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Serret-Frenet Formulas for Octonionic Curves
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abstract: In this paper, we define spatial octonionic curves (SOC) in R7 and
octonionic curves (OC) in R8 by using octonions. Firstly, we determine Serret-
Frenet equations, and curvatures of the SOC in R7. Then, Serret-Frenet equations
for the OC in R8 are calculated with the help of Serret-Frenet equations of SOC in
R7.
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1. Introduction

Octonions and quaternions are important subjects in differential geometry.
Quaternionic curves play an important role in differential geometry. Spatial quater-
nion set (if the real part of quaternion is equal to zero, then the quaternion is called
spatial quaternion) is isomorphic to Euclidean 3-space. Moreover, the set of real
quaternions is isomorph to Euclidean 4-space. For that reason, Bharathi and Na-
garaj studied the differential geometry of a smooth curve in Euclidean 4-space R4

[3]. The elements of R4 are identified with the quaternions. The Serret-Frenet ap-
paratus for the quaternionic curves were determined by the Serret-Frenet apparatus
for a main curve in R3 which is embedded in R4 [3]. Then, a lot of papers were
published by using the quaternionic curves in R3 and R4. For example, Karadag,
Gunes and Sivridag determined the Serret-Frenet formulas for dual quaternion val-
ued functions of a single real variable [11]. The quaternion valued functions, and
quaternionic inclined curves were studied in the semi-Euclidean space by Coken
and Tuna [6] and [15]. The curl in R7 introduced by the cross product in R7 by
Peng and Yang [22].
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Octonions were defined independently by J. Thomas Graves and A. Cayley.
The set of the octonions O are expressed as follows:

O = {A0e0 +

7
∑

i=1

Aiei; Ai ∈ R},

where e2i = −1, e0ei = eie0 = ei, (∀i = 1, 2, ..., 7), eiej = −δije0 + εijkek,
δij is Kronecker delta, εijk is completely antisimetric tensor, e0 = +1, and
(ijk) = (123) , (145) , (176) , (246) , (257) , (347) , (365) [5],[9],[14],[18]. There have
been many investigations related to octonions. Researchers study octonions in
analysis, physics, and differential geometry. Spatial octonion set (if the real part of
octonion is equal to zero, then the real octonion is called the spatial octonion [16].
These octonions create the spatial octonion set and denoted by OS) is isomorph
to R7, and the set of octonions is isomorphic to R8. In other words, O = R ⊕ R7

[13], [19]. The points in R8 can be represented by the octonions [1]. Thus, we can
ask ourselves the following questions:

Can we define the octonionic curves in R7 and R8, and find the Serret-Frenet

apparatus for the octonionic curve βO : I ⊂ R → O, βO (s) =
7
∑

i=0

γi (s) ei,

βO (s) = γ0 (s) e0 + γO (s) by using the Serret-Frenet apparatus for a main spatial

octonionic curve, γO : I ⊂ R → OS, γO (s) =
7
∑

i=1

γi (s) ei in R7 which is embedded

in R8? In this paper, we will answer the above questions. We transfer the concept
of the quaternionic curve [3] in Euclidean 4-space to the concept of the octonionic
curve in Euclidean 8-space by using the real octonions (We are dealing with real
octonions in this paper and henceworth use just word octonions).

Our study is prepared as follows. In preliminaries part, we give fundamental
definitions, properties, and informations about the octonion algebras. In section 3,
we introduce the spatial octonionic curves (SOC) in R7, and the octonionic curves
(OC) in R8. Then, we find the Serret-Frenet apparatus for SOC in R7. By using the
Serret-Frenet apparatus for SOC in R

7, we compute the Serret-Frenet apparatus
for OC in R8.

