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Abstract. In this study, a SVEIR-type compartmental model of Poliomyelitis transmission is examined under random effects.
We introduce Generalized Beta and normal distributed random parameters into the equation system to investigate the random
dynamics of the disease. The approximate analytical solution of the model under random effects is obtained by using Random
Differential Transformation Method (RDTM). Results from simulations and RDTM are analyzed to comment on the randomness
of the compartments and disease transmission. It is seen that the random model successfully provides similar results that can be
obtained through the deterministic model while providing additional information on the random behavior of the disease, such as
the standard deviations and the variation coefficients.

Keyword: Random Differential Equation, Generalized Beta Distribution, Random Effect, Poliomyelitis, Random Differential Trans-
formation Method.
AMS 2010: 34F05, 92B05.

INTRODUCTION

Polio (or Poliomyelitis) is a highly contagious disease caused by the Poliovirus (PV). Children under the age of five
are primarily affected by the disease. Polio affects the central nervous system and can sometimes cause paralysis
within hours [1]. The epidemic in America caused more than 21000 paralysis cases in 1952 [2], however, the actions
taken against the disease worldwide within the leadership of the World Health Organization (WHO) in 1988 has
resulted in a serious decrease in the number of cases around the globe. The preventive Polio vaccine has caused the
number of Polio cases to decrease from around 350000 worldwide in 1988 to 37 reported cases in 2016 [1]. However,
WHO has reported an increase in Polio in Cameroon since 2013 [3]. Hence, a new approach to the mathematical
modeling of the disease transmission is valuable for battling the disease.

Several Polio models exist in the literature analyzing various aspects of the disease such as; disease transmission
[4], the effects of vaccination for eradication and transmission of the disease [5] and response scenarios to potential
outbreaks [6]. It is seen that almost all of the modeling studies are performed by using deterministic quantities and
equations. However, an overall analysis of the existing Polio transmission models shows that the parameters used
in these models are assigned different values for each study according to the conditions of the region or the case
being investigated. For instance, the parameter β in the model of Browne et al. denotes the transmission rate of
the disease and an approximate daily value of 0.88 (319.655 yearly) has been used in the study [5]. Similarly, the
parameter βi in the model of Dénes and Székely similarly denotes the disease transmission rate and an approximate
daily value of 0.29 (2.05 weekly) has been used in the study [7]. Another recent model by Nkamba et al. uses a daily
value of 0.10 for the parameter β which denotes the effective contact rate for disease transmission [3]. Similarly, the
parameters values for recovery rates in these three studies, denoted by γ, are as follows: 0.06 daily ( 365
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yearly) in [5], 0.08 daily (0.58 weekly) in [7] and 0.05 daily in [3]. Such variability in the dynamics of disease
is a sign of the randomness of Polio transmission. It is clear that the disease transmission, recovery, birth/death
rates and etc. occur randomly in different countries, regions or climates. Hence, a model consisting of random
differential equations may prove more useful for analyzing disease dynamics. There are several statistical studies
in the literature on random aspects of the disease. A recent study in 2017 states a mean of 1.3413 and a variance
of 3.5153 for the number of monthly Polio cases in USA [8] whereas other random studies can also be found for
monthly disease counts and incidence data for Polio [9], [10]. The study by Noori et al. investigates demographic,
socio-economic and environmental factors using disease incidence data from several countries and comments on the
geographical variation of Polio transmission with a random analysis [11]. Studies on the changes in Polio dynamics
for various countries such as Pakistan, Afghanistan and etc. can be found in the literature [12]. Due to the unignorable
randomness of the disease components, we propose a random transmission model for Polio disease using random
differential equations.

