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Abstract. In this study, a stochastic process X(t), which describes an in-
ventory model of type (s, S) is considered in the presence of heavy tailed
demands with infinite variance. The aim of this study is observing the im-
pact of regularly varying demand distributions with infinite variance on the
stochastic process X(t). The main motivation of this work is, the publication
by Geluk [Proceedings of the American Mathematical Society 125 (1997)
3407–3413] where he provided a special asymptotic expansion for renewal
function generated by regularly varying random variables. Two term asymp-
totic expansion for the ergodic distribution function of the process X(t) is
obtained based on the main results proposed by Geluk [Proceedings of the
American Mathematical Society 125 (1997) 3407–3413]. Finally, weak con-
vergence theorem for the ergodic distribution of this process is proved by
using Karamata theory.

1 Introduction

Over the last decades investigation of heavy tailed distributions, which tend to pro-
duce outlying values, has become an important research area. These distributions
are used for modeling many physical and economic systems such as medical sci-
ences, civil engineering applications, meteorology, financial risk management and
inventory systems. Moreover, they are important tools for studying the properties
of such models. The aim of this study is to investigate the impact of regularly
varying distributions, which is one of the broad subclass of heavy tailed distri-
butions, on the stochastic process describing an inventory model of type (s, S).
Particularly, we obtained our asymptotic results by assuming that the demand ran-
dom variables belongs to the class of regularly varying random variables with tail
parameter 1 < α < 2.

The problem addressed in this study is based on investigation of a semi-
Markovian inventory model of type (s, S) like many other problems in stock con-
trol, queuing, stochastic finance and reliability theory. There are numerous studies
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in current literature which deal with the probability and numerical characteristics
of a semi-Markovian inventory model of type (s, S) (for example, see Brown and
Solomon (1975), Chen and Zheng (1997), Sahin (1983)). In most of these studies,
some real world problems have been solved by using dynamic programming but
analytic solutions could not be obtained. In order to estimate the behavior of a sys-
tem, it is important to investigate stationary characteristics, for example ergodic
moments and ergodic distribution function. One of the most popular methods to
obtain useful formulas for mentioned characteristics is using asymptotic expansion
method. In recent years, many researchers have extensively studied the character-
istics of an inventory model type (s, S) by using asymptotic approach (see Smith
(1959), Feller (1971), Khaniyev and Aksop (2013), Aliyev and Khaniyev (2014),
Kesemen, Aliyev and Khaniyev (2013)). When working with inventory model of
type (s, S), a variety of distributions can be used for the demand and inter ar-
rival time random variables. For example, in publications of Khaniyev and Aksop
(2013) and Khaniyev and Atalay (2010) asymptotic expansion is obtained by as-
suming that the interference of chance has generalized Beta distribution and trian-
gular distribution respectively. Khaniyev, Kokangul and Aliyev (2013) considered
this model with triangular distributed interference of chance and obtained asymp-
totic expansions for the ergodic moments. Moreover, Aliyev (2016) obtained two
term asymptotic expansion for the ergodic distribution function and ergodic mo-
ments when the demand distributions are sub exponential with finite variance.
A large body of existing literature is based on the assumption that demand dis-
tributions are light tailed or have finite variance. However, these assumptions are
not fully satisfied in inventory systems, especially when some unexpected fluctu-
ations or extreme values are observed in demand quantities. There are plenty of
studies which provide empirical examples for existence of heavy tailed demands
(see, for example, Gaffeo, Antonello and Laura (2008), Bimpikis and Markasis
(2015),Gaffeo, Antonello and Laura (2008)). The main motivation of this study is
the observation of gaps in current literature on consideration of such models with
regularly varying random variables with infinite variance. In order to fill a part of
this gap, we consider the (s, S) type inventory system with heavy tailed demand
distributions and infinite variance. Particularly we consider a special case that the
demand distribution F(x) is not arithmetic and F ≡ 1 − F is regularly varying,
that is, satisfies

F(tx)

F (t)
−→ x−α as t → ∞,1 < α < 2.