2. Preliminaries

In this section, we denote the set of spatial octonions with OS , and the set of
octonions with O. Let us first give some fundamental notions of the octonions.
The real octonion A is defined by

A = A0e0 +

7
∑

i=1

Aiei,

where Ai are the real numbers components of the octonions, e′is (i = 1, 2, . . . , 7)
are the unit octonions basis elements, and e0 = +1 is the scalar element [5], [14],
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[18]. The multiplication rules of the unit octonions basis elements are given by the
following table

Table 1.The Multiplication Table of Unit Octonions Basis Elements

× e0 e1 e2 e3 e4 e5 e6 e7
e0 e0 e1 e2 e3 e4 e5 e6 e7
e1 e1 −e0 e3 −e2 e5 −e4 −e7 e6
e2 e2 −e3 −e0 e1 e6 e7 −e4 −e5
e3 e3 e2 −e1 −e0 e7 −e6 e5 −e4
e4 e4 −e5 −e6 −e7 −e0 e1 e2 e3
e5 e5 e4 −e7 e6 −e1 −e0 −e3 e2
e6 e6 e7 e4 −e5 −e2 e3 −e0 −e1
e7 e7 −e6 e5 e4 −e3 −e2 e1 −e0

.

The addition, the scalar multiplication, and the octonion multiplication are the
operations of the set of the octonions. The sum of two octonions is defined by

A± B =

7
∑

i=0

(Ai ± Bi) ei

= (A0e0 + A1e1 + A2e2 + A3e3 + A4e4 + A5e5 + A6e6 + A7e7)

± (B0e0 + B1e1 + B2e2 + B3e3 + B4e4 + B5e5 + B6e6 + B7e7) .

A is called conjugate of the octonion A, and conjugate of the octonion is defined
by

A = A0e0 − A1e1 − A2e2 − A3e3 − A4e4 − A5e5 − A6e6 − A7e7

= A0e0 −

7
∑

i=1

Aiei,

where e0 = e0 and ej = −ej (j = 1, . . . , 7) [8]. The octonion A has real part and
vectorial part. So, the octonion A is decomposed with respect to its real (SA), and
vectorial (VA) parts as follows:

SA =
1

2

(

A+ A
)

= A0e0, VA =
1

2

(

A− A
)

=

7
∑

i=1

Aiei[8], [13].

Let us denote octonions with a real number (SA = A0) in R, and a vector
(

VA =
7
∑

i=1

Aiei

)

in R7. The octonion is given by

A = SA + VA.

The multiplication of two octonions is defined by

A× B = SASB − g (VA, VB) + SAVB + SBVA + VA ∧ VB, (2.1)
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where ∀A,B ∈ O, [12], [17], [20, 21]. We use the inner and the cross products in R7

in above equations [12]. The symmetric, non-degenerate real-valued bilinear form
g is introduced by

g : O×O → R, g (A,B) =
1

2

(

A× B+ B× A
)

,

where A,B ∈ O. g is determined with the help of the real octonionic multiplication.

g is called the octonionic inner product. Thus, g (A,B) =
7
∑

i=0

AiBi [4], [7]. If

A+A = 0, then the octonion A is called the spatial octonion. The spatial octonion
set is represented by

OS = {

7
∑

i=1

Aiei; Ai ∈ R},

where e2i = −1, eiej = −δije0 + εijkek, (i, j, k = 1, 2, ..., 7), (i 6= j 6= k, i 6= 0, j 6=
0, k 6= 0). The spatial octonion set is isomorphic to R7.

The vector product of two vectors is only defined in 3-dimensional Euclidean
space, R3 and 7-dimensional Euclidean space, R7 [8], [12]. We express the vector
product in R7 as follows. Let A and B be the spatial octonions. Then, the vector
product in R7 is defined by

A ∧ B = A× B+ 〈A,B〉 ,

where A× B = (A1,A2,A3,A4,A5,A6,A7)× (B1,B2,B3,B4,B5,B6,B7) is defined
by

A× B = (A2B3 − A3B2 + A4B5 − A5B4 + A7B6 − A6B7,

A3B1 − A1B3 + A4B6 − A6B4 + A5B7 − A7B5,

A1B2 − A2B1 + A4B7 − A7B4 + A6B5 − A5B6,

A5B1 − A1B5 + A6B2 − A2B6 + A7B3 − A3B7,

A1B4 − A4B1 + A3B6 − A6B3 + A7B2 − A2B7,

A1B7 − A7B1 + A2B4 − A4B2 + A5B3 − A3B5,

A2B5 − A5B2 + A3B4 − A4B3 + A6B1 − A1B6),

and 〈A,B〉 =
7
∑

i=1

AiBi is standart inner product in R
7 [5], [8]. Moreover, this vector

product is given by [8], [14], [17] for all A =
7
∑

i=1

Aiei = (Ai), 1 ≤ i ≤ 7 and

B =
7
∑

i=1

Biei = (Bi), 1 ≤ i ≤ 7. The vector product in R7 satisfies the following

properties:
i) Distributive property: A ∧ (B+ C) = A ∧ B+ A ∧ C,
ii)The vector product of the spatial octonion with itself is zero, A∧A =