Using the deterministic model of Nkamba et al. [3] we obtain a random model by transforming the coefficients
into random variables. The coefficients of the deterministic system are the parameters of the model which describe
the disease transmission dynamics, such as the recovery rate, vaccination efficacy and the disease transmission rate.
Transforming these coefficients to random variables allows the equation system to model disease transmission on a
wider range of conditions rather than just a single case in a single country. There are several methods to analyze
random differential equations such as Homotopy Analysis Method (HAM) [13], Variational Iteration Method (VIM)
[14] along with some other approximate schemes. In this study, random Differential Transformation Method (DTM)
[15] will be used to obtain approximate solutions to the random model of Polio transmission. Random DTM [16]
is a generalization of the Differential Transformation Method [17], [18] to random equations using mean-square
calculus. Random DTM has been used to analyze differential equations with random components [19], linear random
differential equations [15] and parabolic diffusion equation with uncertainty [20]. Both the random and ordinary
DTM have been proven to be efficient for analyzing mathematical models used in a variety of areas. Hence, random
DTM will be used to obtain approximate-analytical solutions of the model under random effects. The approximate
solutions will be used to obtain approximate expected values and approximate variances of disease transmission.
Using results from simulations of the model and numerical results from the deterministic model, the random model
will be interpreted for its validity in modeling the disease transmission accurately. This approach can be generalized
to investigate the random behavior of many diseases or other biological models in the future.

THE DETERMINISTIC MODEL

The Polio transmission model used in this study has been given in [3] by Nkamba et al. in 2017. The compartmental
model presents a new SVEIR type equation system for investigating the effects of vaccination for controlling disease
transmission. The model is given as:

dS
dt

= Λ − (dS + p)S − βS I, (1)

dV
dt

= pS − dVV − θβVI,

dE
dt

= βI(S + θV) − (dE + ε)E,

dI
dt

= εE − (dI + γ)I,

dR
dt

= γI − dRR.

Here, the compartments are as follows: S (t) denotes the number of susceptible individuals, V(t) denotes the number
of vaccinated individuals with a small chance of infection, E(t) denotes the number of individuals which have been
exposed, I(t) denotes the number of individuals which have been infected and R(t) denotes the number of recovered
individuals at any time t. The daily values (1/day) of the parameters of (1) are presented in Table 1. The values have
been obtained from the referred study while possible other values can also be found in the literature supporting the
random nature of the disease transmission [21], [22].
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TABLE 1. Parameters, values and descriptions of the model

Parameter Description Value

dS S - natural death rate 0.0551

dV V - natural death rate 0.0551

dE E - natural death rate 0.0551

dI I - natural death rate 0.08

dR R - natural death rate 0.0551

Λ Susceptible recruitment rate 2.5

p Vaccination rate 1

β Interaction rate 0.1

θ Vaccine efficacy (1-θ) 0.1

ε Expected incubation period rate 0.05

γ Recovery rate 0.005

The initial values of the model are given as S (0) = 20, V(0) = 15, E(0) = 5, I(0) = 5, R(0) = 0, which means the
initial population is depicted as a group of 45 people with 20 susceptibles. The positivity of the solutions of (1) and
the region where the solutions are biologically meaningful can be found in the deterministic study. Using this model
as a basis, we will investigate the random behavior of the disease transmission.

POLIO TRANSMISSION MODEL WITH RANDOM PARAMETERS

Random differential equations can be obtained from ordinary differential equations by using random initial values,
random coefficients or random inhomogeneous parts [23]. Since the coefficients of the equation system (1) are the
parameters that describe the dynamics of the disease, we will use random variables for the coefficients to obtain a
random equation system that models the random nature of disease transmission. Two random models will be formed
where the parameters have Generalized Beta probability distribution and Normal (Gaussian) probability distribution.
The exact real life probability distribution of the parameters are unknown for Polio. The disease transmission can be
affected by environmental, geographical or climatic factors and hence we will use Normal distribution for modeling
the variability of the parameters. Generalized Beta distributed random parameters will also be produced with similar
statistical properties to the Normally distributed case to investigate the effects of the probability distributions. The
motivation for a random modeling study is a previous study by Merdan et al. [24] where random antibiotic resistance
dynamics are analyzed with random and stochastic models.