It is well known that regularly varying distributions have infinite variance in this
case. Differently from the other studies, we obtained our results by using a dis-
tinct asymptotic expansion provided by Geluk (1997) for the renewal function. To
the best of our knowledge, this is the first study on a semi Markovian inventory
model of type (s, S), where the demand random variables have regularly varying
distribution with infinite variance.
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Regular variation is an elegant concept that come across in many problems
related to applied probability. For details about regularly varying random vari-
ables, we refer the reader to the textbooks of Seneta (1976), Borokov and Borokov
(2008), Bingham, Goldie and Teugels (1987), Resnick (2006). We will give a short
summary in Section 2. The remainder of this paper is organized as follows: In Sec-
tion 3, the ergodicity of the process X(t) is represented. In Section 4, exact and
asymptotic results for the ergodic distribution of the process Y(t) is obtained and
weak convergence theorem is proved. Here, Y(t) is defined as a standard form of
the process X(t) and represented as follows:

Y(t) ≡ 2(X(t) − s)

(S − s)
.

2 Preliminaries

Let us give the essential notations and explain this model mathematically before
analyzing the main problem.

2.1 Heavy tailed distributions and subclasses

This section covers main definitions and basic results which will appear in the rest
of this study. The well-known content is taken from Foss, Korshunov and Zachary
(2011), Bingham, Goldie and Teugels (1987).

Definition 2.1. A distribution F on R is said to be (right) heavy tailed if∫ ∞
−∞

eλxF (dx) = ∞ for all λ > 0

(Foss, Korshunov and Zachary (2011)).

For a comprehensive survey on heavy tailed distributions, see the books by
Asmussen (2000), Embrechts, Kluppelberg and Mikosh (1997), Borokov and
Borokov (2008), Resnick (2006).

In literature the notion of heavy tails can be used in different senses, for exam-
ple random variables with subexponential tails, regularly varying tails, regularly
varying tails with exponent α < 1, infinite variance and infinite mean.

One of the most popular distributions among the heavy tailed distributions
which have the widest application area is the distribution with regularly varying
tails. Regularly varying distributions behave asymptotically like power functions.
To begin the theory of regularly varying distributions and the power law property,
we need to introduce regularly varying and slowly varying functions.
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Definition 2.2 (Regularly Varying Functions). The positive, measurable func-
tion f is called regularly varying at ∞ with index α ∈ R, if for all λ > 0

lim
x−→∞

f (xλ)

f (x)
= λα.

If α = 0, then f is called slowly varying function.
The family of regularly varying functions with index α is denoted by RV(α).

Definition 2.3 (Regularly Varying Random Variables). The nonnegative ran-
dom variable X and its distribution are called regularly varying with index α ≥ 0
if the right tail distribution F(x) ∈ RV(−α).

2.2 Properties of regularly varying functions and distributions

Remark. If f ∈ RV(α), then f (x) = xαL(x) where L(x) is a slowly varying
function (L(x) ∈ RV(0)). Hence, we can conclude that any regularly varying dis-
tribution can be represented in the following way:

P(X > x) = x−αL(x) where α > 0 and L(x) ∈ RV(0).

Note that α is the shape parameter and controls the asymptotic behavior of the
tail. As α decreases the tail becomes heavier hence P(X > x) decays to zero
slower as x −→ ∞, which means extreme values occur more frequently. Kara-
mata theorem says that L(x) can be considered as a constant. This makes easy to
work with the general class of regularly varying random variables.

Proposition 2.1 (Bingham, Goldie and Teugels (1987)). Let L be slowly varying
in [x0,∞) for some x0 ≥ 0. Then

1. for α > −1, ∫ x

x0

tαL(t) dt ∼ (α + 1)−1xα+1L(x),

2. for α < −1, ∫ ∞
x

tαL(t) dt ∼ −(α + 1)−1xα+1L(x),

where by f (x) ∼ g(x) we mean limx→∞ f (x)/g(x) = 1.

Proposition 2.1 is known as Karamata theorem in literature. Proposition 2.2 and
Proposition 2.3 allows us to make some operations on regularly varying functions.
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Proposition 2.2 (Bingham, Goldie and Teugels (1987)).

1. If L varies slowly, then

lim
x−→∞

log(L(x))

log(x)
= 0.

2. If L varies slowly, so does (L(x))α for every α ∈ R.
3. If L1, L2 varies slowly, so do L1L2, L1 + L2. If L2(x) −→ ∞ as x −→ ∞,

then L1(L2(x)) varies slowly.
4. If L varies slowly and α > 0, then

xαL(x) −→ ∞,

x−αL(x) −→ 0.