0,
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iii) Alternating property: A ∧ B = −B ∧ A,
iv) g (A,A ∧ B) = 0,
v) The norm of the vector product of two spatial octonions: ‖A ∧ B‖ =

‖A‖ ‖B‖ sinθ,
vi)Mixed scalar product: g (A ∧ B,C) = g (B ∧ C,A) = g (C ∧ A, B),
vii) A ∧ (A ∧ B) = g (A,B) A− g (A,A)B.
The norm of the octonion A is denoted by

‖A‖ =
√

A× A =

√

√

√

√

7
∑

i=0

A2
i .

If ‖A0‖ = 1, then A0 is called the unit octonion [8], [12]. The inverse of an octonion
is defined by [7]

A
−1 =

A

‖A‖
2 , A 6= 0.

If A and B octonions, then (B× A−1)× A = B or A−1 × (A× B) = B [19].
In differential geometry, curve theory is a developed subject of study. The

planar curve in 2-dimensional Euclidean space R2, the space curve in 3-dimensional
Euclidean space R3, and the space curve in n-dimensional Euclidean space Rn were
defined. Since R2 is corresponding to C, then the planar curves in R2 were studied
with respect to complex numbers. Accordingly, since R3 and R4 are corresponding
to the spatial quaternion set HS and the real quaternion set H, respectively, then
the space curves in R

3 and R
4 were studied in terms of quaternions. The main

question of our paper is: Can we study the space curves in R7 and R8 by using the
octonions? To answer this question, we have to know strong evidence. Our main
evidence is that R7 and R8 are corresponding to OS and O, respectively. In this
paper, we use the Serret-Frenet formulas for the well known space curve in R7 and
R8 (We know that space curves were defined in Rn. So, if we take n = 7, 8, we get
the R7 and R8 ).

The Serret Frenet frame and curvatures in R8: Let Γ : I ⊂ R → R8 be
a unit speed space curve in R

8 and {Uj}, 1 ≤ j ≤ 8 be the Serret Frenet 8-frame
related to Γ. The Serret-Frenet formulas for the curve Γ : I ⊂ R → R8 are given
by

U
′

1 (s) = k1 (s)U2 (s)

U
′

m (s) = −km−1 (s)Um−1 (s) + km (s)Um+1 (s) , 2 ≤ m ≤ 7

U
′

8 (s) = −k7 (s)U7 (s) .

(2.2)

On the other hand, Uj (s) =
Ej(s)

‖Ej(s)‖
, kj (s) =

〈

U
′

j (s) ,Uj+1 (s)
〉

=
‖Ej+1(s)‖
‖Ej(s)‖

for

1 ≤ j ≤ 8 [10].
In this paper, we compute the above Eq. (2.2) by the help of the octonions

for SOC in R
7. Then, by using the Serret-Frenet apparatus for SOC in R

7, we
compute the Serret-Frenet apparatus for OC in R8.
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3. Serret-Frenet Formulas for Octonionic Curves

Let γ : I ⊂ R → R7 be a space curve and {Vj}, 0 ≤ j ≤ 6 be the Frenet frame
of γ in the Euclidean 7-space R7. Now, we are going to take the spatial octonions
instead of all the Frenet elements. Thus, Frenet elements Vj can be written as a
spatial octonion which is defined by

Vj =

6
∑

i=0

vjej .

Definition 3.1. Let R7 characterize the Euclidean 7-space with octonionic metric g

and OS =
{

γO ∈ O

∣

∣

∣
γO +

−
γO = 0

}

show the spatial octonion set. R7 is identified

with the set of the spatial octonion. The curve γO : I ⊂ R → OS, γO (s) =
7
∑

i=1

γi (s) ei is called the spatial octonionic curve (SOC).

