different threshold levels. It summarizes the precision-recall curve, offering insight into
the model’s performance across various decision boundaries [65].

The weights for the aggregate score were allocated based on the practical priorities of
mushroom disease classification. Recall (30%) was given higher importance to minimize
false negatives, as failing to identify diseased mushrooms could lead to the spread of
infection and significant crop losses. Similarly, the F1-score (30%) was prioritized to
balance precision and recall, addressing the trade-offs between false positives and false
negatives. Precision (20%) was slightly lower in weight as the primary focus was on
ensuring comprehensive detection of diseases, even at the cost of a slightly higher false
positive rate. Metrics such as AUC (10%) and AP (10%) were assigned lower weights as
supplementary measures, providing an overall indication of the models’ discriminative
and predictive capabilities across all thresholds.

The aggregate score was calculated using Equation (1):

Overall Score = (0.2 × Precision) + (0.3 × Recall) + (0.3 × F1-Score) + (0.1 × AUC) + (0.1 × AP) (1)

which captures both the importance of detecting all infected samples and the need to
minimize false positives. This weighted scheme reflects the practical priorities of mushroom
disease classification, facilitating a balanced evaluation of the models. By combining these
metrics into a single score, as defined in Equation (1), the evaluation supports more
informed comparisons and effective selections of Convolutional Neural Network (CNN)
architectures for disease classification tasks [65,68].
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2.9. MATLAB-Python Hybrid Workflow

To maximize the analytical capabilities, a hybrid pipeline integrating MATLAB and
Python was developed, capitalizing on the unique strengths of each platform. MATLAB
was utilized primarily for data preprocessing, model training, and the generation of so-
phisticated visualizations such as Receiver Operating Characteristic (ROC) curves and
precision-recall plots. Its robust toolboxes facilitated the efficient handling of complex data
transformations and model optimization processes. Concurrently, Python was employed
to complement these tasks by providing additional visualization options and advanced
analytical functionalities through libraries like Matplotlib, Seaborn, and Scikit-learn. This
seamless integration allowed for enhanced analytical precision and reproducibility, as
MATLAB’s structured environment ensured consistent data handling while Python’s ver-
satile scripting capabilities enabled more flexible and detailed analyses. The combined
workflow not only improved the efficiency of the evaluation process but also ensured a
comprehensive assessment of model performance, thereby supporting a thorough and
nuanced understanding of the outcomes [28].

3. Results
The performance of the evaluated Convolutional Neural Network (CNN) architectures

is summarized in Table 2. Among the 20 architectures assessed, ResNet-50 achieved
the highest overall score of 99.70%, demonstrating exceptional accuracy and reliability
across all disease categories. DenseNet-201 and DarkNet-53 closely followed, confirming
their robustness in precision and recall, making them among the top-performing models.
EfficientNet-b0 and Places365-GoogLeNet, on the other hand, were the models with the
lowest performance. EfficientNet-b0 achieved a score of 95.20%, offering a balanced trade-
off between computational efficiency and accuracy. While VGG-16 was excluded from final
evaluations due to overfitting issues, despite its initial high scores [62].

Table 2. Performance Metrics for Evaluated CNN Architectures.

# Model Accuracy
(%)

Precision
(%)

Recall
(%)

F1-Score
(%)

AUC
(%)

AP
(%)

Overall
Score (%)

1 ResNet-50 99.66 99.67 99.64 99.65 99.99 99.79 99.70
2 DarkNet-53 99.47 99.44 99.45 99.44 99.99 99.55 99.51
3 DenseNet-201 99.44 99.43 99.41 99.42 99.97 99.72 99.50
4 VGG-16 99.41 99.36 99.40 99.38 99.98 99.72 99.47
5 Inception-v3 99.19 99.15 99.18 99.16 99.97 99.74 99.30
6 ResNet-18 99.06 99.03 99.02 99.03 99.98 99.76 99.20
7 ResNet-101 98.78 98.75 98.75 98.75 99.97 99.71 98.97
8 NasNet-Large 98.78 98.74 98.76 98.75 99.96 99.69 98.96
9 DarkNet-19 99.22 99.16 99.23 99.19 99.98 95.95 98.95