Proposition 2.3 (Bingham, Goldie and Teugels (1987)).

1. If f (x) ∈ RV(α), then (f (x))p ∈ RV(αp) for any p ∈ R.
2. If fi ∈ RV(αi), i = 1,2, and f2(x) −→ ∞ as x −→ ∞, then f1(f2(x)) ∈

RV(α1α2).
3. If fi ∈ RV(αi), i = 1,2, then f1(x) + f2(x) ∈ RV(α), α = max(α1, α2).

There are also some other important properties of regularly varying random
variables for example self similarity, closure properties etc.. For more detailed
information of regularly varying distributions, we refer the reader to Bingham,
Goldie and Teugels (1987), Borokov and Borokov (2008), Resnick (2006), Seneta
(1976).

2.3 Brief explanation of the process X(t) and essential notations

Suppose that we have a depot and X(t) represents the stock level at this depot at
random time t . Assume that z is the initial stock level in a depot at time t = 0,
hence

X(0) = X0 = z ∈ [s, S], 0 < s < S < ∞.

Here s is the stock control level and S is the maximum stock level. In addition,
suppose that {ηn}, n ≥ 1 which describes the random amount of demands coming
to the system at random times T1, T2, . . . , Tn, . . . . Here Tn = ∑n

i=1 ξi , where ξn,
n ≥ 1 are inter arrival times between two successive demands ηn, n ≥ 1. Hence, the
stock level X(t) decreases by η1, η2, . . . , ηn, . . . at random times T1, T2, . . . , Tn, . . .

until the stock level X(t) falls below the control level s, at random time τ1. In this
instance, the stock level changes as follows:

X(T1) ≡ X1 = z − η1,

X(T2) ≡ X2 = z − (η1 + η2), . . . ,X(Tn) ≡ Xn = z −
n∑

i=1

ηi,
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where, ηn represents the amount of nth demand, n = 1,2,3, . . . , τ1 is the first
time, that the stock level falls below the control level s. After the stock level falls
below s, it is immediately filled up to the level ζ1, and the first period is completed.
Second period starts with a new initial level ζ1 and continues in a similar manner
to the first period.

2.4 Mathematical construction of the process X(t)

Let (�,�,P ) be probability space and {(ξn, ηn, ζn)}, n ≥ 1 be a vector of i.i.d.
random variables defined on (�,�,P ). Here ξn and ηn are positive valued random
variables. The random variable ζn takes values in the interval [s, S]. Moreover, ξn,
ηn and ζn are also independent from each other.

Let denote the distributions of ξn, ηn and ζn by 	(t), F(x) and π(z) respec-
tively. The distribution functions are defined as follows:

	(t) = P {ξ1 ≤ t}, t ≥ 0,

F (x) = P {η1 ≤ x}, x ≥ 0,

π(z) = P {ζ1 ≤ z}, z ∈ [s, S].
ζn represents the initial stock level at the beginning of nth period. We assume

here that the random variables ζn have uniform distribution on the interval [s, S].
Moreover, {ηn}, n ≥ 1 are regularly varying random variables with infinite vari-
ance, i.e., F = 1 − F is regularly varying with exponent −α, 1 < α < 2.

The renewal sequences {Tn} and {Sn} defined as:

T0 = S0 = 0, Tn =
n∑

i=1

ξi, Sn =
n∑

i=1

ηi, n ≥ 1.

Now define a sequence of integer valued random variables {Nn}, n ≥ 0 as fol-
lows:

N0 = 0, N1 = N(z − s) = inf{k ≥ 1 : z − Sk ≤ s}, z ∈ [s, S].
Nn+1 = inf

{
k ≥ Nn + 1 : ζn − (Sk − SNn) < s

}
, n ≥ 1.

Let τ0 = 0, τn = TNn = ∑Nn

i=1 ξi, n ≥ 1, ν(t) = max{n ≥ 0 : Tn ≤ t}, t ≥ 0.
Under these assumptions the desired stochastic process X(t) is constructed as

follows:

X(t) = ζn − (ηNn+1 + · · · + ην(t))

= ζn − (Sν(t) − SNn), t ∈ [τn, τn+1), n ≥ 0.
(2.1)

A realization of the process X(t) is given in Figure 1.
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Figure 1 A Realization of the process X(t).