Definition 3.2. If the norm of the first derivative of the SOC is equal to 1, then
SOC is called unit speed spatial octonionic curves (USSOC).

Theorem 3.1. Let γO : I ⊂ R → OS be an USSOC and V0 (s) = γ
′

O
(s) =

7
∑

i=1

γ
′

i (s) ei be unit tangent vector of γ. Then, the following equations are provided

i) g
(

V0,V
′

0

)

= 0,

ii) V
′

0 ×V0 is a spatial octonion.

Proof: Let γO : I ⊂ R → OS, γO (s) =
7
∑

i=1

γi (s) ei be an USSROC. Since

V0 = γ
′

O
(s) =

7
∑

i=1

γ
′

i (s) ei has unit length (in other words, ‖V0 (s)‖ = 1 for all s),

we get ‖V0‖
2 = g (V0,V0) = V0×V0 = 1. Thus, differentiating with respect to

s gives V
′

0 ×V0 +V0×
(

V0

)

′

= 0. Since V0 = γ
′

(s) =
7
∑

i=1

γ
′

i (s) ei, we may write

V0 = −
7
∑

i=1

γ
′

iei and
(

V0

)

′

= −
7
∑

i=1

γ
′′

i ei. So, we have
(

V0

)

′

= V
′

0. Substituting the

statement
(

V0

)

′

= V
′

0 into V0 ×V0 +V0×
(

V0

)

′

, we obtain

V
′

0 ×V0 +V0 ×V
′

0 = 0. (3.1)

i)If we multiply on both sides of (3.1) by 1
2 and put in order it, then we get

g
(

V0,V
′

0

)

= 1
2

[

V
′

0 ×V0 +V0 ×V
′

0

]

= 0. Thus, V
′

0 is orthogonal to V0.

ii) By using the definition of the conjugate of the octonion into (3.1), we get

V
′

0 ×V0 +V0 ×V
′

0 = V
′

0 ×V0 +V0 ×V
′

0 = V
′

0 ×V0 +
(

V
′

0 ×V0

)

= 0. Finally,

V
′

0 ×V0 is a spatial octonion. ✷
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Note 3.1 Let γO be an USSOC and {Vj}, 0 ≤ j ≤ 6 be the Frenet frame of
SOC in R

7. The Frenet elements of USSOC are given by

Vi ×Vj = 〈Vi,Vj〉+Vi ∧Vj = Vk,

where ijk = 012, 034, 065, 135, 146, 236, 254. On the other hand, we get following
table.

Table 1.The Multiplication Table of Unit Octonion Basis Elements

× V0 V1 V2 V3 V4 V5 V6

V0 −1 V2 −V1 V4 −V3 −V6 V5

V1 −V2 −1 V0 V5 V6 −V3 −V4

V2 V1 −V0 −1 V6 −V5 V4 −V3

V3 −V4 −V5 −V6 −1 V0 V1 V2

V4 V3 −V6 V5 −V0 −1 −V2 V1

V5 V6 V3 −V4 −V1 V2 −1 −V0

V6 −V5 V4 V3 −V2 −V1 V0 −1

Theorem 3.2. Let γO be an USSOC and {Vj}, 0 ≤ j ≤ 6 be the Frenet frame of
USSOC in R7. Then the Frenet equations are obtained by

V
′

0 (s) = k1 (s)V1 (s)

V
′

m (s) = −km (s)Vm−1 (s) + km+1 (s)Vm+1 (s)

V
′

6 (s) = −k6 (s)V5 (s) ,

(3.2)

where ki, 1 ≤ i ≤ 6, 1 ≤ m ≤ 5 curvature functions. The Eq. (3.2) is called
Serret-Frenet formulae for the USSOC.

Proof: Since V
′

0 =
7
∑

i=1

γ
′′

i ei is a spatial octonion, we describe the spatial octonion

V1 and the nonnegative scalar function k1 as follows:

V
′

0 = k1V1. (3.3)

I. V
′

1 (s)+ k1V0 (s) is orthogonal to V0 and V1. From the definition of Frenet
frame of SOC, we get

g (V0,V1) =
1

2

[

V0 ×V1 +V1 ×V0

]

= 0. (3.4)

Hence, the following equation is obtained from (3.4) by differentiating with respect
to s

1

2

[

V
′

0 ×V1 +V0×V
′

1 +V
′

1 ×V0 +V1 ×V
′

0

]

= 0.

