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Abstract
In this paper, we give a generalization of normal curves to n-dimensional Euclidean
space. Then we obtain a necessary and sufficient condition for a curve to be a normal
curve in the n-dimensional Euclidean space. We characterize the relationship
between the curvatures for any unit speed curve to be congruent to a normal curve
in the n-dimensional Euclidean space. Moreover, the differentiable function f (s) is
introduced by using the relationship between the curvatures of any unit speed curve
in En. Finally, the differential equation characterizing a normal curve can be solved
explicitly to determine when the curve is congruent to a normal curve.
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1 Introduction
Rectifying, normal and osculating curves in Euclidean 3-space E3 are well-known con-
cepts in classical differential geometry of space curves; the position vector always lies in
its rectifying plane. The position vector of the rectifying, normal and osculating curves
are defined by, respectively,

α(s) = λ1(s)T(s) + μ1(s)B(s),

α(s) = λ2(s)N(s) + μ2(s)B(s),

and

α(s) = λ3(s)T(s) + μ3(s)N(s),

for some differentiable functions λ1, μ1, λ2, μ2, λ3 and μ3 of s ∈ I ⊂ R [1]. Here T(s)
is tangent vector field, N(s) is normal vector field and B(s) is a binormal vector field.
{T(s), N(s), B(s)} is called a Frenet frame field. The rectifying curve in E3 is given by Chen
[1]. After this curve was defined, different viewpoints have been developed concerning the
rectifying, normal and osculating curves in differential geometry. Some of the studies in
the curve theory have been given as follows.

Ilarslan et al. characterize non-null and null rectifying curves, lying fully in the
Minkowski 3-space [2]. Chen and Dillen introduce the idea that the Euclidean rectify-
ing curves are the extremal curves which satisfy the equality case of a general inequality
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and they find a simple relationship between rectifying curves and the notion of centrodes
in mechanics [3]. Furthermore, in [4] and [5], the characterization of a rectifying curve
is given in Minkowski 3-space and Euclidean 4-space On the other hand, Cambie et al.
examined rectifying curves in n-dimensional Euclidean space [6].

Spacelike, timelike and null normal curves in Minkowski space are investigated in [7,
8] and [9]. The relations between rectifying and normal curves in Minkowski 3-space are
obtained in [10]. Normal and rectifying curves are defined in Galilean space in [11] and
[12]. The osculating, normal and rectifying binull curves in R6

3 and R5
2 are given in [13]

and [14]. The concept of a normal curve is given by quaternions in Euclidean space; the
semi Euclidean space was addressed by Yıldız and Karakus in [15] and [16]. The rectifying,
osculating and normal curves are studied by using octonions in [17].

In this paper, we investigate the properties of the normal curves in n-dimensional Eu-
clidean space by using similar methods as in [6]. We give first some fundamental informa-
tion about the concept of curves in En. Then we characterize normal curves in En. We ob-
tain a necessary and sufficient condition for a curve to be a normal curve in n-dimensional
Euclidean space. The explicit characterization of the normal curves will be proved.

2 Preliminaries
In this section, we present basic notations on the n-dimensional Euclidean space En. Let
α : I ⊂ R → En, s ∈ I → α(s) be an arclength parameterized, n times continuously differ-
entiable curve. The curve α is called unit speed curve if 〈α,α〉 = 1, where the function 〈·, ·〉
shows the standard inner product in the n-dimensional Euclidean space En given by

〈X, Y 〉 =
n∑

i=1

xiyi

for each X = (x1, x2, . . . , xn) and Y = (y1, y2, . . . , yn) ∈ En. The norm of X is given by ‖X‖ =√〈X, X〉. On the other hand, X is an unit vector, if ‖X‖ = 1. Besides, if the curve α in En

is an arclength parameterized curve, then ‖ dα
ds ‖ = 1. The Serret–Frenet formulas for En is

given by the following equations (see [18]):

T ′(s) = κ1(s)N(s),

N ′(s) = –κ1(s)T(s) + κ2(s)B1(s),

B′
1(s) = –κ2(s)N(s) + κ3(s)B2(s),

B′
i(s) = –κi+1(s)Bi–1(s) + κi+2(s)Bi+1(s), 2 ≤ i ≤ n – 3,

B′
n–2(s) = –κn–1(s)Bn–3(s),

(1)

where κ1, κ2, κ3, . . . , κn–1 are the curvatures function of the curve and they are positive.
For basic information on the theory of curves in differential geometry, see references [19,
20] and [21].