3 The ergodicity of the process X(t)

Ergodicity of the process X(t) has proven by Khaniyev and Atalay (2010) under
some weak conditions. In addition to these conditions, we assume here that the
demand random variables {ηi}, i ≥ 1 are RV(−α) with 1 < α < 2. Similarly, we
proved the following proposition in order to state the ergodicity of the process
X(t).

Proposition 3.1. Let the initial sequence of random variables {(ξn, ηn, ζn)}, n ≥ 1
satisfy the following supplementary conditions:

1. 0 < E(ξ1) < ∞.
2. E(η1) > 0.
3. {ηi}, i ≥ 1 are non-arithmetic random variables.
4. The distribution functions of {ηi}, i ≥ 1 are regularly varying with index

1 < α < 2.
5. Markov chain {ζn}, n ≥ 1 has uniform distribution on the interval [s, S].

Then, the process X(t) is ergodic and the following expression is correct with
probability 1 for each measurable bounded function f (x), (f : (s, S) →R)

lim
t→∞

1

t

∫ t

0
f

(
X(u)

)
du =

∫ S
s

∫ S
s f (x)[Uη(z − s) − Uη(z − x)]dπ(z) dx∫ S

s Uη(z − s) dπ(z)
.

Here Uη(x) is renewal function generated by sequence {ηn}, n ≥ 1.

Proof. The process X(t) is a member of a wide class of processes which is known
in the literature as the class of semi-Markov processes with a discrete interference
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of chance. The general ergodic theorem is provided in the literature for this class
(Smith’s key renewal theorem) (see Gikhman and Skorohod (1975)). According
to the general ergodic theorem we need to prove that the process X(t) meets the
following requirements under the conditions of Proposition 3.1.

1. There is a sequence of monotone increasing random times {τn}, n =
1,2,3, . . . such that X(τn)’s forms an ergodic Markov chain.

2. The expected value of the difference between successive stopping times {τn},
n = 1,2,3, . . . should be finite, that is, E(τn − τn−1) < ∞.

Let us show that these two assumptions are satisfied.

Assumption 1. In order to define such a Markov chain, we need to provide a
sequence of monotone increasing random variables. Consider the sequence of ran-
dom variables {τn}, n ≥ 1. According to the definition of {τn}, n ≥ 1

0 < τ1 < τ2 < · · · < τn < τn+1 < · · ·
Moreover τn’s are the successive times where X(t) falls below the control level s.
By the definition, τn’s are Markov times. According to the mathematical con-
struction of the process X(t), the values of the process at these times are given
as X(τn + 0) = ζn. Since the sequence of random variables {ζn}, n ≥ 1 are in-
dependent and have continuous distribution in the interval [s, S], the sequence
{X(τn)} = ζn forms an embedded Markov chain. Moreover, the sequence of ran-
dom variables {ζn}, n ≥ 1 are independent and identically distributed, the embed-
ded Markov chain {ζn}, n ≥ 1 is ergodic with a stationary distribution function

π(z) = P {ζ1 ≤ z}, s ≤ z ≤ S.

So the first assumption of the ergodic theorem is satisfied.

Assumption 2. In order to prove second assumption, we need to show that

E(τ1) < ∞ and E(τn − τn−1) < ∞.

According to the mathematical construction of the process X(t), {ξn}, n ≥ 1 is a
sequence of independent and identically distributed random variables. By using
Wald identity, we obtain:

E
(
τ1(z)

) = E

(
N(z)∑
i=1

ξi

)
= E(ξ1)E

(
N(z)

)
.

According to the assumptions of Proposition 3.1, E(ξ1) < ∞. On the other hand;

E
(
N(z)

) = U(z − s) = 1 +
∞∑

n=1

F ∗n(z − s).

Here the function U(x) is renewal function generated by the sequence of random
variables {ηn}, n ≥ 1. Renewal function U(x) is finite for each finite x (e.g. see
Feller (1971)). Therefore, E(τ1(z)) < ∞.
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Now let us prove that

E(τn − τn−1) < ∞.

