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Abstract: Trace and rare earth elements (REEs) are considered to be reliable indicators of chemical
processes for the evolution of carbonate systems. One of the best examples of ancient carbonate
successions (Berdiga Formation) is widely exposed in NE Turkey. The Lower Cretaceous limestone
succession of Berdiga Formation may provide a case study that reveals the effect of ocean paleoredox
conditions on diagenetic alteration. Measurement of major, trace and REEs was carried out on the
Lower Cretaceous limestones of the Berdiga Formation, to reveal proxies for paleoredox conditions
and early diagenetic controls on their geochemistry. Studied micritic limestone microfacies (MF-1 to
MF-3) indicate deposition in the inner platform to a deep shelf or continental slope paleoenvironment
during the Hauterivian-Albian. The studied limestone samples mainly exhibit low Mg-calcite
characteristics with the general chemical formula of Ca98.35–99.34Mg0.66–1.65(CO3). They are mostly
represented by a diagnostic REE seawater signature including (1) slight LREE depletion relative to the
HREEs (ave. 0.72 of Nd/YbN and ave. 0.73 of Pr/YbN), (2) negative Ce anomalies (Ce/Ce* = 0.38–0.81;
ave. 0.57), (3) positive La anomaly (La/La* = 0.21–3.02; ave. 1.75) and (4) superchondritic Y/Ho
(ave. 46.26). Studied micritic limestones have predominantly low Hf (bdl to 0.5 µg/g), Sc (bdl to 2 µg/g)
Th (bdl to 0.9 µg/g) contents suggesting negligible to minor shale contamination. These findings
imply that micritic limestones faithfully record chemical signals of their parental and diagenetic fluids.
The succession also exhibits high ratios of Eu/Eu* (1.01–1.65; ave. 1.29 corresponding to the positive
Eu anomalies), Sm/Yb (1.26–2.74; ave. 1.68) and La/Yb ratios (0.68–1.35; ave. 0.9) compared to modern
seawater and wide range of Y/Ho ratios (29.33–70.00; ave. 46.26) which are between seawater and
hydrogenetic Fe-Mn crusts. Several lines of geochemical evidence suggest water-rock interaction
between parental seawater and basaltic rocks at elevated temperatures triggered by hydrothermal
activity associated with Early Cretaceous basaltic magma generation. The range of Ce/Ce* values is
suggestive of mostly oxic to dysoxic paleoceanographic conditions, with a sudden change to dysoxic
conditions (Ce/Ce* = 0.71–0.81), in the uppermost part of the MF-1. This is followed by an abrupt
deepening paleoenvironment with a relative increase in the oxic state of the seawater and deposition
of deeper water sediments (MF-2 and MF-3) above a sharp transition. The differences in microfacies
characteristics and foraminifera assemblage between MF-1 and overlying facies (MF-2 and MF-3) may
also confirm the change in paleoceanographic conditions. Therefore, REEs data obtained from studied
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limestones have the potential to contribute important information as to regional paleoceanographic
conditions of Tethys during an important period in Earth history.

Keywords: platform carbonates; REE + Y chemistry; paleoceanographic proxies; diagenetic proxies;
NE Turkey

1. Introduction

The rare earth element and Y (REE + Y) signature of carbonates have been widely used to
reconstruct the paleoenvironmental history of seawater in deep time [1–6]. REE + Y have similar
coherent chemical properties in the marine system and exhibit systematic changes in the chemical
properties across the REE (La to Lu) series due to the progressive filling of the f-electron shell [7–13].
This causes different fractionations of Lantonides in natural systems; heavier REEs (HREE, from Ho to
Lu) tend to be preferentially complexed, while lighter REEs (LREE, from La to Nd) are preferentially
scavenged by particles [13]. Further, the rare earth elements (REEs) occur in the trivalent state
in seawater with the exception of multiple oxidation states for Ce and Eu [13]. Ce (Ce3+, Ce4+)
and Eu (Eu2+, Eu3+) are redox-sensitive elements, and they show distinct geochemical behaviour
compared to other Lantonides [13,14]. Ce (Ce3+, Ce4+) and Eu (Eu2+, Eu3+) are generally considered
a natural proxy for revealing interaction processes between particles and solutions, and redox
reactions [15–18]. These geochemical features allow carbonate sedimentologists to reconstruct ancient
environmental conditions [19–22].

The Upper Jurassic-Lower Cretaceous Berdiga Formation, which consists dominantly of platform
carbonates are widely exposed in the Eastern Pontides, NE Turkey. This carbonate succession
is one of the best-preserved examples of ancient shallow marine environmental systems in the
passive continental margin of Laurasia [23]. The carbonate succession is well defined in terms of
its stratigraphical and sedimentological characteristics [23–37]. Sediments are platform carbonates
which are represented by varying lithofacies ranging from supratidal to continental slope [23,27–33,38].
The platform carbonates have undergone multiple stages of diagenesis, including dolomitization and
recrystallisation [23,31–34,39]. Dolomitization was interpreted to have been initiated by seawater
and/or partly modified seawater prior to compaction during shallow-moderate burial, and massive
dolomite bodies were then continuously recrystallised by the circulation of episodic diagenetic fluids
with elevated temperatures during deeper burial [31]. The recrystallisation processes have been related
to widespread Late Cretaceous to Cenozoic magma generation [23,31–33].

Although the diagenetic history seems complex, the mechanisms and origins of dolomitization
have been well described in recent studies [31]. However, there has not been an attempt to investigate
the micritic limestone strata that are least diagenetically altered and should, therefore, provide proxies
for paleoredox conditions and early diagenetic controls on their geochemistry. Consequently, this study
focuses on the limestone strata outcropping in the Mescitli area in the southern part of Eastern Pontide
(NE Turkey). Here, we present a petrographic analysis coupled with REE+Y characterisation of the
limestone succession. The main purpose of the current study is (1) to determine ancient seawater
composition using marine carbonates of NE Turkey, from inner platform to slope paleoenvironments;
(2) to define the redox conditions and discuss the paleoceanographic proxies and (3) to discuss the role
of potential diagenetic influence on REE signals of ancient carbonates.

2. Geological Setting

Turkey comprises a series of tectonic units, which are separated by ophiolitic suture zones [40,41].
The Sakarya Zone consists of east-west trending Alpine continental fragments along with northern
Turkey and is generally known as the Eastern Pontides, constituting a significant part of the
Alpine-Himalayan system. Magmatic, metamorphic and sedimentary Mesozoic to Cenozoic rocks
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are widely exposed in Eastern Pontide (e.g., [40,41]), and a well-constrained tectono-magmatic and
stratigraphic framework has been established (Figure 1). Eastern Pontide can roughly be separated
into two main subzones based on its dominant lithological differences from north to south [40–42]
(Figure 1). The northern subzone is mainly characterized by Late Mesozoic and Early Cenozoic
magmatic rocks [42–49], while the southern subzone is predominantly characterized by Jurassic
carbonate and clastic sedimentary rocks [50–54].
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The Mescitli Area (Gümüşhane, NE Turkey) is located in the southern part of the Eastern Pontide,
where Upper Jurassic-Lower Cretaceous carbonates are well exposed (Figure 1). In the southern
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part, the Hercynian basement mainly constitutes a metamorphic unit dated as 320.3 ± 1.7 Ma [55]
and Upper Carboniferous Gümüşhane granitoid [56,57]. These basement rocks are generally overlain
by the Lower to Middle Jurassic volcano-sedimentary successions consisting mainly of siliciclastics,
basalt–andesite and associated volcanoclastic, deposited within an extensional (rift) basin, and rarely
Ammonitico-Rosso limestone facies [58,59]. Upper Jurassic to Lower Cretaceous carbonate successions
(Berdiga Formation) [35] lie conformably over the volcano-sedimentary successions. Based on benthic
foraminiferal assemblages, the platform carbonates in the Eastern Pontides are of Oxfordian to Albian
age [27–29,35–37]. In the Mescitli Area, the lower part of the Berdiga Formation is completely
dolomitized [31] while the upper part comprises a well-preserved limestone succession which is the focus
of this study. The succession is overlain by an Upper Cretaceous unit which comprises three different
sedimentary assemblages: (1) yellowish coloured, sandy limestones, (2) globotruncanid-bearing—red
pelagic limestones and (3) siliciclastics locally with interbedded felsic tuff [40,53,54,60,61]. Both Hercynian
basement and post-Hercynian volcano-sedimentary associations are cut by Eocene granitic intrusions
and unconformably overlain by the Early Cenozoic volcano-sedimentary sequence [44,46,62,63].