3 Normal curves in n-dimensional Euclidean space
In this section, we generalize some definitions, theorems, and results to normal curves in
n-dimensional Euclidean space.
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Definition 1 Let α : I ⊂ R → En, s ∈ I → α(s) be an arclength parameterized, n times
continuously differentiable curve. α is a normal curve in En, if the orthogonal complement
of T(s) involve a fixed point. The position vector of a normal curve in En is

α(s) = λ(s)N(s) +
n–2∑

i=1

μi(s)Bi(s), (2)

where we have some differentiable functions λ and μi (1 ≤ i ≤ n – 2) of s ∈ I ⊂ R.

Let α be an arc length parameterized normal curve in n-dimensional Euclidean space.
By taking the derivative of (2) with respect to s, we obtain the following statement:

α′(s) = λ′(s)N(s) + λ(s)N ′(s) +
n–2∑

i=1

(
μ′

i(s)Bi(s) + μi(s)B′
i(s)

)
.

By using the Serret–Frenet formulas given with (1) for the curve in the n-dimensional
Euclidean space, we get

T(s) =
(
–λ(s)κ1(s)

)
T(s) +

(
λ′(s) – μ1(s)κ2(s)

)
N(s)

+
n–3∑

i=1

(
μ′

i(s) + μi–1(s)κi+1(s) – μi+1(s)κi+2(s)
)
Bi(s)

+
(
μ′

n–2(s) + μn–3(s)κn–1(s)
)
Bn–2(s).

If the mutual coefficients of the vector fields are matched in this last expression, the fol-
lowing statements can be written easily:

–λ(s)κ1(s) = 1, (3)

λ′(s) – μ1(s)κ2(s) = 0, (4)

μ′
1(s) + λ(s)κ2(s) – μ2(s)κ3(s) = 0, (5)

μ′
i(s) + μi–1(s)κi+1(s) – μi+1(s)κi+2(s) = 0, 2 ≤ i ≤ n – 3, (6)

μ′
n–2(s) + μn–3(s)κn–1(s) = 0. (7)

The above statements contain (n – 1) curvature functions. The coefficient functions λ and
μi, 1 ≤ i ≤ n – 2, in the position vector of the normal curve can be found with the help
of these (n – 1) curvature functions. From (3), we can find the following first coefficient
function:

λ(s) = –
1

κ1(s)
. (8)

When the coefficient function (8) is used in Eq. (4), the other coefficient function is as
follows:

μ1(s) = –
1

κ2(s)

(
1

κ1(s)

)′
. (9)



Bektaş Advances in Difference Equations        (2018) 2018:456 Page 4 of 12

The coefficient functions are given similarly with the help of the related coefficient func-
tions.

μ2(s) = –
κ2(s)
κ3(s)

(
1

κ1(s)

)
–

1
κ3(s)

(
1

κ2(s)

)′( 1
κ1(s)

)′

–
1

κ3(s)

(
1

κ2(s)

)(
1

κ1(s)

)′′
. (10)

Thus, three coefficient functions are characterized by the use of curvature functions. But
there are (n – 4) functions to be found. When these functions are calculated, long and
complex expressions with curvature functions appear. We will describe some functions
as follows to simplify these complex and long expressions. These functions are actually
presented in the notation of long and complicated expressions. The first notation function
ψ1,0(s) is defined by the following representation:

ψ1,0(s) = –
1

κ2(s)
.

In this case, the second coefficient function with the help of this notation function can be
written as follows:

μ1(s) = ψ1,0(s)
(

1
κ1(s)

)′
.

Let us define other notation functions along similar lines: ψ2,0(s), ψ2,1(s) and ψ2,2(s) are
defined by

ψ2,0(s) = –
κ2(s)
κ3(s)

, ψ2,1(s) = –
1

κ3(s)

(
1

κ2(s)

)′
, ψ2,2(s) = –

1
κ3(s)

(
1

κ2(s)

)
.

In this case, the third coefficient function with the help of this notation functions can be
written as follows:

μ2(s) = ψ2,0(s)
(

1
κ1(s)

)
+ ψ2,1(s)

(
1

κ1(s)

)′
+ ψ2,2(s)

(
1

κ1(s)

)′′
.