If we transform the parameters of (1), dS , dV , dE , dI , dR,Λ, p, β, θ, ε, γ to random variables (denoted with an aster-
isk superscript), we obtain the following random model (the death rates for the compartments S ,V, E,R are all shown
as d∗ since they have the same deterministic value and their random counterpart will be determined such that they
have the same expectation):

dS
dt

= Λ∗ − (d∗ + p∗)S − β∗S I, (2)

dV
dt

= p∗S − d∗V − θ∗β∗VI,

dE
dt

= β∗I(S + θ∗V) − (d∗ + ε∗)E,

dI
dt

= ε∗E − (d∗I + γ∗)I,

dR
dt

= γ∗I − d∗R.
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with the same initial conditions S (0) = 20, V(0) = 15, E(0) = 5, I(0) = 5, R(0) = 0. The random parameters
Λ∗, d∗, p∗, β∗, θ∗, ε∗, d∗I , γ

∗ in (2) are defined as follows:

Λ∗ = c1 + d1Z1, d∗ = c2 + d2Z2, p∗ = c3 + d3Z3, β
∗ = c4 + d4Z4, (3)

θ∗ = c5 + d5Z5, ε
∗ = c6 + d6Z6, d∗I = c7 + d7Z7, γ

∗ = c8 + d8Z8.

Here, ci, i = 1, 8 are the location parameters and di, i = 1, 8 are the scale parameters of the Generalized Beta distri-
bution while Zi, i = 1, 8 are independent random variables with standard Beta distribution. The statistical properties
of the random parameters will be assigned similarly for both cases with Beta and Normal distributions to compare
and comment on the results. Hence the location and scale parameters are assigned such that the expected values of
the parameters equal their deterministic values, while standard deviations are 5% of their expectations. It is known
that for a generalized Beta distributed random variable X, i.e. X ∼ gBeta(c, d, a, b), where c, d are the location and
scale parameters and a, b are the left and right shape parameters, respectively, the expectation and variance are given
as [25]:

E(X) = c + d
a

a + b
, Var(X) = d2 ab

(a + b)2(a + b + 1)
. (4)

The following random variables are used:

Λ∗ ∼ gBeta
(

17
8
,

3
4
, 4, 4

)
, d∗ ∼ gBeta(0.046835, 0.01653, 4, 4), p∗ ∼ gBeta

(
17
20
,

3
10
, 4, 4

)
(5)

β∗ ∼ gBeta
(

17
200

,
3

100
, 4, 4

)
, θ∗ ∼ gBeta

(
17

200
,

3
100

, 4, 4
)
, ε∗ ∼ gBeta

(
17

400
,

3
200

, 4, 4
)
,

d∗I ∼ gBeta
(

17
250

,
3

125
, 4, 4

)
, γ∗ ∼ gBeta

(
17

4000
,

3
2000

, 4, 4
)
.

The parameters are assigned identical left and right shape parameters a, b to obtain a bell-shaped generalized Beta
distribution similar to the Normal distribution. Using (4), the expected value, variance and variation coefficient (CV)
for Λ∗ are obtained as:

E(Λ∗) = c1 + d1
a

a + b
= 2.5, Var(Λ∗) = d2

1
ab

(a + b)2(a + b + 1)
=

1
64
, CV = 100 ×

√
1/64
2.5

= 5%. (6)

All of the random parameters (5) are randomized to have 5% variation coefficients to model a hypothetical 5%
randomness in their real life behaviors. This value could be altered according to real data.

Similarly, the random parameters Λ∗, d∗, p∗, β∗, θ∗, ε∗, d∗I , γ
∗ in (2) can be defined as the following Normally

distributed parameters:

Λ∗ = Λ + s1η1, d∗ = d + s2η2, p∗ = p + s3η3, β
∗ = β + s4η4, (7)

θ∗ = θ + s5η5, ε
∗ = ε + s6η6, d∗I = dI + s7η7, γ

∗ = γ + s8η8.