Thus, we have

1

2

[

V
′

0 ×V1 +V1 ×V
′

0

]

+
1

2

[

V
′

0×V
′

1 +V
′

1 ×V
′

0

]

= 0.
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By using the octonionic inner product, then we may write

g
(

V
′

0,V1

)

+ g
(

V
′

1,V0

)

= 0 =⇒ g
(

V
′

1,V0

)

= −k1.

Differentiating on both sides of the expression g (V1,V1) = V1 × V1 = 1 with
respect to s, we get

V
′

1 ×V1 +V1 ×V
′

1 = 0 =⇒
1

2

[

V
′

1×V1 +V1×V
′

1

]

=
〈

V1,V
′

1

〉

= 0.

If we use the last two equations, then we obtain

g
(

V
′

1 + k1V0,V0

)

= g
(

V
′

1,V0

)

+ k1g (V0,V0) = −k1 + k1 = 0,

and thus

g
(

V
′

1 + k1V0,V1

)

= g
(

V
′

1,V1

)

+ k1g (V0,V1) = 0.

Hence, V
′

1 (s) + k1V0 (s) is orthogonal to V0 and V1, and (V0 ×V1) is parallel
to V

′

1 (s) + k1V0 (s). Thus, we have

V
′

1 (s) + k1V0 (s) = λ (V0 ×V1) .

Since V0 ×V1 = V2, we get

g
(

V
′

1 + k1V0,V2

)

= g (λV2,V2) ,

g
(

V
′

1,V2

)

+ k1g (V0,V2) = λg (V2,V2) ,

λ = g
(

V
′

1,V2

)

= k2.

Finally, the following equation is obtained by

V
′

1 (s) = −k1V0 (s) + k2V2 (s) . (3.5)

The following cases II, III, IV, V can likewise be proved using the techniques of
the proof of I.

II. SinceV
′

2 (s)+k2V1 (s) is orthogonal toV1 and−V5, then ( V1 × (−V5)) is
parallel to V

′

2 (s) + k2V1 (s). Thus, we have

V
′

2 (s) = −k2V1 (s) + k3V3 (s) . (3.6)

III. Since V
′

3 (s) + k3V2 (s) is orthogonal to V2 and V5, then (V2 ×V5) is
parallel to V

′

3 (s) + k3V2 (s). Thus, we get

V
′

3 (s) = −k3V2 (s) + k4V4 (s) . (3.7)
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IV. SinceV
′

4 (s)+k4V3 (s) is orthogonal toV3 and −V1,then (V3 × (−V1)) is
parallel to V

′

4 (s) + k4V3 (s). Thus, we obtain

V
′

4 (s) = −k4V3 (s) + k5V5 (s) (3.8)

V. Since V
′

5 (s)+k5V4 (s) is orthogonal to V4 and −V1,then (V4 × (−V1)) is
parallel to V

′

5 (s) + k5V4 (s). Thus, we have

V
′

5 (s) = −k5V3 (s) + k6V5 (s) (3.9)

VI. Differentiating on both sides of the expression V5 = V1 ∧V3 with respect
to s, we get

V
′

5 = V
′

1 ∧V3 +V1 ∧V
′

3.

Hence, from the last equations we obtain

g
(

V
′

5,V6

)

= g
(

V
′

1 ∧V3 +V1 ∧V
′

3,V2 ∧V3

)

= g
(

V
′

1 ∧V3,V2 ∧V3

)

+ g
(

V1 ∧V
′

3,V2 ∧V3

)

.

If we use properties vi in the section 2, we may write

g
(

V
′

5,V6

)

= g
(

V3 ∧ (V 2 ∧V3) ,V
′

1

)

+ g
(

V
′

3 ∧ (V 2 ∧V3) ,V1

)

.