3. Studied Section

The studied Upper Jurassic Lower Cretaceous carbonate successions are widely exposed in the
southern part of Eastern Pontides [23,27–39]. The succession is generally composed of platform
carbonates, and their lithofacies reflects lateral and vertical changes in the environment from a
supratidal to a continental slope facies [23,27–39]. This study is based upon the carbonate succession
located in the Mescitli area of the Eastern Pontides (Figures 1, 2 and 3a–c). Here, the succession is
estimated to be up to 400 m thick [31,38] and is subdivided into two informal lithological units/intervals
based on the vertical change in macro-facies and microfacies characteristics [31] (Figure 2).

At the base, a 150 m thick-dolomite lithofacies overlies the basaltic rocks of Early to Middle
Jurassic volcano-sedimentary successions (Figure 3a). The dolostones are light grey to grey coloured,
thick to medium bedded (30–50 cm) and locally massive (Figure 3a). The middle and upper parts
comprise approximately 230 m thick limestone succession which does not display significant diagenetic
alteration petrographically, and hence primary microfacies textures are well preserved (Figures 2,
3a–c and 4a–i), namely: (1) Benthic foraminiferal packstone microfacies (MF-1), (2) Reworked skeletal
grainstone/packstone microfacies (MF-2) and (3) Sponge spicule wackestone/mudstone microfacies
(MF-3) [31,38]. Of these, the benthic foraminiferal packstone microfacies (M-1) forms the basal part
of the limestone succession. It is nearly 70 m thick, grey to dark grey coloured, thick to medium
bedded (0.5–1.5 m) and locally massive (Figure 2). It includes Pseudolituonella gavonensis Foury, 1968,
Arenobulimina spp., Praechrysalidina sp., Miliolidae and Textularidae. The presence of Pseudolituonella
gavonensis, Arenobulimina spp., Praechrysalidina sp. suggest a Hauterivian-Aptian age [31,38]. The high
abundance of benthic foraminifera assemblages and a relative absence of deep-water bioclasts implies
deposition in an inner platform paleoenvironment.

Reworked skeletal grainstone/packstone microfacies (MF-2) conformably overly the benthic
foraminiferal packstone microfacies (MF-1) and comprise approximately 80 m thick, light grey to grey
coloured, thick to medium bedded (25–75 cm) limestones (Figure 3b). The predominant carbonate
components are diverse, fragmented skeletal assemblage (echinoids, pelecypoda, brachiopoda (punctate
shells), thin-shelled ostracoda, bryozoa) and peloids. Most of the biotic components are broken and
reworked, except for small benthic foraminifera [64]. Rare plagioclase and basaltic extraclasts are
observed in the base of the microfacies. The absence of a diverse and abundant benthic foraminiferal
community and the fragmented assemblage of heterotrophic skeletal fragments implies that the
deposition of MF-2 took place in a deeper water environment than MF-1 [31,38].
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Figure 2. Stratigraphy, lithofacies and foraminifera distribution in the Berdiga Formation of the Mescitli
(Gümüşhane, NE Turkey) [31,38].

Sponge spicule wackestone/mudstone microfacies (MF-3) constitute most of the upper part of the
studied succession (Berdiga Formation). The contact between microfacies MF-2 and MF-3 is a gradual
facies change. MF-3 microfacies comprises approximately 180 m thick, grey to dark grey mudstone
and wackestone that is mostly characterized by sponge spicules and glauconite. The other carbonate
components are allochthonous benthic foraminifera, intraclasts and rarely peloids. Besides, rare small
benthic foraminifera assemblage including Lenticulinidae, Nodosariidae, Gaudryina sp., Verneuilina sp.,
Bolivinopsis sp., Spirillina sp. are also observed in the lower part of the lithofacies. The abundance and
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size of allochthonous skeletal fragments gradually decrease throughout MF-3 whilst the proportion of
micrite increases upward. Planktonic foraminifera, including Microhedbergella, are also observed in the
most upper part of the MF-3. The mud-rich texture and decrease in abundance/size of allochthonous
skeletal fragments indicate that the depositional environment was deeper than the MF-2. Overall,
the assemblage and the presence of the planktonic foraminifera may suggest that this was the deepest
part of the succession, corresponding to a deep shelf or slope. This is consistent with coeval carbonate
succession, which is reported in the Başoba Yayla area (Trabzon, NE Turkey) [34,37]. It has also been
noted that the age of the most upper part of the formation is the Albian owing to the presence of
Microhedbergella rischi Moullade, 1974 [65]. Therefore, it can be inferred that the age of MF-2 and MF-3
is likely Albian [31,38].
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Figure 3. General lithological and macro-micro sedimentological features of the inner platform to slope
environment in the interval of the Berdiga Formation (Hauterivian-Albian). (a). Field view of the
Mescitli stratigraphic section; (b) thick to medium bedded Limestone (MF-1); (c) limestone with chert
(MF-2 and MF-3).

4. Material and Methods

Upper Jurassic-Lower Cretaceous carbonates are well exposed along the Mescitli section (Figures 1
and 3a–c). The study area is situated in Mescitli-İkisu (40.528656, 39.380240), nearly 10 km north-west
of Gümüşhane (NE Turkey). The 230 m of Upper Jurassic to Lower Cretaceous neritic micritic limestone
of the Berdiga Formation was examined and sampled, and 100 rock samples were collected with a
20 to 50 cm spacing. A total of 80 samples of the Mescitli section were petrographically analyzed.
Microfacies types were described based on fundamental principles of limestone classification and
microfacies concept [66,67].

Representative samples from the different microfacies (Figures 2, 3a–c and 4a–i) were selected
for geochemical analysis (Table 1). Selected samples are all micritic limestones (MF-1 to MF-3) not
exhibiting petrographic evidence of significant post-depositional alteration such as recrystallization.
Representative thin sections and a mirror-image slab of each thin section were polished to evaluate (i)
weathering (ii) presence of clay minerals or basalt extraclasts (iii) micro-fissures filled with calcites
or clastic components and (iv) fracturing, all of which were avoided during geochemical sampling.
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The micritic orthochemical carbonate particles corresponding to the matrix micrite of each polished
slab were sampled by micro-drilling using a hand drill.