Here, Λ, d, p, β, θ, ε, dI , γ denote the deterministic values given in Table 1, si, i = 1, 8 denote the standard deviations of
the Normally distributed random parameters and ηi, i = 1, 8 are independent random variables with standard Normal
distribution. The expected value and the variance of a random variable X with Normal distribution (X ∼ N(µ, σ2)) are
known to be E(X) = µ and Var(X) = σ2. The standard deviations are defined as follows to obtain a set of random
parameters with 5% variation coefficients to match the previous case with generalized Beta distributed parameters:

Λ∗ = 2.5 + 0.125η1, d∗ = 0.0551 + 0.002755η2, p∗ = 1 + 0.05η3, β
∗ = 0.1 + 0.005η4, (8)

θ∗ = 0.1 + 0.005η5, ε
∗ = 0.05 + 0.0025η6, d∗I = 0.08 + 0.004η7, γ

∗ = 0.005 + 0.00025η8.

In particular, Λ∗ = 2.5 + 0.125η1 ⇒ Λ∗ ∼ N(2.5, 0.1252) since η1 ∼ N(0, 1). Hence, it is seen that E(Λ∗) = µ = 2.5
and Var(Λ∗) = 0.1252 and thus CV =

√
0.1252

2.5 = 5%.
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FIGURE 1. Distributions for the random parameter Λ∗

This similarity of the distributions for the parameters can be seen for Λ∗ in Figure 1. The random Λ∗ takes values
in within a range whereas the deterministic Λ can only assume the value Λ = 2.5.

RANDOM DIFFERENTIAL TRANSFORMATION METHOD

The random model (2) with Generalized Beta parameters (5) or Normal parameters (8) is too complex to be solved
analytically. Random Differential Transformation Method (DTM) is one of the approximate analytical methods that
can be used to obtain approximate solutions of the model. We initially summarize the method and its modification via
Laplace-Padé technique.

Let k be a non-negative integer, u(t), t ∈ T be a fourth-order stochastic process and u(k)(t) denote the k − th
derivative of this process at t ∈ T in the mean-fourth sense. The random differential transform of u(t) is given as

U(k) =
1
k!

[
dku(t)

dtk

]
t=t0

, (9)

where U is the transformed stochastic process and the derivation is in the mean square sense [16]. The inverse trans-
formation for U is similarly given as

u(t) =

∞∑
k=0

U(k)(t − t0)k (10)

Theorem 1 ([16]) Let k be a non-negative integer and f (k)(t), g(k)(t) denote the k − th derivatives of the fourth
order stochastic processes f (t), t ∈ T and g(t), t ∈ T at t ∈ T in the mean-fourth sense. The following hold for random
Differential Transformation:

(i) If u(t) = f (t) ± g(t), then the random differential transform of u(t) becomes U(k) = F(k) ±G(k),
(ii) For a fourth-order random variable λ, If u(t) = λ f (t), then the random differential transform of u(t) becomes

U(k) = λF(k),
(iii) If u(t) = dm(g(t))/dtm, then U(k) = (k + 1) . . . (k + m)G(k + m) is the random differential transformation of u(t),
(iv) If u(t) = f (t)g(t), then U(k) =

∑k
n=0 F(n)G(k − n) is the random differential transformation of u(t),

where m is a non-negative integer and F,G are the transformed processes for f and g respectively.
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In applications, t0 = 0 is the popular choice for the power series solution in random Differential Transformation
with finitely many terms

u(t) =

n∑
k=0

U(k)tk (11)

whereas the approximate expected value and variance of the solution process are given as

E(u(t)) =

n∑
k=0

E(U(k))tk (12)

Var(u(t)) =

n∑
i=0

n∑
j=0

cov(U(i),U( j))ti+ j

for the covariance function cov(U(i),U( j)) = E(U(i)U( j)) − E(U(i))E(U( j)), i, j = 1, . . . ,N [13], [26].
The approximate expected values and variances (12) can be modified by using Laplace-Padé technique for a

better approximation. This modification has been applied to the deterministic DTM in several studies [27], [28]. The
basic approach of the method lies on the principle of using a quotient of two polynomials PL(t) and QM(t) of orders L
and M, respectively, to obtain an approximation to a function f (t). Hence, for the approximate solutions (11),(12) we
can obtain better approximations by using Padé approximants of the form [29]

x(t) =

∞∑
i=0

aiti =
p0 + p1t + p2t2 + p3t3 + . . . + pLtL

q0 + q1t + q2t2 + q3t3 + . . . + qMtM + O(tL+M+1). (13)

Optimum choices for the orders of the Padé approximants and the approximations to the solutions of the random
model are found with mathematical softwares.