10 VGG-19 98.59 98.52 98.71 98.59 99.96 99.45 98.84
11 GoogLeNet 98.25 98.17 98.19 98.18 99.93 99.55 98.49
12 MobileNet-v2 98.22 98.19 98.14 98.16 99.92 99.56 98.47
13 ShuffleNet 98.12 98.02 98.10 98.05 99.92 99.54 98.40
14 NasNet-Mobile 97.84 97.82 97.73 97.77 99.92 99.52 98.16
15 Inception-ResNet-v2 97.78 97.74 97.70 97.71 99.90 99.44 98.10
16 SqueezeNet 96.46 96.39 96.32 96.31 99.80 98.93 96.94
17 Xception 96.28 96.17 96.16 96.16 99.73 98.79 96.78
18 AlexNet 95.68 96.03 95.38 95.58 99.84 99.25 96.40
19 Places365-GoogLeNet 94.93 94.98 94.86 94.79 99.68 98.63 95.72
20 EfficientNet-b0 94.52 94.30 94.33 94.30 99.50 97.96 95.20
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Among the evaluated models, ResNet-50 demonstrated outstanding performance,
achieving the highest overall accuracy of 99.66%, with precision of 99.67% and recall of
99.64%. This balanced performance underscores ResNet-50’s reliability in distinguishing
healthy mushrooms from diseased ones. However, ResNet-50’s higher computational load
compared to more lightweight models may hinder its suitability in settings with limited
computational resources.

The superior performance of ResNet-50 and DenseNet-201 was attributed to their
unique architectural features. ResNet-50’s residual connections mitigate the vanishing
gradient problem, enabling effective learning of deep features and highlighting its reliability
in distinguishing healthy mushrooms from diseased ones, particularly in the context of
high inter-class similarities.

DenseNet-201’s dense connectivity architecture facilitates efficient gradient flow and
feature reuse, allowing it to capture subtle inter-class differences, particularly for visually
similar categories like ‘Dry Bubble’ and ‘Cobweb’.

DenseNet-201 achieved high accuracy (99.44%) and a well-balanced precision (99.43%)
and recall (99.41%), highlighting its capability to effectively handle inter-class similarities.
However, this performance comes at the cost of increased computational and memory
demands, potentially limiting its applicability in resource-constrained environments.

DarkNet-53 displayed metrics comparable to ResNet-50, with an accuracy of 99.47%,
precision of 99.44%, and F1-score of 99.44%. While computationally less demanding than
DenseNet-201, DarkNet-53 still requires moderate processing power, making it suitable for
moderately resource-intensive applications.

EfficientNet-b0, in contrast, provides a lightweight solution with a lower accuracy of
94.52% but with the advantage of reduced computational and memory requirements. It is
particularly suitable for mobile and edge devices that demand real-time performance.

VGG-16 did not exhibit overfitting as previously reported. Instead, it achieved an accu-
racy of 99.41%, but with slightly lower precision (99.36%) and F1-score (99.38%) compared
to ResNet-50 and DenseNet-201.

These findings emphasize the trade-offs between computational efficiency and model
complexity, as highlighted by the comparative analysis of ResNet-50, DenseNet-201, and
EfficientNet-b0. While ResNet-50 excels in achieving high accuracy through its robust resid-
ual learning, EfficientNet-b0 demonstrates its utility in lightweight, resource-constrained
applications. The insights provided by this study underscore the importance of aligning
model selection with specific operational requirements.

To gain deeper insights into classification performance, several visual tools were
employed, including confusion matrices, ROC curves, and precision-recall heatmaps.

Confusion matrices for all evaluated CNN models clearly illustrate their classification
performance across the five categories: Bacterial Blotch (BB), Dry Bubble (DB), Cobweb
(CB), Wet Bubble (WB), and Healthy (HL). Figure 7 shows that ResNet-50 achieves near-
perfect classification with minimal misclassifications, excelling in visually similar diseases
such as Bacterial Blotch and Cobweb. DenseNet-201 and DarkNet-53, while slightly less
accurate, still perform exceptionally well, demonstrating their ability to generalize across
different disease manifestations.