Major, minor and trace elements, including REE of selected matrix micrite of each sample,
were carried out by ACME Analytical Laboratories, Ltd. (Vancouver, BC, Canada). The major elements,
trace elements, and REEs in the carbonates were determined by inductively coupled plasma–mass
spectrometry (ICP–MS). Analyses used ~0.2 g of powdered sample digested in 10 mL 8 N HNO3,
of which 1 mL was diluted with 8.8 mL deionised water, and 0.1 mL HNO3. To monitor the precision
and accuracy, 1 mL of an internal standard (including Bi, Sc, and In) was added to the solution.
For more details of these methods, please see the website of http://acmelab.com. Detection limit (dtl)
of CaCO3, MgCO3, SiO2, Al2O3, Na2O, K2O, TiO2, P2O5, MnO is 0.01 wt % with exception of Fe2O3

(dtl = 0.04 wt %) and Cr2O3 (dtl = 0.002 wt %). Detection limits for Ba, Ni and Sc, are 1, 20 and 1 µg/g,
respectively. Detection limits for Hf, Zr, Y, La, Ce are 0.1 µg/g. Detection limits for Th and Nd are 0.2
and 0.3 µg/g, respectively. Detection limits for Tm, Tb, Lu are 0.01 µg/g; for Pr, Eu and Hu are 0.02 µg/g;
for Er is 0.03 µg/g; for Sm, Gd, Dy and Yb are 0.05 µg/g.

The measured REEs data of all micritic limestone samples were normalized to those of
post-Archean Australian Shale (PAAS) which are previously reported (e.g., [68]). The equations
of (i) Eu/Eu* ratio = EuN/(SmN + GdN)0.5, (ii) Pr anomaly = Pr/Pr* = PrN/(0.5CeN + 0.5NdN), (iii) La
anomaly = La/La* = LaN/(3PrN − 2NdN), and (iv) Ce anomaly = Ce/Ce* = 3CeN/(2LaN + NdN) are
used to express Eu, Pr, La and Ce anomalies in the studied limestones [69,70].
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Figure 4. Benthic foraminiferal packstone microfacies (MF-1) (a,b). The transition zone between MF-1 and
MF-2, showing basalt extraclasts and carbonate components (c). Reworked skeletal grainstone/packstone
microfacies (MF-2) (d–f). Sponge spicule wackestone-mudstone microfacies (MF-3) (g–i). Bf: benthic
foraminifera, Mf: micritized foraminifera, Mi: miliolid, Sp: sparite, Cc: carbonate component, B: basalt
extraclast, Ab: allochthonous bioclasts, Ss: Sponge spicule, Gl: Glauconite, Ca: Calcisphere.
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Table 1. Major, trace and rare earth elements of the limestone succession from the Mescitli area (NE Turkey).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Sample No M-82 M-83 M-84 M-85 M-89 M-91 M-92 M-94 M-106 M-110 M-112 M-116 M-137 M-141 M-146

Analyte Rock Pulp Rock Pulp Rock Pulp Rock Pulp Rock Pulp Rock Pulp Rock Pulp Rock Pulp Rock Pulp Rock Pulp Rock Pulp Rock Pulp Rock Pulp Rock Pulp Rock Pulp

Microfacies MF-1 MF-1 MF-1 MF-1 MF-1 MF-2 MF-2 MF-2 MF-2 MF-2 MF-3 MF-3 MF-3 MF-3 MF-3

CaCO3 99.20 99.22 99.24 99.22 99.14 99.18 99.16 99.34 99.33 99.18 99.03 98.35 99.20 99.26 99.29
MgCO3 0.80 0.78 0.7 0.78 0.86 0.82 0.84 0.66 0.67 0.82 0.97 1.65 0.80 0.74 0.71

SiO2 0.67 12.22 0.75 0.57 3.51 3.79 7.99 3.42 1.78 3.88 4.12 21.90 4.86 2.84 1.96
Al2O3 0.24 0.76 0.19 0.14 1.10 0.72 2.48 0.88 0.27 0.82 0.44 3.57 0.20 0.34 0.35
Fe2O3 0.11 0.27 0.09 0.08 0.18 0.27 0.19 0.20 0.20 0.21 0.25 0.46 0.12 0.13 0.15
Na2O <0.01 0.01 <0.01 <0.01 <0.01 <0.01 0.02 <0.01 <0.01 <0.01 <0.01 0.03 <0.01 0.01 <0.01
K2O 0.07 0.22 0.06 0.04 0.57 0.23 1.79 0.62 0.09 0.38 0.14 0.90 0.06 0.11 0.11
TiO2 <0.01 0.03 <0.01 <0.01 0.02 0.02 0.03 0.02 <0.01 0.02 0.01 0.08 <0.01 0.01 0.01
P2O5 0.02 0.13 0.07 0.02 0.02 0.04 0.04 0.02 0.03 0.03 0.02 0.09 0.03 0.35 0.32
MnO <0.01 0.01 0.01 <0.01 <0.01 0.01 <0.01 <0.01 0.01 <0.01 0.02 0.01 <0.01 0.01 0.01
Cr2O3 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 0.002 <0.002 <0.002 <0.002 <0.002 0.003 <0.002 <0.002 <0.002

Ba 3 3 7 4 7 5 27 9 2 6 3 21 4 3 3
Ni <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20
Sc <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 2 <1 <1 <1

LOI 43.6 38.2 43.5 43.7 41.6 41.9 38.8 41.9 43.1 41.6 41.8 32.6 41.7 42.3 42.6

Hf <0.1 0.1 <0.1 <0.1 0.1 0.1 0.2 0.2 <0.1 0.2 <0.1 0.5 <0.1 <0.1 0.1
Th <0.2 0.4 <0.2 <0.2 0.2 0.3 0.3 <0.2 <0.2 <0.2 <0.2 0.9 <0.2 <0.2 <0.2
Zr 2.2 5.9 2.4 2.1 4.9 4.9 10.5 5.5 1.9 6.1 3.2 20.4 2.7 2.9 3.5
Y 1.4 5.3 1.1 0.7 2.2 5.0 3.2 2.7 4.0 2.7 3.6 8.8 2.9 4.8 4.0
La 1.2 4.4 0.7 0.6 2.5 3.8 3.5 2.7 2.7 2.6 2.9 10.8 2.1 3.0 2.9
Ce 0.9 4.2 0.8 0.7 3.4 3.0 3.8 3.1 2.2 3.0 2.4 10.8 2.0 2.5 2.5
Pr 0.17 0.79 0.33 0.09 0.40 0.56 0.53 0.47 0.42 0.41 0.42 2.06 0.31 0.42 0.44
Nd 0.7 3.1 0.4 0.3 1.5 2.5 2.0 1.7 1.7 1.6 1.7 8.5 1.3 1.9 1.8
Sm 0.11 0.59 0.11 0.05 0.25 0.50 0.31 0.31 0.38 0.27 0.31 1.67 0.25 0.29 0.43
Eu 0.02 0.16 <0.02 <0.02 0.09 0.13 0.12 0.08 0.09 0.09 0.09 0.45 0.05 0.09 0.10
Gd 0.10 0.79 0.06 0.07 0.33 0.54 0.45 0.39 0.39 0.38 0.42 1.68 0.27 0.47 0.50
Tb 0.02 0.11 0.02 <0.01 0.05 0.09 0.05 0.06 0.07 0.05 0.06 0.25 0.04 0.08 0.07
Dy 0.08 0.73 0.10 0.05 0.32 0.50 0.38 0.32 0.43 0.30 0.38 1.33 0.35 0.39 0.48
Ho 0.02 0.15 0.02 <0.02 0.06 0.11 0.06 0.07 0.08 0.07 0.08 0.30 0.05 0.10 0.09
Er 0.09 0.43 0.08 0.04 0.18 0.36 0.25 0.20 0.27 0.17 0.29 0.78 0.24 0.30 0.28
Tm 0.01 0.06 0.01 <0.01 0.02 0.05 0.04 0.03 0.04 0.03 0.04 0.11 0.02 0.05 0.04
Yb 0.06 0.37 0.07 <0.05 0.15 0.30 0.24 0.16 0.25 0.20 0.19 0.61 0.18 0.23 0.21
Lu 0.01 0.06 <0.01 <0.01 0.02 0.04 0.03 0.02 0.03 0.03 0.04 0.09 0.03 0.04 0.04