Similarly, let define the other notation functions: ψ3,0(s), ψ3,1(s), ψ3,2(s) and ψ3,3(s) are
introduced by the following statements:

ψ3,0(s) = –
1

κ4(s)

(
κ2(s)
κ3(s)

)′
,

ψ3,1(s) = –
1

κ4(s)

(
κ2(s)
κ3(s)

)
–

1
κ2(s)

(
κ3(s)
κ4(s)

)

–
1

κ4(s)

[
1

κ3(s)

(
1

κ2(s)

)′]′
,

ψ3,2(s) = –
1

κ4(s)

(
1

κ3(s)

)(
1

κ2(s)

)′
–

1
κ4(s)

[
1

κ3(s)

(
1

κ2(s)

)′]′
,

ψ3,3(s) = –
1

κ4(s)

(
1

κ3(s)

)(
1

κ2(s)

)
.
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In this case, the fourth coefficient function with the help of this notation functions can be
written as follows:

μ3(s) = ψ3,0(s)
(

1
κ1(s)

)
+ ψ3,1(s)

(
1

κ1(s)

)′

+ ψ3,2(s)
(

1
κ1(s)

)′′
+ ψ3,3(s)

(
1

κ1(s)

)′′′
.

When other notation functions are defined and used, the other coefficient functions can be
calculated. Moreover, these functions are generalized, and the following coefficient func-
tions are obtained:

μi(s) =
i∑

l=0

ψi,l(s)
∂ l

∂sl

(
1

κ1(s)

)
, 2 ≤ i ≤ n – 2. (11)

Thus we get the following last two coefficient functions for i = n – 3 and i = n – 2:

μn–3(s) =
n–3∑

l=0

ψn–3,l(s)
∂ l

∂sl

(
1

κ1(s)

)
, (12)

μn–2(s) =
n–2∑

l=0

ψn–2,l(s)
∂ l

∂sl

(
1

κ1(s)

)
. (13)

Substituting (12) and (13) into (7), we get the following relations:

( n–3∑

l=0

ψn–3,l(s)
∂ l

∂sl

(
1

κ1(s)

))
κn–1(s)

= –
∂

∂s

( n–2∑

l=0

ψn–2,l(s)
∂ l

∂sl

(
1

κ1(s)

))
, (14)

where

ψ1,0(s) = –
1

κ2(s)
,

ψ2,0(s) = –
κ2(s)
κ3(s)

, ψ2,1(s) = –
1

κ3(s)

(
1

κ2(s)

)′
,

ψ2,2(s) = –
1

κ3(s)

(
1

κ2(s)

)
,

ψi,0(s) =
ψi–2,0(s)κi(s) + ψ ′

i–1,0(s)
κi+1(s)

,

ψi,k(s) = ψi–2,l(s)κi(s) + ψ ′
i–1,0(s) + ψi–1,l–1(s),

ψi,i–2(s) =
ψi–1,i–3(s) + ψ ′

i–1,i–2(s)
κi+1(s)

,

ψi,i–1(s) =
ψi–1,i–2(s)

κi+1(s)
,

(15)
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3 ≤ i ≤ n – 2, 1 ≤ l ≤ i – 2. Substituting Eqs. (8), (11) into (2), we get the position vector of
the normal curve α; it is given by

α(s) = –
1

κ1(s)
N(s) +

n–2∑

i=2

( i∑

l=0

ψi,l(s)
∂ l

∂sl

(
1

κ1(s)

))
Bi(s), (16)

where 2 ≤ i ≤ n – 2. Then we have the following theorem.

Theorem 1 Let α(s) be a unit speed normal curve in En with nonzero curvatures. Then
α(s) is congruent to a normal curve in En if and only if

( n–3∑

l=0

ψn–3,l(s)
∂ l

∂sl

(
1

κ1(s)

))
κn–1(s)

= –
∂

∂s

( n–2∑

l=0

ψn–2,l(s)
∂ l

∂sl

(
1

κ1(s)

))
(17)

with ψi,l introduced by Eq. (15).

Proof Let α(s) be a unit speed normal curve in En. If Eqs. (12) and (13) are written in (7),
then the statement (17) is obtained.