Agronomy 2025, 15, 226 15 of 28Agronomy 2025, 15, x FOR PEER REVIEW 15 of 29 
 

 

 

Figure 7. Confusion Matrices for Evaluated CNN Models. Confusion matrices illustrating the clas-
sification performance of evaluated CNN models across the five categories: w0hl (Healthy), wbb 
(Bacterial Blotch), wdb (Dry Bubble), wcw(Cobweb) and wwb (Wet Bubble). Each matrix highlights 
the model’s ability to distinguish between true and predicted labels, with minimal misclassifications 
across all disease categories and the healthy class. 

Receiver Operating Characteristic (ROC) curves in Figure 8 further reinforce these 
observations, with ResNet-50 achieving the highest AUC value of 0.999 across all classes, 
closely followed by DarkNet-53 (AUC: 0.999) and DenseNet-201 (AUC: 0.997), indicating 
their strong ability to discriminate between diseased and healthy mushrooms. Although 
EfficientNet-b0 does not reach the same level of performance, it still attains a respectable 
AUC value of 0.950, demonstrating that computationally efficient models can remain com-
petitive despite their lightweight architecture. 

Figure 7. Confusion Matrices for Evaluated CNN Models. Confusion matrices illustrating the
classification performance of evaluated CNN models across the five categories: w0hl (Healthy), wbb
(Bacterial Blotch), wdb (Dry Bubble), wcw(Cobweb) and wwb (Wet Bubble). Each matrix highlights
the model’s ability to distinguish between true and predicted labels, with minimal misclassifications
across all disease categories and the healthy class.

Receiver Operating Characteristic (ROC) curves in Figure 8 further reinforce these
observations, with ResNet-50 achieving the highest AUC value of 0.999 across all classes,
closely followed by DarkNet-53 (AUC: 0.999) and DenseNet-201 (AUC: 0.997), indicating
their strong ability to discriminate between diseased and healthy mushrooms. Although
EfficientNet-b0 does not reach the same level of performance, it still attains a respectable
AUC value of 0.950, demonstrating that computationally efficient models can remain
competitive despite their lightweight architecture.
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Figure 8. ROC Curves for Evaluated CNN Models. Receiver Operating Characteristic (ROC) curves
illustrating the classification performance of evaluated CNN models across the five categories five
categories: w0hl (Healthy), wbb (Bacterial Blotch), wdb (Dry Bubble), wcw (Cobweb) and wwb (Wet
Bubble). The curves display the relationship between the true positive rate (sensitivity) and false
positive rate for each class, highlighting the models’ ability to discriminate between diseased and
healthy samples, with AUC values indicating overall performance.