ΣREEs 4.89 21.24 3.80 2.60 11.47 17.48 14.96 12.31 13.05 11.90 12.92 48.23 10.09 14.66 13.88
Y/Ho 70.00 35.33 55.00 n.c. 36.67 45.45 53.33 38.57 50.00 38.57 45.00 29.33 58.00 48.00 44.44

Eu/Eu* 1.01 1.22 n.c. n.c. 1.63 1.32 1.65 1.20 1.24 1.45 1.29 1.42 1.02 1.24 1.13
Ce/Ce* 0.47 0.54 0.38 0.71 0.81 0.48 0.66 0.66 0.49 0.69 0.51 0.55 0.58 0.52 0.52
Pr/Pr* 1.16 1.19 3.29 1.11 1.00 1.09 1.08 1.15 1.17 1.05 1.14 1.16 1.06 1.04 1.13
La/La* 2.11 1.47 0.21 1.28 1.48 2.70 1.59 1.27 1.83 1.65 1.97 1.58 2.15 3.02 1.94
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5. Results

5.1. Petrography

The petrographical analyses of the Lower Cretaceous carbonate succession, corroborated by
previously published sedimentological and paleontological data [31,38], allows us to determine
microfacies characteristics (Figure 2 and Figure 10) for the studied stratigraphic section in the Mescitli
area. Three microfacies were identified by petrographic analysis based on their depositional textures
and fauna. These are 1) Benthic foraminiferal packstone microfacies (MF-1), (2) Reworked skeletal
grainstone/packstone microfacies (MF-2) and (3) Sponge spicule wackestone/mudstone microfacies
(MF-3). Based on the benthic foraminiferal assemblages (Figure 2), the studied limestone succession
was deposited during the Hauterivian-Albian interval (Figure 2 and Figure 10).

Benthic foraminiferal packstone microfacies (MF-1) is dominated by shallow water benthic
foraminiferal packstone with rare wackestone layers (Figure 4a). It has a mud-supported texture
(micritic matrix) (10–60%), with frequent occurrence of small benthic foraminifera (30–50%) such
as miliolidae (Figure 4a,b) that are strongly micritized (Figure 4b). Rare thin-shelled ostracods are
observed along with peloids (15–25%) and fine-grain micritic intraclasts (5–10%). The fine-grain
intraclasts are commonly carbonate mud (30–40%). In some parts of the thin section, sparite and
micrite coexist. Besides, MF-1 show low biotic diversity and deep water bioclasts such as calcisphere
and planktonic foraminifera are not observed. At the transition zone between MF-1 and MF-2 locally
rare sand to silt-sized- plagioclase grains and basaltic extraclasts occur, that slightly decrease toward
the top of the facies (Figure 4c).

Reworked skeletal grainstone/packstone microfacies (MF-2) comprise a high abundance skeletal
component (30–50%), peloids (5–10%) and intraclasts (5–10%) (Figure 4d–f). The bioclastic components
are represented by upward decreasing allochthonous skeletal fragments including, echinoids, molluscs,
very rare small benthic foraminifera and undifferentiated shell fragments. The most frequent and
common bioclasts through the MF-2 are echinoderms and bivalves. Other bioclasts, in order of
abundance, are thin-shelled ostracods, sponge and sponge-spicules (Figure 4d–f). Most of the biotic
components vary in size from 200 to 600 µm long and are broken and reworked, except for small
benthic foraminifera. Benthic foraminiferas are rare and infrequent. Relatively high biotic diversity
of bioclasts is observed compared to the MF-1 (Figure 4–f). Sponge spicule wackestone/mudstone
microfacies (MF-3) is differentiated from MF-2 mainly by its mud-dominated texture, the predominance
of the sponge spicules and lower abundance of reworked bioclasts (Figure 4g–i). MF-3 mostly consists
of wackestone to mudstone beds, as well as sponge spicules, rare reworked skeletal components,
pseudo-peloids, and rare intraclasts occur. The intraclasts are composed of rounded micritic grains.
Reworked skeletal components become thinner and sparser towards the top of MF-3 (Figure 4g),
and the most upper part of the microfacies consists of rare reworked skeletal components (Figure 4h),
but with a high abundance of planktonic forams, including Calcisphaerulidae (Figure 4i). MF-3 also
contains locally common authigenic components (glauconitic grains). Deep-water bioclasts such as
calcispheres and sponge spicule are observed at the top of MF-3.

5.2. Major and Trace Elements

The chemical analyses of the micritic limestone samples are represented in Table 1. Studied
limestone samples exhibit low Mg-calcite characteristics with the main chemical formula of
Ca98.35–99.34Mg0.66–1.65(CO3). Major element contents in limestone (Mescitli Section) exhibit high
CaCO3 varying from 98.35 to 99.35 (mole %) and low MgCO3 ranging between 0.66 and 1.65 (mole
%). They have SiO2 contents ranging from 0.57 to 21.90 wt % (average: 4.95 wt %), Al2O3 contents
ranging from 0.14 to 3.57 wt % (average: 0.83 wt %), Fe2O3 contents ranging from 0.08 to 0.46 wt %
(average: 0.19 wt %), K2O contents varying 0.04 to 1.79 wt % (average: 0.36 wt %) and P2O5 varying
from 0.02 to 0.35 wt % (average: 0.08 wt %). Na2O (below detection limit (bdl), <0,01 to 0.03 wt %),
MnO (<0.01 to 0.02 wt %), TiO2 (<0.01 to 0.08 wt %; average: 0.03 wt %) and Cr2O3 (<0.002 to 0.003 wt
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%) contents are all low (Table 1). The analytical results also show low contents of Hf (<0.1 to 0.50 µg/g),
Sc (<1 to 2.0 µg/g), Th (<0.2–0.9 µg/g), Zr (1.9–20.4 µg/g) elements.