Conversely, suppose that there is a relationship between curvatures as in (17). Let us
define the Y (s) vector using the position curve of the normal curve with the curve α(s) in
En as follows:

Y (s) = α(s) – λ(s)N(s) –
n–2∑

i=1

μi(s)Bi(s). (18)

Taking the derivative from both sides of the previous equation with respect to s and by
using the Serret–Frenet formulas for the curves in En, we obtain the following statements:

Y ′(s) =
((

κ2(s)
κ1(s)

)
+

(
1

κ2(s)

)′( 1
κ1(s)

)′
–

1
κ2(s)

(
1

κ1(s)

)′′)
B1(s)

+
∂

∂s

[(
κ3(s)
κ2(s)

)(
1

κ1(s)

)
+

(
1

κ3(s)

(
κ2(s)
κ1(s)

))]
B2(s)

+
∂

∂s

[
1

κ3(s)

((
1

κ2(s)

)′( 1
κ1(s)

)′
–

1
κ2(s)

(
1

κ1(s)

)′′)]
B2(s)

–
[(

κ2(s)
κ1(s)

)
+

(
1

κ2(s)

)′( 1
κ1(s)

)′
–

1
κ2(s)

(
1

κ1(s)

)′′]
B1(s)

+
κ4(s)
κ3(s)

[(
κ2(s)
κ1(s)

)
+

(
1

κ2(s)

)′( 1
κ1(s)

)′]
B3(s)

–
(

κ4(s)
κ3(s)κ2(s)

(
1

κ2(s)

)′)
B3(s)

+ · · · – μn–3(s)κn–2(s)Bn–4(s)

–
(
μ′

n–3(s) + μn–2(s)κn–1(s)
)
Bn–3(s)

–
(
μ′

n–2(s) + μn–3(s)κn–1(s)
)
Bn–2(s).
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If we compute the above equation, we get

Y ′(s) = –

( n–3∑

l=0

ψn–3,l(s)
∂ l

∂sl

(
1

κ1(s)

))
κn–1(s)

+
∂

∂s

( n–2∑

l=0

ψn–2,l(s)
∂ l

∂sl

(
1

κ1(s)

))
Bn–2(s).

From (14), we get obtain Y ′(s) = 0. Therefore Y (s) is constant. Thus α(s) is congruent to a
normal curve in En. �

Theorem 2 Let α(s) be a unit speed normal curve in En with nonzero curvatures. α(s) is a
normal curve if and only if the following statements are satisfied:

(i) the principal normal and the first binormal component of the position vector α are
given by

〈
α(s), N(s)

〉
= –

1
κ1(s)

,
〈
α(s), B1(s)

〉
= –

1
κ2(s)

(
1

κ1(s)

)′
,

(ii) the first binormal and the second binormal component of the position vector α are
given by

〈
α(s), B1(s)

〉
= –

1
κ2(s)

(
1

κ1(s)

)′
,

〈
α(s), B2(s)

〉
= –

1
κ3(s)

[
κ2(s)
κ1(s)

+
((

1
κ2(s)

)(
1

κ1(s)

)′)′]
,

(iii) the second binormal and the third binormal component of the position vector α are
given by

〈
α(s), B2(s)

〉
= –

1
κ3(s)

[
κ2(s)
κ1(s)

+
((

1
κ2(s)

)(
1

κ1(s)

)′)′]
,

〈
α(s), B3(s)

〉
= –

1
κ4(s)

(
κ3(s)
κ2(s)

(
1

κ1(s)

)′)

–
1

κ4(s)

{
1

κ3(s)

[
κ2(s)
κ1(s)

+
((

1
κ2(s)

)(
1

κ1(s)

)′)′]}′
,

(iv) the jth binormal and (j + 1)th binormal component of the position vector α are given
by

〈
α(s), Bj(s)

〉
=

j∑

l=0

ψj,l(s)
∂ l

∂sl

(
1

κ1(s)

)
,

〈
α(s), Bj+1(s)

〉
=

j+1∑

l=0

ψj+1,l(s)
∂ l

∂sl

(
1

κ1(s)

)
,

where 3 ≤ j ≤ n – 3 and ψi,l is introduced by Eq. (15).
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Proof Let α be an arc length parameterized normal curve in n-dimensional Euclidean
space with nonzero curvatures. Taking the inner product of the two sides of (16) with
N(s), B1(s), B2(s), B3(s), Bj(s) and Bj+1(s), 3 ≤ j ≤ n – 3, respectively. We get the statements
(i), (ii), (iii) and (iv).