The AUC heatmap (Figure 9) demonstrates the exceptional discriminatory power
of DenseNet-201, DarkNet-53, and ResNet-50, which achieved near-perfect AUC scores
(approaching or reaching 1.000) across all disease categories. These results confirm their ca-
pability to handle subtle inter-class differences and similarities, making them highly reliable
for disease classification [69]. Lightweight models like EfficientNet-b0 and MobileNet-v2
maintain high AUC values but exhibit slight dips in specific categories such as “Bacterial
Blotch”, reflecting their trade-offs in computational efficiency versus classification precision.
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The F1-score heatmap (Figure 10) highlights the balance between precision and re-
call [65]. Among the evaluated models, ResNet-50 consistently demonstrates the best
overall performance, achieving the highest F1-scores across most disease categories, par-
ticularly excelling in “Cobweb” (0.9993) and “Healthy” (0.9970). DenseNet-201 follows
closely, with strong scores such as 0.9992 for “Cobweb” and 0.9980 for “Healthy”, show-
casing its ability to handle challenging inter-class similarities. DarkNet-53 also performs
robustly, maintaining high F1-scores across all categories. In contrast, EfficientNet-b0 and
MobileNet-v2 exhibit noticeable drops in F1-scores, especially in “Dry Bubble” (0.9126
and 0.9342, respectively), reflecting the trade-offs of using less complex architectures in
distinguishing visually similar disease classes.
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Precision values, visualized in Figure 11, reveal the accuracy of positive predictions
across all classes [65,66]. ResNet-50 achieves the highest overall precision, particularly ex-
celling in “Cobweb” (1.000) and “Healthy” (0.9986), highlighting its capability to minimize
false positives effectively. DenseNet-201 and DarkNet-53 follow closely, with strong preci-
sion scores, demonstrating their reliability in classification tasks. In contrast, EfficientNet-b0
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and MobileNet-v2 exhibit slightly lower precision in “Wet Bubble” (0.9469 and 0.9111, re-
spectively) and “Dry Bubble” (0.8708 and 0.9639, respectively), reflecting the trade-offs
associated with lightweight model architectures in terms of predictive accuracy.
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Recall values, shown in Figure 12, measure sensitivity in identifying true posi-
tives [65,66]. ResNet-50 demonstrates the highest recall performance across most disease
categories, particularly excelling in “Healthy” (0.9973) and “Cobweb” (0.9970), ensuring
comprehensive detection and minimizing false negatives. DenseNet-201 and DarkNet-
53 closely follow with strong recall values, indicating their reliability in identifying true
positives effectively. In contrast, EfficientNet-b0 and MobileNet-v2 exhibit noticeable
drops in recall for “Bacterial Blotch” (0.9062 and 0.9427, respectively), underscoring areas
where lightweight architectures face challenges in achieving sensitivity comparable to more
complex models.
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The specificity heatmap (Figure 13) illustrates the models’ ability to identify true
negatives [65,66]. ResNet-50 demonstrates the highest specificity across most categories,
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particularly excelling in “Healthy” (0.9962) and “Cobweb” (0.9862), effectively minimizing
false positives. DenseNet-201 follows closely, maintaining strong specificity scores such as
0.9976 for “Bacterial Blotch” and 0.9959 for “Healthy”. DarkNet-53 also performs robustly,
showcasing reliability across all categories. In contrast, EfficientNet-b0 exhibits noticeable
dips in specificity for “Dry Bubble” (0.8466) and “Cobweb” (0.9403), reflecting the chal-
lenges lightweight models face in distinguishing between visually similar disease classes.
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The AP heatmap (Figure 14) provides an overview of the precision-recall trade-offs for
each classifier and class [66,70]. ResNet-50 achieves the highest AP values across most cate-
gories, particularly excelling in “Cobweb” (0.9997) and “Healthy” (0.9996), showcasing its
ability to balance precision and recall effectively. DenseNet-201 and DarkNet-53 closely fol-
low, with strong AP scores such as 0.9996 for “Healthy” (DenseNet-201) and 0.9993 for “Cob-
web” (DarkNet-53). EfficientNet-b0 and MobileNet-v2 exhibit slightly lower AP values for
“Wet Bubble” (0.9338 and 0.9635, respectively), reflecting their trade-offs between computa-
tional efficiency and classification performance. Despite these limitations, these lightweight
models remain competitive for applications in resource-constrained environments.
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To unify these multi-metric evaluations into a single value and to facilitate more
straightforward decision-making, an Overall Score was computed and is presented in
Figures 15–20.
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The Average Precision (AP) scores in Figure 15 highlight ResNet-50 as the top per-
former, achieving the highest overall AP value of 0.9979. DenseNet-201 and DarkNet-53
closely follow with strong AP values of 0.9972 and 0.9955, respectively, showcasing their



Agronomy 2025, 15, 226 22 of 28

ability to balance precision and recall effectively. EfficientNet-b0 and MobileNet-v2, while
slightly trailing in AP with scores of 0.9796 and 0.9954, respectively, still demonstrate
commendable performance, making them viable options for scenarios where lightweight
architectures are advantageous. ResNet-50’s exceptional AP score emphasizes its reliability
in identifying true positives while minimizing false positives, solidifying its status as the
most precise model for disease detection in this study.

In Figure 16, the Area Under the Curve (AUC) values underline the discriminative
capabilities of the classifiers. ResNet-50 and DarkNet-53 achieve the highest overall AUC
scores of 0.9999, demonstrating their exceptional robustness in distinguishing between
different disease classes. DenseNet-201 follows closely with a strong AUC score of 0.9997,
confirming its high discriminative power. EfficientNet-b0, despite its lightweight design,
achieves a competitive AUC value of 0.9950, highlighting its potential for real-time systems
where computational efficiency is critical. These findings emphasize that ResNet-50, with its
near-perfect AUC score, is particularly suited for applications requiring high discrimination
accuracy across disease categories.