The studied limestones have variable ΣREEs (1.90–39.43 µg/g and ave. 10.74 µg/g), Y (0.70–8.80 µg/g;
ave. 3.49 µg/g) and Ho (<0.02 to 0.30; ave. 0.09 µg/g) contents. Their Y/Ho (29.33–70.00; ave. 46.26)
and Eu/Sm (0.18–0.39; ave. 0.28) ratios are mostly similar to those of seawater while their Sm/Yb
(1.26–2.74; ave. 1.68) ratios are slightly higher than those of modern seawater [59] (Table 1). Following
normalization of REEs to post-Archean Australian Shale (PAAS; [68]) the limestone samples exhibit
(i) depleted LREE relative to HREE (Nd/Yb)N (0.46–1.12; average 0.72) and (Pr/Yb)N (0.50–1.40; 0.73)
(ii) negative Ce/Ce* (0.38–0.81; ave. 0.57) (iii) slight positive Eu/Eu* (1.01–1.65; ave. 1.29), (iv) slightly
flat Pr/Pr* (1.00–3.29; ave. 1.26) anomalies and (v) positive La/La* anomaly (0.21–3.02; ave. 1.75).
The samples mostly plot in area IIIb of the Pr/Pr* vs. Ce/Ce* ratios [68], which confirm that the Ce
anomalies are not an artefact of La—interference (Figure 5a). Eu/Eu* ratios exhibit no correlation with
Ba/Sm (Figure 5b). Ce/Ce* ratios show fluctuation (Table 1) with a steady increase throughout the
MF-1 part of the studied section. The uppermost part of MF-1 exhibits slightly lower Ce/Ce* anomalies
and is followed by a sharp decrease in the Ce/Ce* anomalies at the base of MF-2. MF-2 and MF-3
are represented by relatively low Ce/Ce* anomalies. There is no significant difference in Ce anomaly
between MF-2 and MF3.
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Figure 5. Plots of the Pr/Pr* vs. Ce/Ce* ratios diagram [69] (a), and Ba/Sm vs. Eu/Eu* ratios (b) of
studied limestones. See the text for further details.

6. Discussion

6.1. Siliciclastic Impurities

To reveal the possible potential influence of terrigenous input on paleoredox indicators within the
studied limestone, it is necessary to identify possible contamination by siliciclastics. This is important
because contamination by terrestrial clays can control the primary REEs + Y contents of ancient marine
carbonates [4,6,71,72]. A small quantity of terrestrial particulate matter (i.e., shale), which has high REE
contents with distinctly non-seawater-like patterns [73], may dramatically modify original REE patterns
and cause a decrease in both the extent of LREE depletion and Y/Ho ratios [3,4,74]. Several lines of
evidence suggest that the studied limestone displays a diagnostic seawater signature: (1) negative Ce
anomalies (0.38–0.81; average 0.57), (2) depleted LREE and (3) superchondritic Y/Ho (average 46.26)
(Figure 6a) (e.g., [4]). Although the limestone exhibits a slight enrichment of LREE compared to modern
seawater of South Pacific deep water [11] their PAAS normalized patterns exhibit a seawater-like
signature compared to the North American Shale Composite (Figure 6a,b) [75]. Furthermore, their
general PAAS normalized patterns (i.e., Ce* with an average of 0.57; Nd/YbN with an average of
0.72; Pr/YbN with an average of 0.73 values) are compatible with well-preserved brachiopods [8,75]
(Figure 6b,c).
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from South Pacific deep water [11] and North American Shale Composite from [76].

The Y/Ho ratios can be used as a tracer to assess whether carbonate samples reflect primary marine
signature or siliciclastic components [2,4,77–79]. Y and Ho are isovalent trace elements which have a
similar charge and radius, and they are considered to display extremely coherent behaviour as twin pairs
in a geochemical system characterized by charge-and-radius-controlled (CHARAC) [10]. According to
the previous work [77,78,80], an aqueous marine system is characterised by non-CHARAC trace element
behaviour, and electron structure must be considered as an important additional parameter which
may cause trace element fractionation processes such as chemical complexation. The complexation
behaviour of a trace element is additionally influenced by its electron configuration and by the
character of chemical bonding between a central ion and a ligand [79,80]. For this reason, Ho is
scavenged more readily from seawater than Y due to differences in geochemical behaviour in surface
complexation [79–84]. According to the literature, high Y/Ho ratios (average of 61 ± 12) occur in the
upper 200 m of seawater [7,11,12,64,85–91]. However, other studies have proposed that typical Y/Ho
ratios in marine carbonates that are free of contamination from terrigenous material show a wider
range of values (44–74) or a chondritic value of 28 [78,80]. The studied limestones display high Y/Ho
ratios with an average of 46.26 (29.33–70.00), which is consistent with detritus-free marine sediments
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(average 45.50) [69]. Further, the lack of correlation between Y/Ho ratios, Ce/Ce*, and Al and Zr
contents in the studied limestone implies little or negligible terrestrial contamination [74].

Finally, several trace elements including Hf, Sc, Th, Zr and Al2O3 are considered to be particularly
sensitive to shale contamination, as they occur in detrital alumosilicate minerals in much greater
volume in average shale than in marine carbonates [4–6,17–19,64,71,85,92,93]. The studied micritic
limestones predominantly exhibit low Hf (<0.02 to 0.5 µg/g), Sc (<1 to 2 µg/g) Th (<0.2 to 0.9 µg/g)
contents, which supports the observation that contamination by detrital minerals is minor to negligible
(Table 1). Relatively low Zr (1.90–20.40 µg/g, an average of 5.27 µg/g) and Al2O3 (0.14–3.57 wt %,
an average of 0.83 wt %), with a good correlation between Zr and Al2O3, suggest a minor amount of
shale contamination (Figure 7a). However, total REE concentration is poorly correlated with Zr and
Al2O3, implying that this small volume does not dramatically contaminate the REE concentration in
these samples [2] (Figure 7b,c). Plotting Y/Ho, Eu/Eu* and Ce/Ce* versus and Zr contents in Figure 7d–f
shows no positive correlation, as would be expected if there was low detrital contamination [3–5].
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To sum up, the contamination of carbonate samples by terrestrial materials can be defined as
minor or negligible based on these multiple and independent analyses including (1) their seawater
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signature; (2) similar Y/Ho ratios to those of the marine carbonates free of contamination and (3) lower
Sc, Th, Zr and Al2O3 contents as discussed above.

6.2. Diagenetic Influence

REEs, in particular Ce and Eu, are widely used to reconstruct the redox evolution of the carbonate
system [1,64,85,94]. Carbonate minerals, especially calcite, can be considered long-term repositories of
lanthanides [8,95]. Therefore, carbonate sedimentologists have focused on a wide range of marine
carbonate components such as reefal microbialites (e.g., [6,17]), reefal carbonate (e.g., [4]), laminae
of ooids (e.g., [85]), belemnites (e.g., [8]) and micritic limestones (e.g., [86]) for the reconstruction
of ancient paleoenvironmental conditions. Their REE + Y patterns do not always exhibit a typical
seawater signature, even though the REE signature is thought to be inherited from their parental
seawater [1–4,18,82,87–90] because original REE patterns can be significantly altered during diagenesis
under high water-rock ratios [4,6,81,91]. However, complete mineral dissolution is necessary to lead to
an effective loss of trace elements, including REEs, from the mineral lattice (e.g., [95]).

Many studies have focused on using REEs to provide a better understanding of the influence
of thermodynamic and kinetic parameters on the partitioning of individual REEs during calcite
precipitation [90,91,95,96]. Mineral dissolution is considered unlikely to destroy the geological record
encoded by the distribution pattern of REEs in calcites based on experimental studies, though some
have questioned this interpretation because of differences between the experimental system and natural
settings (e.g., REE concentration in solution) [96]. Further, a large amount of information on REEs
in natural carbonates have been compiled [95,96], and several parameters have been investigated
to assess the potential diagenetic influence on the REE signature of carbonates [1–4]. It has been
shown that the progressive REE scavenging during post-depositional modification may produce a
positive correlation between the Ce anomaly and REE [70,71,91]. However, our samples do not display
a notable positive correlation between Ce and REE content (Figure 8a). Furthermore, the studied
carbonates show a negative correlation between Eu/Eu* and REE concentration (Figure 8b), implying
that such a diagenetic influence is absent [91]. Finally, a negative correlation between Ce/Ce* and
La/SmN ratios have been used as evidence of diagenetic influence on Ce [97–99], and this correlation is
not apparent in our carbonates (Figure 8c). Similarly, an absence of correlation between Ce/Ce* and
Eu/Eu* implies a negligible or absence of influence of post-depositional alteration on the measured
Ce/Ce* [3,7,74,84,87,100]. Our samples display a weak correlation (Figure 8d–f), which implies
negligible or no diagenetic impact on Ce anomalies. This conclusion is also supported by petrographic
observations of the micritic limestone, which do not show significant recrystallization.