Thus, from the properties iii and vii in the section 2, we have

g
(

V
′

5,V6

)

= g
(

V3 ∧ (−V 3 ∧V2) ,V
′

1

)

+ g
(

V
′

3 ∧V 6,V1

)

= −g
(

V3 ∧ (V 3 ∧V2) ,V
′

1

)

+ g
(

V
′

3 ∧V 6,V1

)

= −g
(

〈V3,V2〉V 3 − 〈V3,V3〉V2,V
′

1

)

+ g
(

V
′

3 ∧V 6,V1

)

= g
(

V2,V
′

1

)

+ g
(

V
′

3 ∧V6,V1

)

= k2 + g
(

V
′

3 ∧V6,V1

)

.

Let us calculate

g
(

V
′

3 ∧V6,V1

)

= g ((−k3V2 + k4V4) ∧V6,V1)

= −k3g (V2 ∧V6,V1) + k4g (V4 ∧V6,V1)

= −k3g ((−V3) ,V1) + k4g (V1,V1)

g
(

V
′

3 ∧V6,V1

)

= k4, (3.10)

and thus
k6 = g

(

V
′

5,V6

)

= k2 + k4. (3.11)
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Differentiating on both sides of the expression V6 = V2 × V3 with respect to s,
we get

V
′

6 = V
′

2 ×V3 +V2 ×V
′

3

Finally, from the Eqs. (3.6), (3.7), (3.10) and (3.11) we get

V
′

6 = V
′

2 ×V3 +V2 ×V
′

3

= (−k2V1 + k3V3)×V3 +V2 ×V
′

3

= −k2 (V1 ×V3) + k3 (V3 ×V3) +V2 ×V
′

3

= −k2V5 − k3 +V2 × (−k3V2 + k4V4)

= −k2V5 − k3 − k3 (V2 ×V2) + k4 (V2 ×V4)

= −k2V5 − k3 + k3 − k4V5

= − (k2 + k4)V5

= −k6V5

✷

Corollary 3.3. Serret-Frenet formulae for the USSROC can be written in matrix
notation as follows:























V
′

0

V
′

1

V
′

2

V
′

3

V
′

4

V
′

5

V
′

6























=





















0 k1 0 0 0 0 0
−k1 0 k2 0 0 0 0
0 −k2 0 k3 0 0 0
0 0 −k3 0 k4 0 0
0 0 0 −k4 0 k5 0
0 0 0 0 −k5 0 k6
0 0 0 0 0 −k6 0









































V0

V1

V2

V3

V4

V5

V6





















. (3.12)

Let us now by using the Serret-Frenet apparatus for SOC, we compute the
Serret-Frenet apparatus for OC.

Let β : I ⊂ R → R8 be a space curve and {Wj}, 0 ≤ j ≤ 7 be the Frenet frame
of β in the the Euclidean 8-space, R8. Now, we are going to take the octonions
instead of all the Frenet elements. Thus, Frenet elements Wj can be written as an
octonion which is defined by

Wj =

7
∑

i=0

wjej .

Definition 3.3. Let R8 characterize the Euclidean 8-space with octonionic metric
g and R8 is identified with the set of the octonion. The curve βO : I ⊂ R → O,

βO (s) =
7
∑

i=0

γi (s) ei is called octonionic curve (OC). Note that the vector part of

βO is same to SOC γO in OS.

Definition 3.4. If the norm of the first derivative of the OC is equal to 1, then
OC is called the unit speed octonionic curves (USOC).



Serret-Frenet Formulas for Octonionic Curves 57

Theorem 3.4. Let βO : I ⊂ R → O be an USOC and W0 (s) = β
′

(s) =
7
∑

i=0

γ
′

i (s) ei

be unit tangent vector of β. Then, W
′

0 is orthogonal to W0.

Proof: Let βO : I ⊂ R → O,

βO (s) =

7
∑

i=1

γi (s) ei, (3.13)

be an USOC. Since the tangent W0 = β
′

(s) =
7
∑

i=0

γ
′

i (s) ei has unit length (in other

words, ‖W0‖ = 1 for all s), we get

‖W0‖
2
= g (W0,W0) = W0×W0 = 1.

Thus, differentiating with respect to s gives

W
′

0 ×W0 +W0 ×
(

W0

)

′

= 0.