The F1-Score comparisons in Figure 17 further illustrate the models’ ability to bal-
ance precision and recall. ResNet-50 achieves the highest overall F1-Score of 0.9965,
demonstrating its superior ability to maintain high performance across all disease classes.
DenseNet-201 and DarkNet-53 follow closely with F1-Scores of 0.9942 and 0.9944, respec-
tively, highlighting their effectiveness in identifying true positives while minimizing false
negatives. EfficientNet-b0, despite its lightweight architecture, achieves a competitive
F1-Score of 0.9430, making it suitable for applications where computational efficiency is
prioritized. These findings reaffirm that ResNet-50 is the most reliable model for scenarios
requiring a balance between precision and recall, particularly in tasks involving diverse
disease categories.

Precision metrics in Figure 18 reveal ResNet-50 as the leading model, achieving the
highest precision score of 0.9967. This result highlights its exceptional ability to correctly
classify diseased mushrooms without over-predicting, minimizing false positives effectively.
DenseNet-201 and DarkNet-53 closely follow with precision scores of 0.9943 and 0.9944, re-
spectively, further validating their reliability in accurate disease detection. EfficientNet-b0,
with a precision score of 0.9430, remains a viable option for automated systems where com-
putational efficiency is prioritized over absolute accuracy. ResNet-50’s superior precision
solidifies its role as the most precise model for tasks requiring high reliability in identifying
diseased mushrooms.

The recall values depicted in Figure 19 highlight the models’ ability to identify true
positives. ResNet-50 achieves the highest recall score of 0.9964, showcasing its exceptional
ability to ensure comprehensive disease detection, which is critical for timely interven-
tions. DenseNet-201 and DarkNet-53 closely follow with recall scores of 0.9941 and 0.9945,
respectively, further emphasizing their robustness in identifying diseased mushrooms.
EfficientNet-b0, despite its lightweight architecture, attains a recall score of 0.9433, maintain-
ing an acceptable performance level for real-time monitoring systems where computational
efficiency is a priority. These results reaffirm ResNet-50’s reliability as a top choice for
disease management applications requiring high sensitivity.

Finally, the specificity results in Figure 20 emphasize the classifiers’ ability to cor-
rectly identify healthy mushrooms. ResNet-50 achieves the highest specificity score of
0.9931, showcasing its exceptional robustness in distinguishing healthy specimens from
diseased ones. DenseNet-201 and DarkNet-53 closely follow with specificity scores of
0.9926 and 0.9929, respectively, further validating their accuracy in true negative predic-
tions. EfficientNet-b0, while showing a lower specificity score of 0.8948, still maintains
acceptable performance levels, making it a viable option for resource-constrained appli-
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cations. These findings highlight ResNet-50’s superior ability to minimize false positives,
making it particularly suitable for precise disease detection tasks.

By consolidating various metrics into a weighted indicator, the Overall Score provides
a holistic comparison of model performance. ResNet-50 emerges as the top performer,
combining superior accuracy with balanced computational demands. DenseNet-201 and
DarkNet-53 follow closely, showcasing high robustness but with increased resource require-
ments. EfficientNet-b0 and MobileNet-v2, while less accurate, offer competitive results with
minimal computational cost, making them ideal for resource-constrained environments
like mobile or edge devices.

Building on the insights from the heatmaps and overall scores, a comparative analysis
highlights the strengths of specific models in different scenarios. DenseNet-201 excels
in challenging classes like Cobweb Disease due to its dense connectivity, while ResNet-
50 balances accuracy and computational demands, making it reliable for differentiating
healthy and diseased specimens. EfficientNet-b0, with its compound scaling strategy,
and MobileNet-v2, though slightly lower in recall and F1-score, offer significant compu-
tational efficiency for real-time applications. Ultimately, the model choice depends on
deployment needs—DenseNet-201 for maximum accuracy, ResNet-50 and DarkNet-53
for balanced performance, or EfficientNet-b0 and MobileNet-v2 for resource-constrained
environments. This perspective ensures effective deep-learning applications in mushroom
disease management, guided by both performance and practical constraints.

4. Discussion
The performance of ResNet-50 and DenseNet-201 can be attributed to their unique

architectural features. DenseNet-201, with its dense connectivity, facilitates efficient gradi-
ent flow and feature reuse, enabling the model to learn complex representations effectively,
even under varying conditions and amidst inter-class similarities (e.g., ‘Dry Bubble’ and
‘Cobweb’). This design allowed DenseNet-201 to achieve an accuracy of 99.44%, with pre-
cision and F1-scores of 99.43% and 99.42%, respectively [23,24]. ResNet-50 demonstrated
slightly higher accuracy at 99.66%, coupled with a perfect AUC score of 99.99%, highlighting
its balanced performance across evaluation metrics and computational efficiency [24,63].