Given these conditions, the relationship between Ce/Ce* and Pr/Pr* can be used to characterize
redox conditions using shale-normalized REE contents [69]. In assessing whether an apparent Ce
anomaly is true, and not a function of La-enrichment, the data was analysed using the Ce/Ce* versus
Pr/Pr* analysis [69] (Figure 5a), whereby area (I) no Ce anomaly; (IIa) positive La anomaly causes
apparent negative Ce anomaly; (IIb) negative La anomaly causes apparent positive Ce anomaly;
(IIIa) real positive Ce anomaly; (IIIb) real negative Ce anomaly; (IV) positive La anomaly disguises
positive Ce anomaly [69,99]. The position of samples from this study in area IIIb indicates that they
display real Ce anomalies (Figure 5a). In addition, Eu/Eu* can be contaminated by interference with
Ba during ICP-MS analysis [101], but Eu/Eu* ratios exhibit no correlation with Ba/Sm, implying that
calculated anomalies are real positive Eu anomalies (Figure 5b).
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It has been shown that the micritic limestones mainly show a seawater signature, with LREE
depletion, positive La anomaly (La*) and a mostly negative Ce anomaly (Ce/Ce* = 0.38 to 0.81, average
0.57). However, they also exhibit a wide-range of Eu anomalies (Eu*/Eu = 1.01–1.65; 1.29). This pattern
is missing in the general characteristics of normal marine carbonates [102] and is generally considered
as an indicator of reducing, high-temperature fluids [77,83,103,104]. Similar patterns are recorded
in many distinct marine systems affected by hydrothermal fluids associated with ferromagnesian
rocks [71]. Such hydrothermal fluids are usually reported at mid-ocean ridges and back-arc spreading
tectonic setting, where water-rock interactions with mafic rocks provide additional REE to ambient
seawater [69,77,80]. Therefore, the Eu/Eu* ratios in this study may imply water-rock interaction
with basalts. However, previous studies have shown that basaltic rocks are absent throughout the
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Lower Cretaceous, and there is no evidence of Early Cretaceous magma generation in the study area
(Eastern Pontide, NE Turkey). Although it is widely accepted that the Early Cretaceous was a stable
tectonic regime due to a lack of igneous activity [50,61]. The eastern Pontide experienced multistage
basaltic magma generation during the Late Cretaceous [43,49] and early Cenozoic acidic magma
generation is also recorded [44–46,63]. This Upper Cretaceous to Cenozoic magma generation has
led to recrystallisation and geochemical modification of the underlying dolomites at a late-stage of
their diagenetic history [32–34]. However, the studied Lower Cretaceous limestones do not show
petrographical evidence of such recrystallisation (Figure 4a,b). Furthermore, the studied limestone
samples exhibit low Mg-calcite chemistries (Ca98.81–99.52Mg0.48–1.19(CO3)) [105], indicating that they
are chemically stable [106–113]. Further, there is neither petrographical evidence for recrystallization
which associated with Late Cretaceous to Cenozoic magma generation nor geochemical pieces of
evidence, for example, the lack of apparent correlation between Mg/Ca vs. Ce/Ce* and Eu/Eu* ratios
which imply less influence of late diagenetic processes on their REE chemistry (Figure 8g,h). Therefore,
Late Cretaceous to Cenozoic magma generation during this later diagenetic stage is probably not
responsible for high the Eu/Eu* ratios of the studied limestone.

Nevertheless, Lower Cretaceous calc-alkaline lamprophyre and high-Nb alkaline basaltic dykes
have been discovered in the Eastern Pontide [114], and this may have provided hydrothermal fluids
to the depositional environment, which changed the temperature and/or redox conditions prior to
diagenetic stabilization (e.g., [81]). To test this, Sm/Yb vs. Eu/Sm and La/Yb vs. La/Sm plots were
constructed (Figure 9a,b). The data show an overlap with hydrogenetic-Fe-Mn crusts and relatively
higher La/YbN values than seawater are observed, implying the presence of some early absorption
processes [3,115] (Figure 9b). It has been proposed that hydrothermal fluid possess higher Sm/Yb and
chondritic Y/Ho values (∼28) than modern seawater [71]. Plotting Y/Ho versus Sm/Yb (Figure 9c),
studied samples overlap with the samples of Pongola Iron Fm. which were affected by hydrothermal
fluid during their sedimentation processes [71]. They also plot on the line of hydrothermal fluid
(1–5%) suggesting a contribution of hydrothermal fluid Figure 9c. Although the studied samples have
relatively lower Eu/Sm ratio compared to the high-T hydrothermal fluids. They possess similar Eu/Sm
ratio to the hydrogenic Fe-Mn crusts (Figure 9d) and samples plot in an area between seawater and
hydrogenetic- Fe-Mn crusts which may confirm the influence of the hydrothermal fluid. To sum up,
even though the studied limestone formed in an open marine environment, (i) the positive Eu anomalies,
(ii) high Sm/Yb and La/YbN ratios and (iii) the Y/Ho range between seawater and hydrogenetic Fe-Mn
crusts suggest some modification by hydrothermal fluids which are most likely to be associated with
Early Cretaceous magma generation (Hauterivian-Albian) [77,83,103,104,116,117].



Minerals 2020, 10, 683 16 of 25
Minerals 2020, 10, x FOR PEER REVIEW 16 of 25 

 

 
Figure 9. Plots of the Eu/Sm vs. Sm/Yb (a); (La/Sm)N vs. (La/Yb)N (b); Sm/Yb vs. Y/Ho (c); and Eu/Sm 
vs. Y/Ho (d) [21,71,115]. 

6.3. Early Cretaceous Paleoenvironmental Implications 

It has been shown that the studied limestones mostly display a seawater signature including (1) 
negative Ce anomalies, (2) superchondritic Y/Ho (47 ± 4), and depleted LREE relative to HREEs 
((Nd/Yb)N = 0.46–1.12; ave. 0.72 and (Pr/Yb)N = 0.50–1.40; 0.73) (Figures 6a–c and 10). The Ce* anomaly 
in carbonates is considered as a superior proxy for revealing the redox-state of the ancient seawater 
[3,8,74]. The studied samples exhibit negative Ce* anomalies, typical of modern oxygenated seawater 
[9,77,78,80,84,91,118]. However, anoxic conditions may weaken the Ce depletion as a result of redox 
reactions leading Ce3+ oxidation to insoluble Ce4+ because dissolved Ce3+ which is partially scavenged 
from seawater in the anoxic marine system [13,20,119,120]. The lack of significant negative-Ce 
anomalies in many marine sediments has been considered as evidence of the anoxic seawater 
[100,121]. Besides, it has been suggested that a pronounced negative Ce* anomaly can be divided into 
three: (a) smaller than <0.5; (b) ~0.6–0.9 and (c) ~0.9–1.0 which represents oxic, suboxic and anoxic 
marine water, respectively [19]. 