Since the differences τ1, τ2 − τ1, . . . , τn − τn−1, . . . have identical distribution, it
is sufficient to show that

E
(
τ1(ζ )

) ≡
∫ S

s
E

(
τ1(z)

)
dπ(z) < ∞.

Note that U(x) is renewal function generated by ηn ∈ RV(−α) with 1 < α < 2, so
with finite mean. Besides being finite for each finite x, the renewal function U(x)

is a non decreasing function. Hence for each z ∈ [s, S], U(z − s) < U(S − s).
Therefore, we have:

E
(
τ1(ζ )

) ≡
∫ S

s
E

(
τ1(z)

)
dπ(z)

=
∫ S

s
E(ξ1)E

(
N(z)

)
dπ(z)

= E(ξ1)

∫ S

s
E

(
N(z)

)
dπ(z)

= E(ξ1)

∫ S

s
U(z − s) dπ(z)

≤ E(ξ1)

∫ S

s
U(S − s) dπ(z)

≤ E(ξ1)U(S − s).

Since E(ξ1) < ∞ and U(S − s) < ∞ then E(τ1(ζ )) < ∞. We can conclude that
under the conditions of Proposition 3.1, the assumptions of the general ergodic
theorem are satisfied. �

A direct result of this Proposition 3.1 is Corollary 3.1 below and obtained by
choosing f (x) to be indicator function in Proposition 3.1.

Corollary 3.1. Let the process X(t) satisfy the conditions of Proposition 3.1.
Moreover, let ζn, n ≥ 1 has uniform distribution on the interval [s, S]. Then, the
ergodic distribution of the process X(t) is given as follows:

QX(x) ≡ lim
t−→∞P

{
X(t) ≤ x

} = 1 −
∫ S
x Uη(z − x)dπ(z)∫ S
s Uη(z − s) dπ(z)

; x ∈ [s, S].
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4 Exact and asymptotic results for the ergodic distribution of the
process Y(t)

As can be seen in Corollary 3.1, the exact expressions for the ergodic distribution
of the process X(t) have a complex structure. The most effective way to deal with
this complexity is obtaining asymptotic expansion for QX(x) as S − s −→ ∞. In
order to obtain an asymptotic expansion for the ergodic distribution of the process,
let define a process Y(t) as a standard form of the process X(t) as follows:

Y(t) ≡ X(t) − s

β
, β ≡ S − s

2
.

Put QY (υ) = limt−→∞ P {Y(t) ≤ υ}, υ ∈ [0,2].
Proposition 4.1. Let the conditions of Proposition 3.1 be satisfied. Moreover, let
the random variables ζn, n ≥ 1 have uniform distribution on the interval [s, S].
Then, the ergodic distribution function QY (υ) of the process Y(t) is given as fol-
lows:

QY (υ) ≡ 1 −
∫ 2β
βυ Uη(x − βυ)dx∫ 2β

0 Uη(x) dx
, υ ∈ [0,2].

Proof. Recall that, QY (υ) = limt−→∞ P {Y(t) ≤ υ}, υ ∈ [0,2]. According to the
definition of Y(t):

QY (υ) = lim
t−→∞P

{
X(t) − s

β
≤ υ

}
= lim

t−→∞P
{
X(t) ≤ βυ + s

}
.

In this case;

QY (υ) = QX(s + βυ) = 1 −
∫ s+2β
s+βυ Uη(z − s − βυ)dπ(z)∫ s+2β

s Uη(z − s) dπ(z)
; υ ∈ [0,2].

We assumed that the random variable ζn has uniform distribution on the interval
[s, S]. Hence, the random variable ζ̃n = ζn − s has uniform distribution on the
interval [0,2β]. Define

π̃ (x) ≡ P {ζ̃1 ≤ x} = P {ζ1 − s ≤ x} = π(s + x).

Thus, we have:

QY (υ) ≡ 1 −
∫ 2β
βυ Uη(x − βυ)dπ̃(x)∫ 2β

0 Uη(x) dπ̃(x)

≡ 1 −
1

2β

∫ 2β
βυ Uη(x − βυ)dx

1
2β

∫ 2β
0 Uη(x) dx

.