Since W0 =
7
∑

i=0

γ
′

i (s) ei, we may write W0 = γ
′

0 −
7
∑

i=1

γ
′

iei and so
(

W0

)

′

= γ
′′

0 −

7
∑

i=1

γ
′′

i ei. So, we have
(

W0

)

′

= W
′

0. Substituting the statement
(

W0

)

′

= W
′

0 into

the Eq. (3.13), we obtain

W
′

0 ×W0 +W0 ×W
′

0 = 0.

In this case, W
′

0 is orthogonal to W0. ✷

Theorem 3.5. Let βO be an USOC and {Wj}, 0 ≤ j ≤ 7 be the Frenet frame of
USOC in R8. Then, Frenet equations are obtained by

W
′

0 (s) = K (s)W1 (s)

W
′

1 (s) = −K (s)W0 (s) + k1 (s)W2 (s)

W
′

2 (s) = −k1 (s)W1 (s) + (k2 −K) (s)W3 (s)

W
′

3 (s) = − (k2 −K) (s)W2 (s) + k3 (s)W4 (s)

W
′

4 (s) = −k3 (s)W3 (s) + (k4 −K) (s)W5 (s)

W
′

5 (s) = − (k4 −K) (s)W4 (s) + k5 (s)W6 (s)

W
′

6 (s) = −k5 (s)W5 (s) + (k6 +K) (s)W7 (s)

W
′

7 (s) = − (k6 +K) (s)W6 (s) ,

(3.14)

where W1 = V0×W0, W2 = V1×W0, W3 = V2×W0, W4 = V3 ×W0, W5 =

V4×W0, W6 = V5×W0, W7 = V6×W0, K =
∥

∥

∥
W

′

0 (s)
∥

∥

∥
.
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Proof: Let us assume that

W
′

0 = KW1, K =
∥

∥

∥
W

′

0 (s)
∥

∥

∥
, ‖W1‖ = 1. (3.15)

Hence, substituting Eq. (3.15) into the W
′

0 ×W0 +W0 ×W
′

0 = 0, we get

(

KW1 ×W0

)

+
(

W0 ×KW1

)

= 0

K
(

W1 ×W0 +W0 ×W1

)

= 0.

On the other hand, W1 is orthogonal to W0. So, we have g (W0,W1) = 0. From
the rules of conjugate of the octonion, we obtain

W1 ×W0 +W0 ×W1 = W1 ×W0 +W1 ×W0 = 0.

Thus, W1 ×W0 is a spatial octonion.
SinceV0 andW1×W0 are the spatial octonions and they have unit magnitude,

we may choose V0 as follows:

V0 = W1 ×W0

On the other hand, we get

V0 ×W0 =
(

W1 ×W0

)

×W0

=
(

W1 ×W−1
0

)

×W0

= W1,

and thus

W1 = V0 ×W0. (3.16)

By differentiating the last equation with respect to s and using the Eqs. (3.3) and
(3.15) in the last equation, then we have

W
′

1 = V
′

0 ×W0+V0 ×W
′

0

= k1V1 ×W0+V0 ×KW1

= k1W2+K (V0 ×W1) , W2 = V1 ×W0

= k1W2+K (V0 × (V0 ×W0))

= −KW0+k1W2,

and thus
W

′

1 = −KW0 + k1W2, W2 = V1 ×W0. (3.17)

Let us give some informations about W2 as follows:
i) ‖W2‖

2
= 1.

ii) W2 (s) is a smooth octonion function of s andW0,W1 andW2 are mutually
g orthogonal since V0 and V1 are so.
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By differentiating W2 given by Eq. (3.17) and substituting the Eqs. (3.5),
(3.15) and (3.16) into this equation, we get

W
′

2 = −k1W1 (s) + (k2 −K)W3, W3 = V2 ×W0. (3.18)

Let us give some informations about W3 as follows:
i) ‖W3‖

2
= 1.

ii) W3 (s) is a smooth octonion function of s and W0,W1,W2,and W3 are
mutually g orthogonal since V0,V1 and V2 are so.