Conversely, assume that (i) is given. Differentiating both sides of the first equation of the
statement (i) with respect to s and using the Serret–Frenet formulas for the curve in En,
we get 〈α(s), T(s)〉 = 0. Thus α is a normal curve in En. Similarly, if the other statements
(ii) and (iii) are valid, we find that α is a normal curve in En. Differentiating both sides of
the first equation of the statement (iv) with respect to s, then we get

〈
α(s), –κj+1(s)Bj–1(s) + κj+2(s)Bj+1(s)

〉

=
∂

∂s

( j∑

l=0

ψj,l(s)
∂ l

∂sl

(
1

κ1(s)

))

and

〈
α(s), Bj–1(s)

〉
=

(
∑j+1

l=0 ψj+1,l(s) ∂ l

∂sl ( 1
κ1(s) ))κj+2(s)

κj+1(s)

–
∂
∂s (

∑j
l=0 ψj,l(s) ∂ l

∂sl ( 1
κ1(s) ))

κj+1(s)
,

where 3 ≤ j ≤ n – 3 and ψi,l introduced by Eq. (15). Here, j = 3, . . . , j = n – 3, it can be seen
that the curve α is the normal curve in En for each case if the defined notation functions
are also considered. �

Theorem 3 Let α(s) be an arc length parameterized curve, lying fully in the n-dimensional
Euclidean space with nonzero curvatures. Then α is a normal curve if and only if α lies in
some hyperquadrics in En.

Proof First assume that α is a normal curve in En. From (17), we get

2
(

1
κ1(s)

)(
1

κ1(s)

)′
+ 2

(
1

κ2(s)

(
1

κ1(s)

)′)(
1

κ2(s)

(
1

κ1(s)

)′)′

+ 2
{

1
κ3(s)

[
κ2(s)
κ1(s)

+
((

1
κ2(s)

)(
1

κ1(s)

)′)′]}

×
{

1
κ3(s)

[
κ2(s)
κ1(s)

+
((

1
κ2(s)

)(
1

κ1(s)

)′)′]}′

+ · · · + 2

[ i∑

l=0

ψi,l(s)
∂ l

∂sl

(
1

κ1(s)

)][ i∑

l=0

ψi,l(s)
∂ l

∂sl

(
1

κ1(s)

)]′

+ · · · + 2

[ n–2∑

l=0

ψn–2,l(s)
∂ l

∂sl

(
1

κ1(s)

)][ n–2∑

l=0

ψn–2,l(s)
∂ l

∂sl

(
1

κ1(s)

)]′

= 0.
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On the other hand, the above statement is a differential version of the following statement:
(

1
κ1(s)

)2

+
(

1
κ2(s)

(
1

κ1(s)

)′)2

+
{

1
κ3(s)

[
κ2(s)
κ1(s)

+
((

1
κ2(s)

)(
1

κ1(s)

)′)′]}2

+ · · · +

[ i∑

l=0

ψi,l(s)
∂ l

∂sl

(
1

κ1(s)

)]2

+ · · · +

[ n–2∑

l=0

ψn–2,l(s)
∂ l

∂sl

(
1

κ1(s)

)]2

= r, r ∈ R.

Substituting (8)–(13) into (18), and taking the inner product of the both sides of (18) with
α(s) – Y (s), then we get the following relations:

〈
α(s) – Y (s),α(s) – Y (s)

〉
= r.

Thus, the desired expression is proved.
Conversely, if α lies in some hyperquadrics in En, then 〈α(s)–Y (s),α(s)–Y (s)〉 = r, where

Y (s) ∈ En is a constant vector. Taking into account the derivative of the previous equation
with respect to s, we find that 〈α(s) – Y (s), T(s)〉 = 0. Hence α is a normal curve in En. �

The following lemma can be given as a result of Theorem 1.

Lemma 1 Let α(s) be an arc length parameterized curve, lying fully in En, with non-null
vector fields N(s), B1(s), B2(s), . . . , Bn–3(s) and Bn–2(s), then we have congruence to a normal
curve if and only if there exists a differentiable function f (s) such that

f (s)κn–1(s) =
n–2∑

l=0

ψn–2,l(s)κn–1(s)
∂ l

∂sl

(
1

κ1(s)

)
,

f ′(s) = –

( n–3∑

l=0

ψn–3,l(s)
∂ l

∂sl

(
1

κ1(s)

))
κn–1(s).