(4.1)

�
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The asymptotic expansion for the ergodic distribution function of Y(t) is given
trough renewal function. Hence, we need to know the asymptotic expansion for the
renewal function generated by the demand random variables. There is sizable liter-
ature on the asymptotic expansion for the renewal functions. One of the most well
known asymptotic expansion for the renewal function is given by Feller (1971) as
follows:

Uη(x) − x

μ1
−→ μ2

2μ2
1

;

as x −→ ∞ where μn = E
(
ηn

1
)
< ∞;n = 1,2.

(4.2)

This expansion is sufficient to obtain the asymptotic expansion for the ergodic
distribution of the process X(t) with any light tailed demand, which Khaniyev
and Aksop (2013), Khaniyev and Atalay (2010) investigate in their studies. But
as we mentioned before, we assumed that the random variables {ηn}, n ≥ 1 are
heavy tailed. Hence, we need to use a special asymptotic expansion for the renewal
function Uη(x).

Proposition 4.2 (Geluk (1997)). Let F(·) be a c.d.f. on (0,∞) such that F(·) ≡
1 − F(·) regularly varying with exponent −α, 1 < α < 2. Then

Uη(t) − t

μ1
− 1

μ2
1

∫ t

0

∫ ∞
s

F (v) dv ds

= O
(
t4(

F(t)
)2

F
(
t2F(t)

))
as t −→ ∞.

(4.3)

Here it is assumed that η1, η2, . . . is a sequence of i.i.d. real valued positive random
variables with d.f. F and Uη(t) = E(N(t)) is the renewal function associated with
F(t).

Remark. In this study, it has been assumed that {ηn}, n ≥ 1 is a sequence of regu-
larly varying random variables with exponent −α, 1 < α < 2. Hence, the variance
of demands is infinite in this case.

Lemma 4.1. Let {ηi}, i ≥ 1 be a sequence of regularly varying random variables
with exponent −α, 1 < α < 2 i.e:

F(t) = P {η1 > t} = t−αL(t).

Then, the renewal function generated by the random variables {ηi}, i ≥ 1 is
obtained as follows:

Uη(t) = t

μ1
+ 1

μ1
G(t) + O

(
t (α−2)2

L1(t)
)
, t −→ ∞.

Where μ1 = E(η1). L1(t) is slowly varying and defined as:

L1(t) = (
L(t)

)2
L

(
t2−αL(t)

)
.
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Note that 1 < α < 2 and L(t) is the slowly varying function associated with the
random variable η1. Moreover,

G(t) = 1

μ1

∫ t

0

∫ ∞
s

F (υ) dυ ds.

Proof. Asymptotic expansion suggested by Geluk (1997) generated by the regu-
larly varying random variables with 1 < α < 2 is given as follows:.

Uη(t) = t

μ1
+ 1

μ1
G(t) + O

(
t4(

F(t)
)2

F
(
t2F(t)

)); t −→ ∞.

Since F(t) ∈ RV(−α), then F(t) = t−αL(t) where 1 < α < 2 and L(t) is slowly
varying at ∞. Moreover, by Proposition 2.3

F
(
t2−αL(t)

) = (
t2−α)−α

L
(
t2−αL(t)

)
.

Hence,

t4(
F(t)

)2
F

(
t2F(t)

) = t4t−2α(
L(t)

)2
F

(
t2t−αL(t)

)
= t4−2α(

L(t)
)2

F
(
t2−αL(t)

)
= (

t4−2α)(
tα

2−2α)(
L(t)

)2
L

(
t2−αL(t)

)
= t (α−2)2(

L(t)
)2

L
(
t2−αL(t)

)
.

Let define L1(t) := (L(t))2L(t2−αL(t)).
By Proposition 2.2, (L(t))2 is slowly varying function. t2−αL(t) is regularly

varying with exponent (2 − α) and L(t) is slowly varying.
Moreover, by Proposition 2.2, t2−αL(t) −→ ∞ as t −→ ∞. Hence, by Propo-

sition 2.3, L(t2−αL(t)) is also regularly varying with exponent zero, which is a
slowly varying function. So by Proposition 2.2, L1(t) = (L(t))2L(t2−αL(t)) is
slowly varying function where L(t) is the slowly varying function associated with
random variable η1. This completes the proof. �

Lemma 4.2. For any bounded function g : R −→ R the following asymptotic re-
lation holds when β −→ ∞:

∫ 2β−βυ

0
x(α−2)2

L1(x)g(x) dx = O
(
β(α−2)2+1L1(β)

)
, υ ∈ [0,2].