The studied limestone is interpreted to have experienced progressive modification through 
interaction with reducing, high-temperature diagenetic fluids, and this caused the slight enrichment 
of Eu. However, no notable positive correlation between Eu anomalies versus Ce are present, which 
may indicate that modification of Eu was not accompanied by the modification of their Ce* values. 
Consequently, the wide range of negative Ce distributions may point to a change in paleoceanographic 
conditions from slightly suboxic to oxic paleo-redox state of ancient seawater but still remaining <0.9 
[3]. MF-1 located in the lower part of the studied limestone succession is interpreted to have been 
deposited in an inner platform paleoenvironment during the Hauterivian-Aptian based on the 
microfacies characteristics and foraminifera assemblages (e.g., the high abundance of the benthic 

Figure 9. Plots of the Eu/Sm vs. Sm/Yb (a); (La/Sm)N vs. (La/Yb)N (b); Sm/Yb vs. Y/Ho (c); and Eu/Sm
vs. Y/Ho (d) [21,71,115].

6.3. Early Cretaceous Paleoenvironmental Implications

It has been shown that the studied limestones mostly display a seawater signature including
(1) negative Ce anomalies, (2) superchondritic Y/Ho (47 ± 4), and depleted LREE relative to HREEs
((Nd/Yb)N = 0.46–1.12; ave. 0.72 and (Pr/Yb)N = 0.50–1.40; 0.73) (Figures 6a–c and 10). The Ce*
anomaly in carbonates is considered as a superior proxy for revealing the redox-state of the ancient
seawater [3,8,74]. The studied samples exhibit negative Ce* anomalies, typical of modern oxygenated
seawater [9,77,78,80,84,91,118]. However, anoxic conditions may weaken the Ce depletion as a
result of redox reactions leading Ce3+ oxidation to insoluble Ce4+ because dissolved Ce3+ which is
partially scavenged from seawater in the anoxic marine system [13,20,119,120]. The lack of significant
negative-Ce anomalies in many marine sediments has been considered as evidence of the anoxic
seawater [100,121]. Besides, it has been suggested that a pronounced negative Ce* anomaly can be
divided into three: (a) smaller than <0.5; (b) ~0.6–0.9 and (c) ~0.9–1.0 which represents oxic, suboxic
and anoxic marine water, respectively [19].

The studied limestone is interpreted to have experienced progressive modification through
interaction with reducing, high-temperature diagenetic fluids, and this caused the slight enrichment of
Eu. However, no notable positive correlation between Eu anomalies versus Ce are present, which may
indicate that modification of Eu was not accompanied by the modification of their Ce* values.
Consequently, the wide range of negative Ce distributions may point to a change in paleoceanographic
conditions from slightly suboxic to oxic paleo-redox state of ancient seawater but still remaining
<0.9 [3]. MF-1 located in the lower part of the studied limestone succession is interpreted to have
been deposited in an inner platform paleoenvironment during the Hauterivian-Aptian based on the
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microfacies characteristics and foraminifera assemblages (e.g., the high abundance of the benthic
characteristics of foraminifera assemblages, lack of deep-water bioclasts and low biotic diversity) [31,67]
(Figure 1.) It exhibits a wide range of Ce anomalies (0.38–0.81), with a steadily increasing trend upward
in the succession, coincident with interpreted increasing palaeo-water depth (Figure 10, Table 1).
The uppermost part of MF-1 exhibits slightly weaker Ce/Ce* anomalies implying a relatively suboxic
state of the ancient seawater. This is followed by a sharp decrease in the Ce/Ce* anomalies at the
base of MF-2, suggesting a sudden change in the redox state of contemporaneous seawater. There is
then a gradual transition to the overlying MF-3, indicating oxic seawater (Figure 10, Table 1) which
remained relatively stable until the end of MF-3. This is despite the progressive deepening of the basin,
which might have been caused a slight decrease in oxygenation as relative sea-level increased [15].
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Figure 10. Diagrammatic sketch illustrating probable environment evolution of middle and upper part
of the Berdiga Formation during the Hauterivian-Albian in Eastern Pontide. (a) During MF-1 deposition,
the inner platform environment with relatively low sea level with oxic to dysoxic paleoceanographic
conditions. (b) During MF-2 and MF-3 deposition, an outer platform to continental slope environment
with relatively high relative sea level and a well-oxygenated open marine environment. (c) Inset
showing the relative position of each phase with respect to ΣREE (µg/g) Y/Ho, Eu/Eu* and Ce/Ce*
variations. Ce/Ce* shows dyspoxic (Ce* = 0.71–0.81) conditions in most upper part of the MF-1.
MF-1: benthic foraminiferal packstone microfacies corresponding to inner platform environment,
MF-2: reworked skeletal grainstone/packstone microfacies corresponding to other platform, and MF-3:
Sponge spicule wackestone-mudstone microfacies continental corresponding to slope environment.

The differences in microfacies characteristics and foraminifera assemblage between MF-1 and
overlying MF-2 may also confirm a change in paleoceanographic conditions because MF-2 is represented
by the predominance of allochthonous bioclastic components which are broken and reworked, high
biotic diversity and scarcity of small benthic foraminifera implying a deeper shelf environment relative
to the MF-1. Furthermore, the presence of the rare plagioclase and basaltic extraclasts in the transition
zone from MF-1 to MF-2 (Figure 4c) is likely associated with the basaltic magma generation, which has
been recently reported [114]. This basaltic magma generation is probably caused by synsedimentary
tectonic activity. The syn-sedimentary tectonic regime may also cause progressive deepening of the
basin. Furthermore, the submarine basaltic magma generation may also influence on the sudden change
in paleo-redox conditions of ancient depositional environment. This likely result in the oxygen-deficient
conditions, which produce our relatively high Ce/Ce* data (0.71 to 0.81) in the uppermost part of MF-1.

The Ce/Ce* anomaly at the MF1 / MF2 boundary is marked, and coincides with a change in facies
from shallow water, benthic foraminiferal packstone to reworked skeletal packstone that is dominated
by fragmented, allochthonous, largely heterotrophic fauna. This could reflect a facies transition from
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shallow water, platform top (MF1) to deeper water slope (MF2) setting, consistent with the overall
deepening of the succession. However, the presence of fragmented organisms suggests depositional
energy remained moderate, and water depths were not sufficiently deep for oxygenation to be reduced;
the overlying MF3 sediments are more likely to be deeper water but remain oxic. The decrease
in the Ce/Ce* anomaly coincides with a decrease in ΣREE, Y/Ho and Eu/Eu* anomaly (Figure 10).
Dating of benthic foraminifera indicates that a timing that is broadly consistent with the onset of
OAE1a [122], where global temperatures rose, and ocean acidification occurred as a result of rising
CO2 concentrations during emplacement of Large Igneous Provinces. It is, therefore, possible that the
MF1/MF2 boundary records this event, both in the increase in hydrothermal activity – which modified
Eu/Eu*—and the decrease in seawater oxygenation that decreased Ce/Ce*. In this sense, the change in
facies from MF1 to MF2 might not simply reflect a rise in relative sea level, and it might also indicate
decreasing carbonate productivity and preservation.