By differentiating W3 given by Eq. (3.18) and substituting the Eqs. (3.6),
(3.15), (3.16) and (3.17) into this equation, we get

W
′

3 = − (k2 −K)W2 + k3W4, W4 = V3 ×W0. (3.19)

Let us give some informations about W4 as follows:
i) ‖W4‖

2
= 1.

ii) W4 (s) is a smooth octonion function of s and W0,W1,W2,W3,and W4

are mutually g orthogonal since V0,V1,V2 and V3 are so.
By differentiating W4 given by Eq. (3.19) and substituting the Eqs. (3.7),

(3.15), (3.17) and (3.18) into this equation, we get

W
′

4 = −k3W3 + (k4 −K)W5, W5 = V4 ×W0. (3.20)

Let us give some informations about W5 as follows:
i) ‖W5‖

2
= 1.

ii) W5 (s) is a smooth octonion function of s and W0,W1,W2,W3 ,W4,and
W5 are mutually g orthogonal since V0,V1,V2,V3 and V4 are so.

By differentiating W5 given by Eq. (3.20) and substituting the Eqs. (3.8),
(3.15), (3.18) and (3.19) into this equation, we get

W
′

5 = − (k4 −K)W4 + k5W6, W6 = V5 ×W0. (3.21)

Let us give some informations about W6 as follows:
i) ‖W6‖

2
= 1.

ii) W6 (s) is a smooth octonion function of s andW0,W1,W2,W3 ,W4,W5,and
W6 are mutually g orthogonal since V0,V1,V2,V3,V4 and V5 are so.

By differentiating W6 given by Eq. (3.21) and substituting the Eqs. (3.9),
(3.15), (3.19) and (3.20) into this equation, we get

W
′

6 = −k5W5 + (k6 +K)W7, W7 = V6 ×W0. (3.22)

Let us give some informations about W7 as follows:
i) ‖W7‖

2 = 1.
ii) W7 (s) is a smooth octonion function of s and W0,W1,W2,W3 ,W4,W5,

W6, and W7 are mutually g orthogonal since V0,V1,V2,V3,V4,V5 and V6 are
so.
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Finally, by differentiating W7 given by Eq. (3.22) and substituting the Eqs.
(3.12) and (3.15) we get

W
′

7 = − (k6 +K)W6. (3.23)

Serret-Frenet formulae for the USOC can be written in matrix notation as follows:

d

ds

























W0

W1

W2

W3

W4

W5

W6

W7

























= W ·

























W0

W1

W2

W3

W4

W5

W6

W7

























,

where

W =









0 K 0 0 0 0 0 0
−K 0 k1 0 0 0 0 0
0 −k1 0 (k2 − K) 0 0 0 0
0 0 − (k2 − K) 0 k3 0 0 0
0 0 0 −k3 0 (k4 − K) 0 0
0 0 0 0 − (k4 − K) 0 k5 0
0 0 0 0 0 −k5 0 (k6 + K)
0 0 0 0 0 0 − (k6 + K) 0









.

This is the Serret Frenet formulae for USOC βO in R
8.

{W0,W1,W2,W3,W4,W5,W6,W7,K,k1, (k2 −K) ,k3, (k4 −K) ,k5, (k6 +K)}

Serret-Frenet apparatus for the USOC βO in R8. ✷

4. Conclusion

We obtain the Serret-Frenet formulae and the Serret-Frenet apparatus for the
ROC βO by making use of the Serret-Frenet formulae for a SROC γO in R7. This
curve is so chosen that the unit tangent to it is V0 (s) is given by (3.16). It should
be noted here that the second curvature of βO is first curvature of γO, fourth
curvature of βO is third curvature of γ, sixth curvature of βO is fifth curvature of γ.
Note that the third curvature of βO is (k2 −K), where k2 is the second curvature of
the curve γO and K is the first curvature of βO, fifth curvature of βO is (k4 −K),
where k4 is the fourth curvature of the curve γO and K is the first curvature of
βO, sixth curvature of βO is (k6 +K), where k6 is the sixth curvature of the curve
γO and K is the first curvature of βO. Also, the sum of second curvature and fourth
curvature of γO is sixth curvature of γO. As can be easily seen, classical methods
of elemantary differential geometry do note give us the technique to determine the
SROC γO in R7 corresponding to βO in R8. Space curves in 7 and 8 Euclidean
space are defined by with this study. This paper is important from this point. In
view of the quaternionic curves, there are a lot of papers about quaternionic curves.
After these defining octonionic curves, a lot of paper about octonionic curves can
be studied.
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