Here L1(β) = (L(β))2L(β2−αL(β)) is slowly varying function and L(β) is the
slowly varying function associated with the random variable η1.
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Proof. Since g(x) is given as a bounded function, there exists a constant K > 0
such that: ∣∣∣∣

∫ 2β−βυ

0
x(α−2)2

L1(x)g(x) dx

∣∣∣∣
≤

∫ 2β−βυ

0

∣∣x(α−2)2
L1(x)g(x)

∣∣dx

≤ K

∫ 2β−βυ

0

∣∣x(α−2)2
L1(x)

∣∣dx

= K

∫ 2β−βυ

0
x(α−2)2

L1(x) dx

∼ K
(2β − βυ)(α−2)2+1

(α − 2)2 + 1
L1(2β − βυ), υ ∈ [0,2].

Note that in order to obtain following asymptotic relation, Proposition 2.1 is used.

K

∫ 2β−βυ

0
x(α−2)2

L1(x) dx ∼ K
(2β − βυ)(α−2)2+1

(α − 2)2 + 1
L1(2β − βυ).

Therefore, ∫ 2β−βυ

0
x(α−2)2

L1(x)g(x) dx = O
(
β(α−2)2+1L1(β)

)
. �

Lemma 4.3. Let define J (υ) as follows:

J (υ) = 1

2β

∫ 2β

βυ
Uη(x − βυ)dx, υ ∈ [0,2].

Under the conditions of Proposition 3.1 and Proposition 4.2, the following asymp-
totic expansion holds as β −→ ∞:

J (υ) = 1

2β

[
1

μ1

(2β − βυ)2

2
+ 1

μ1
G0(2β − βυ) + O

(
β(α−2)2+1L1(β)

)]
. (4.4)

Here L1(β) = (L(β))2L(β2−αL(β)) is slowly varying function, υ ∈ [0,2], 1 <

α < 2, and

G0(x) =
∫ x

0
G(t) dt =

∫ x

0

[
1

μ1

∫ t

0

∫ ∞
s

F (υ) dυ ds

]
dt, x −→ ∞. (4.5)

Proof. It is clear that:∫ 2β−βυ

0

t

μ1
dt = 1

μ1

(2β − βυ)2

2
, υ ∈ [0,2).



52 A. Bektaş Kamışlık, T. Kesemen and T. Khaniyev

Moreover by using the definition of G0(x) and Proposition 2.1 following asymp-
totic relation is obtained:

G0(x) = 1

μ1

∫ x

0

∫ t

0

∫ ∞
s

υ−αL(υ)dυ ds dt

∼ − 1

μ1

1

(1 − α)

∫ x

0

∫ t

0
s1−αL(s) ds dt

∼ − 1

μ1

1

(1 − α)

1

(2 − α)

∫ x

0
t2−αL(t) dt

∼ − 1

μ1

1

(1 − α)

1

(2 − α)

1

(3 − α)
x3−αL(x),

(4.6)

where L(x) is the slowly varying function associated with the random variable η1.
Result is straightforward by using Lemma 4.2. �

Corollary 4.1. Under the conditions of Lemma 4.3, the following asymptotic ex-
pansion holds as β −→ ∞:

J (0) = 1

2β

[
1

μ1

(2β)2

2
+ G0(2β)

μ1
+ O

(
β(α−2)2+1L1(β)

)]
. (4.7)

By using Lemma 4.3 and Corollary 4.1 the following main result of this study is
obtained.

Theorem 4.1. Under the conditions of Proposition 3.1 and Lemma 4.1, the fol-
lowing asymptotic expansion is obtained for the ergodic distribution QY (υ), as
β −→ ∞:

QY (υ) = 4υ − υ2

4
+ 1

2β2

[
G0(2β)

(υ − 2)2

4
− G0(2β − βυ)

]

+ O
(
β(α−2)2−1L1(β)

)
,

where L1(β) = (L(β))2L(β2−αL(β)) is slowly varying, L(β) is the slowly vary-
ing function associated with random variable η1 and G0(x) is defined by equa-
tion (4.5).