Paleo-redox evolution can be controlled by the function of temperature, fluid chemistry of
paleo-oceanic system triggered by complex tectono-sedimentary evolution of the Eastern Pontide. It is
therefore recommended that paleoceanographic studies demonstrate more conclusively the occurrence
of oxygen-deficient conditions in the Tethys ocean, within the study area. Our results have the
potential to contribute new information to this discussion because a paleoceanographic reconstruction
of the studied section can be established based on the faunal content, microfacies characteristics,
and REE data. MF-1 represents an inner platform setting with mostly oxic conditions during the
Hauterivian-Aptian. However, a sudden change in redox-state of ancient seawater, corresponding
dysoxic conditions, is recorded in the most upper part of the MF-1. This is followed by an abrupt
deepening paleoenvironment with a relative increase in the oxic state of the seawater and the deposition
of the deeper water microfacies (MF-2 and MF-3) above a sharp transition. This represents a relative
sea-level rise triggered by the evolution of the Tethys in the Eastern Pontide resulting deepening
of the basin and is also recorded in age-equivalent carbonates in NE Turkey [37]. Previous studies
have indicated that the extensional tectonics and rifting in the Cretaceous in NE Turkey [25,37,50,61]
terminated in the middle Cretaceous, such that deeper paleoenvironmental conditions could be
consistent with thermal subsidence, even though carbonate sedimentation continued until the end of
Albian or Turonian [25,37,123]. Similarly, in this study, MF-1 represents an inner platform setting with
mostly oxic conditions during the Hauterivian-Aptian. However, a sudden change in redox-state of
ancient seawater, corresponding dysoxic conditions, is recorded in the most upper part of the MF-1
(Figure 10). This is followed by an abrupt deepening paleoenvironment with a relative increase in the
oxic state of the seawater and the deposition of the deeper water microfacies (MF-2 and MF-3) above a
sharp transition. Moreover, an abrupt paleoenvironmental change is represented by the presence of
MF2 and MF3 which include dark grey limestones with chert nodules, mud-rich textures, allochthonous
skeletal fragments and sponge spiculitics and presence of the planktonic organism, all consistent with
deeper water sedimentation. These characteristics can be indicative of an increase in the water depth.
The gradual transition to MF-3 with a predominance of mud-rich texture, a decrease in abundance
of allochthonous skeletal fragments support the transgressively deepening of the paleoenvironment
which continued up to late Albian. It has also been recorded the sponge spicule wackestone with
Microhedbergella rischi within the most upper part of MF-3 [37,51]. Thus, the presence of the planktonic
organism may characterise the deepest part of the paleoenvironment which corresponding to the
slope [65]. Further, their REEs data confirm that their oxic conditions remained stable throughout the
deeper facies (MF-2 and MF-3), even considering the distal microfacies. The current work, therefore,
supports that the shallower part of the paleo-ocean remained relatively less oxic and became suboxic
during the Late Aptian-Albian, while deeper facies, which display an overall transgressive motif, were
developed in relatively more oxic paleo-oceanic conditions up to the end Albian (Figure 10).
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7. Conclusions

The study of the Lower Cretaceous limestone succession, corroborated by detailed microfacies
analysis and REE geochemistry, allows us to present new data on ocean paleoredox conditions
(Figure 10) and the extent of diagenetic alteration for the studied stratigraphical section in Mescitli area
(Eastern Pontides, NE Turkey). Our primary results are as follows:

1. Analyzed micritic limestone samples mainly exhibit a seawater signature including (1) slight
LREE depletion relative to the HREEs (ave. 0.72 of Nd/YbN and ave. 0.73 of Pr/YbN), (2) negative
Ce anomalies (Ce*/Ce = 0.38–0.81; ave. 0.57), (3) positive La anomaly (La*/La = 0.21–3.02; ave.
1.75) and (4) superchondritic Y/Ho (ave. 46.26).

2. Micritic limestone also shows slight positive Eu* anomalies (Eu*/Eu = 1.01–1.65; ave. 1.29) and
relatively higher Sm/Yb (1.39–1.26; ave. 2.05) and La/YbN (0.68–1.35; 0.96) ratios compared to
the modern seawater. This may imply the presence of water-rock interaction between parental
seawater and basaltic rocks at elevated temperatures triggered by hydrothermal activity associated
with Early Cretaceous basaltic magma generation.

3. The studied sections exhibit negative Ce* anomalies, varying from 0.38 to 0.81, which may
confirm mostly oxic to dysoxic paleoceanographic conditions. Further, dyspoxic (Ce* = 0.71–0.81)
conditions are also recorded in the most upper part of the MF-1 Microfacies during the late
Aptian-early Albian.

4. The current work suggests that the shallower part of the paleo-ocean remained relatively less
oxic and became suboxic during the Late Aptian-Albian, while deeper facies displaying overall
transgressive trend were developed in relatively more oxic paleo-oceanic conditions up to end
of Albian.
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Aptian bituminous limestone in the Kale Gümüşhane area (NE-Turkey): An example of lacustrine deposits
on the platform carbonate sequence. Org. Geochem. 2012, 49, 6–17. [CrossRef]

http://dx.doi.org/10.1016/S0016-7037(98)00279-8
http://dx.doi.org/10.1016/j.chemgeo.2010.11.007
http://dx.doi.org/10.4236/ajac.2013.410A1009
http://dx.doi.org/10.1016/S0016-7037(96)00276-1
http://dx.doi.org/10.1016/S0016-7037(98)00073-8
http://dx.doi.org/10.1016/0016-7037(94)90559-2
http://dx.doi.org/10.1016/j.palaeo.2018.03.028
http://dx.doi.org/10.1016/j.chemgeo.2011.10.010
http://dx.doi.org/10.1016/j.chemgeo.2019.01.015
http://dx.doi.org/10.1111/j.1365-3091.1994.tb01424.x
http://dx.doi.org/10.1016/j.earscirev.2015.01.013
http://dx.doi.org/10.1016/0016-7037(88)90275-X
http://dx.doi.org/10.1016/j.gexplo.2018.07.010
http://dx.doi.org/10.1016/j.jseaes.2017.08.016
http://dx.doi.org/10.1016/0040-1951(88)90189-8
http://dx.doi.org/10.1016/S1367-9120(01)00027-X
http://dx.doi.org/10.1016/j.orggeochem.2012.05.006


Minerals 2020, 10, 683 21 of 25

27. Kırmacı, M.Z. Sedimatological Investigation of the Upper Jurassic-Lower Cretaceous Berdiga Limestone in
the Alucra-Gumushane-Bayburt areas (Eastern Pontide Southern Zone). Ph.D. Thesis, Karadeniz Technical
University, Ortahisar/Trabzon, Turkey, 1992; p. 256.

28. Kirmaci, M.Z.; Koch, R.; Bucur, J.I. An Early Cretaceous section in the Kircaova Area (Berdiga Limestone,
NE-Turkey) and its correlation with platform carbonates in W-Slovenia. Facies 1996, 34, 1–21. [CrossRef]

29. Koch, R.; Bucur, I.I.; Kirmaci, M.Z.; Eren, M.; Tasli, K. Upper Jurassic and Lower Cretaceous carbonate rocks
of the Berdiga Limestone–Sedimentation on an onbound platform with volcanic and episodic siliciclastic
influx. Biostratigraphy, facies and diagenesis (Kircaova, Kale-Gümüşhane area; NE-Turkey). Neues Jahrb.
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52. Kırmacı, M.Z.; Akdağ, K. Origin of dolomite in the Late Cretaceous–Paleocene limestone turbidites,
eastern Pontides, Turkey. Sediment. Geol. 2005, 181, 39–57. [CrossRef]
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