Although ResNet-50’s AUC value approaches 99.99%, which might initially raise
concerns about potential overfitting, our evaluation was conducted using a dedicated 20%
validation set to guard against memorization of the training data. Confusion matrices
(Figure 7) further show minimal but non-zero misclassifications, suggesting that the model
has not trivially overfit. We attribute these strong metrics, in part, to the carefully curated
and standardized nature of our dataset, which likely reduces intra-class variability and
promotes clearer class separability. Nonetheless, future investigations—particularly those
incorporating additional external test sets or cross-validation strategies—will be crucial to
confirm the broader applicability and real-world robustness of these findings.

While lightweight models such as EfficientNet-b0 and MobileNet-v2 are computation-
ally efficient and suitable for resource-constrained environments, they exhibited slightly
lower classification performance. EfficientNet-b0 achieved an accuracy of 94.52% and recall
of 94.33%, reflecting challenges in distinguishing visually similar diseases. Nevertheless,
these models hold promise for mobile and IoT-based agricultural systems [26,27].

The inter-class similarities between certain diseases, such as ‘Bacterial Blotch’ and
‘Cobweb’, remain a challenge for accurate classification. DenseNet-201 performed better
in resolving these ambiguities, improving overall classification accuracy in scenarios with
visually similar manifestations [23,59]. Future research should explore attention mecha-
nisms and hybrid architectures to enhance performance while balancing computational
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demands. Additionally, fine-grained classification techniques could help address challenges
associated with visually similar categories [71,72].

The evaluation of 20 pre-trained CNN architectures on a custom-designed dataset
provided a robust framework for assessing model performance in mushroom disease clas-
sification. By capturing real-world variability, this dataset ensures greater generalizability
and practical applicability compared to prior studies relying on controlled datasets [22,73].

These findings emphasize the potential for integrating high-performing models, such
as ResNet-50 and DenseNet-201, into IoT-based monitoring systems for real-time disease
diagnosis. Such integration can reduce reliance on manual inspections, minimize crop
losses, and support sustainable agricultural practices [73,74].

However, the study has limitations. The dataset primarily focuses on diseases ob-
served in Agaricus bisporus within Turkey, potentially excluding region-specific diseases.
Expanding the dataset to include a broader range of diseases and geographical variations
would improve robustness and generalizability [74,75]. Furthermore, the computational
demands of models like DenseNet-201 underscore the need for lightweight architectures
optimized for edge device deployment [26,27,76].

Future studies should prioritize real-time implementation of these models, focusing
on latency, scalability, and usability in dynamic agricultural settings. These efforts will
further advance the role of deep learning in precision agriculture [76,77].

5. Conclusions
This study provides a thorough evaluation of 20 Convolutional Neural Network

(CNN) architectures for the classification of mushroom diseases, utilizing a specially cu-
rated dataset [3]. Among the evaluated models, DenseNet-201 exhibited outstanding
performance, achieving high accuracy and reliability across all disease categories. The
adoption of a hybrid MATLAB–Python workflow significantly enhanced the analytical
process, enabling a detailed assessment of model performance and applicability. This
integrated approach offered valuable insights into the potential deployment of various
architectures for practical agricultural applications.

Future research should expand on these findings by enlarging the dataset to encompass
a broader range of mushroom species, diverse environmental conditions, and additional
disease types, thereby increasing the models’ robustness and generalizability [73,76]. Ad-
ditionally, exploring advanced methodologies such as hybrid CNN-Vision Transformer
(ViT) models may lead to further performance improvements [74]. Prioritizing the develop-
ment of lightweight models that emphasize processing efficiency is essential, particularly
for deployment on the Internet of Things (IoT) and mobile devices. Such models are
well-suited for real-time disease surveillance in resource-constrained environments [78].
Moreover, the real-time implementation of these models within farm operations should
be a focal point, facilitating dynamic monitoring and effective management of mushroom
diseases in practical agricultural settings [77,79]. By addressing these areas, future studies
can enhance the applicability and impact of deep learning technologies in sustainable
mushroom cultivation.
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