(19)

If we apply a similar procedure to Refs. [22, 23] and [24] together with Lemma 1, then
we obtain the following theorem when the curves in En are normal curves.

Theorem 4 Let α(s) be an arc length parameterized curve in n-dimensional Euclidean
space with nonzero curvatures. Then α is congruent to a normal curve if and only if there
exist constant a0, b0 ∈ R such that

f ′(s)
κn–1(s)

=
{∫ [

f ′′(s)
κn–1(s)

–
f ′(s)κ ′

n–1(s)
κ2

n–1(s)
+ f (s)κn–1(s)

]
cos θ ds – a0

}
cos θ

+
{∫ [

f ′′(s)
κn–1(s)

–
f ′(s)κ ′

n–1(s)
κ2

n–1(s)
+ f (s)κn–1(s)

]
sin θ ds – b0

}
sin θ , (20)

where θ (s) =
∫ s

0 κn–1(s) ds.
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Proof Let α(s) be congruent to a normal curve. From Lemma 1, there exists a dif-
ferentiable function f (s) which can be given with (19) and f ′(s) shows that f ′(s) +
(
∑n–3

l=0 ψn–3,l(s) ∂ l

∂sl ( 1
κ1(s) ))κn–1(s) = 0. Let us describe differentiable functions θ (s), a(s) and

b(s)

θ (s) =
∫ s

0
κn–1(s) ds, (21)

a(s) = –
f ′(s)

κn–1(s)
cos θ – f (s) sin θ

+
∫ [

f ′′(s)
κn–1(s)

–
f ′(s)κ ′

n–1(s)
κ2

n–1(s)
+ f (s)κn–1(s)

]
cos θ ds, (22)

b(s) = –
f ′(s)

κn–1(s)
sin θ + f (s) cos θ

+
∫ [

f ′′(s)
κn–1(s)

–
f ′(s)κ ′

n–1(s)
κ2

n–1(s)
+ f (s)κn–1(s)

]
sin θ ds. (23)

If we differentiate Eqs. (22) and (23) according to s and consider (19) and (21), then we
get a′(s) = 0 and b′(s) = 0. Thus, a(s) = a0 and b(s) = b0 ∈ R. Equations (22) and (23) are
multiplied by cos θ and sin θ , respectively, and if the obtained statements are collected,
then we get (20).

On the contrary, there are a0, b0 ∈ R that lead to (20). By the derivative of (20) according
to s, we obtain

(
f ′(s)

κn–1(s)

)′

=
f ′′(s)

κn–1(s)
–

f ′(s)κ ′
n–1(s)

κ2
n–1(s)

+ f (s)κn–1(s)

+
{∫ [

f ′′(s)
κn–1(s)

–
f ′(s)κ ′

n–1(s)
κ2

n–1(s)
+ f (s)κn–1(s)

]
cos θ ds + a0

}
sin θκn–1(s)

+
{∫ [

f ′′(s)
κn–1(s)

–
f ′(s)κ ′

n–1(s)
κ2

n–1(s)
+ f (s)κn–1(s)

]
sin θ ds – b0

}
cos θκn–1(s).

The differentiable function f (s) is defined by the following statement:

f (s) =
1

κn–1(s)

[ n–2∑

l=0

ψn–2,l(s)κn–1(s)
∂ l

∂sl

(
1

κ1(s)

)]
.

Thus, we get

f (s)κn–1(s)

=
{∫ [

f ′′(s)
κn–1(s)

–
f ′(s)κ ′

n–1(s)
κ2

n–1(s)
+ f (s)κn–1(s)

]
cos θ ds + a0

}
sin θ

+
{∫ [

f ′′(s)
κn–1(s)

–
f ′(s)κ ′

n–1(s)
κ2

n–1(s)
+ f (s)κn–1(s)

]
sin θ ds – b0

}
cos θ .
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Finally, we obtain f ′(s) = –(
∑n–3

l=0 ψn–3,l(s) ∂ l

∂sl ( 1
κ1(s) ))κn–1(s). Lemma 1 implies that α is con-

gruent to a normal curve. �

4 Conclusion
In this paper, we present normal curves and some of their properties in n-dimensional
Euclidean space En. The necessary and sufficient conditions for a unit speed curve to be
congruent to a normal curve in En have been characterized in terms of its curvatures and
the related differentiable function has been given. The results of this study can also be
investigated in different spaces.
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