Proof. Taking into account that

QY (υ) = 1 − J (υ)

J (0)
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for any υ ∈ [0,2] we have:

QY (υ) =
4β2−(2β−βυ)2

2μ1
+ G0(2β)−G0(2β−βυ)

μ1
+ O(β(α−2)2+1L1(β))

2β2

μ1
[1 + G0(2β)

2β2 + O(β(α−2)2−1L1(β))]

=
4β2υ−β2υ2

4β2 + G0(2β)−G0(2β−βυ)

2β2 + O(β(α−2)2−1L1(β))

1 + G0(2β)

2β2 + O(β(α−2)2−1L1(β))

= 4υ − υ2

4

+ 1

2β2

[
G0(2β) −

(
4υ − υ2

4

)
G0(2β) − G0(2β − βυ)

]

+ O
(
β(α−2)2−1L1(β)

)
= 4υ − υ2

4
+ 1

2β2

[
G0(2β)

(υ − 2)2

4
− G0(2β − βυ)

]

+ O
(
β(α−2)2−1L1(β)

)
.

(4.8)

�

Theorem 4.1 is the main purpose of this study. Now by using Asymptotic Ex-
pansion (4.8), we will obtain weak convergence theorem for the ergodic distribu-
tion function QY (υ), as β −→ ∞.

4.1 Weak convergence for the ergodic distribution of the process X(t)

Theorem 4.2. Assume that the conditions of Proposition 3.1 and Proposition 4.2
be satisfied. Then, the ergodic distribution QY (υ) of Y(t) converges to R(υ) as
β −→ ∞, that is, QY (υ) −→ R(υ), where

R(υ) = 4υ − υ2

4
.

Proof. By using Proposition 2.1, we obtained the following asymptotic relation:

G0(x) ∼ − 1

μ1

1

(1 − α)(2 − α)(3 − α)
x3−αL(x) (x −→ ∞).

Hence,

G0(2β)

2β2 ∼ − 1

μ1

1

(1 − α)(2 − α)(3 − α)
β−(α−1)L(2β) (β −→ ∞).
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From Proposition 2.2,

G0(2β)

2β2 ∼ − 1

μ1

1

(1 − α)(2 − α)(3 − α)
β−(α−1)L(2β) −→ 0 (β −→ ∞).

Moreover,

G0(2β − βυ)

2β2 ∼ − 1

μ1

1

(1 − α)(2 − α)(3 − α)
(2β − βυ)−(α−1)L(2β − βυ).

By Proposition 2.2,

− 1

μ1

1

(1 − α)(2 − α)(3 − α)
(2β − βυ)−(α−1)L(2β − βυ)

−→ 0 (as β −→ ∞).

Hence,

1

2β2

[
G0(2β)

(υ − 2)2

4
− G0(2β − βυ)

]
−→ 0 (as β −→ ∞).

On the other hand by Proposition 2.2,

β(α−2)2−1L1(β) −→ 0 as β −→ ∞.

From here we conclude that

QY (υ) −→ R(υ)

for all υ ∈ [0,2] as β −→ ∞. This completes the proof. �

5 Summary and conclusions

In this study, a semi Markovian inventory model of type (s, S) with heavy tailed
demand has been considered. Specifically, we obtained our analytical results by
assuming that the demand random variables belongs to the regularly varying sub-
class with finite mean and infinite variance. This model is expressed by means of a
renewal reward process with uniform distributed interference of chance. Two term
asymptotic expansion for the ergodic distribution is obtained when β ≡ S−s

2 → ∞.
Moreover, weak convergence theorem for the ergodic distribution of the process
Y(t) is proved and the exact expression of the limit distribution of R(υ) is derived.

Heavy tailed distributions have recently been used to capture a variety of real
world phenomena, such as stock market, economics, earthquake prediction and
modeling time delays on the World Wide Web. We hope our results of the use
of such distributions in inventory models can be useful reference for future stud-
ies. This study can be improved in the future in the following ways: a general
formula for the moments of the considered process that covers all regularly vary-
ing distributions with infinite variance can be obtained. Moreover by using similar
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asymptotic approaches the semi Markovian random walk process with heavy tailed
distributions can be examined. Applying this approach to different subclasses of
heavy tailed distributions is another suggestion for future research.
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