RESULTS

Using random DTM on (2), we obtain

(k + 1)S (k + 1) = Λ∗δ(k) − (d∗ + p∗)S (k) − β∗
k∑

m=0

I(m)S (k − m), (14)

(k + 1)V(k + 1) = p∗S (k) − d∗V(k) − θ∗β∗
k∑

m=0

I(m)V(k − m),

(k + 1)E(k + 1) = β∗
k∑

m=0

I(m)S (k − m) + θ∗
k∑

m=0

I(m)V(k − m) − (d∗ + ε∗)E(k),

(k + 1)I(k + 1) = ε∗E(k) − (d∗I + γ∗)I(k),
(k + 1)R(k + 1) = γ∗I(k) − d∗R(k).

The approximate expected value for I(t) with the Generalized Beta random parameters (5) is

E(I(t)) = 5 − 0.175t + 0.26307453125t2 − 0.131148360545833t3 + 0.054008208130904t4, (15)

whereas the approximate expectation for R(t) with the Generalized Beta random parameters using 5 terms for the
truncated power series solution becomes:

E(R(t)) = 0.025t − 0.00112640625t2 + 0.0004418316219875001t3 − 0.0001702643487476519t4. (16)

Note that the parameters and the random variables are assumed to be independent for these calculations. If the Nor-
mally distributed random parameters (8) are used, the approximate expectations for I(t) and R(t) become

E(I(t)) = 5 − 0.175t + 0.26307453125t2 − 0.131148360545833t3 + 0.054008971778864t4 (17)
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and
E(R(t)) = 0.025t − 0.00112640625t2 + 0.0004418316219875001t3 − 0.0001702643628382569t4, (18)

respectively. Using Laplace-Padé technique with orders [3, 2] for the polynomials in (13), the approximate expected
number of infected population for Generalized Beta parameters (15) can be modified as

E(I(t)) = 4.355956053 + [0.2716410522sinh(0.9507440120t) + 0.6440439466cosh(0.9507440120t)]e(−0.6727197825t).
(19)

In the Normally distributed case, the approximate expectations (17) and (18) are modified by using polynomials of
orders [3, 2] as:

E(I(t)) = 4.356046001 + [0.2715615205sinh(0.9507723071) + 0.643953998cosh(0.9507723071)]e(−0.6727082555t)

(20)
and

E(R(t)) = 0.001626893221 + 0.02308555873t − 0.001626893221e(−11176746725t). (21)

Monte-Carlo simulations of the random model (2) with the parameters (5) and (8) are also performed to compare
the approximate results with long term disease dynamics. Results for the expected values and variances are given in
Figures 2 and 3. Note that the simulations results are given for the variables S (t),V(t), E(t), I(t), similar to the referred
study which omits R(t) since it does not appear in other compartments of (1).

FIGURE 2. Expected values of the random model

For the case with Normally distributed parameters: E(S (t)) gets its minimum value 1.116 at t = 50 and its
maximum value 20 at t = 0. E(V(t)) gets its minimum value 6.57 at t = 50 and its maximum value 24.77 at t = 1.8.
E(E(t)) gets its minimum value 5 at t = 0 and its maximum value 20.88 at 28.1. E(I(t)) gets its minimum value
4.965 at t = 0.1 and its maximum value 11.91 at t = 50. Similarly for the case with Generalized Beta parameters the
extremum values are as follows: the minimum for E(S (t)) is obtained at t = 50 with 1.117 while the maximum is the
same. The minimum for E(V(t)) is obtained at t = 50 with 6.588 while maximum is obtained at t = 1.9 with 24.78.
The minimum for E(E(t)) is the same while its maximum is obtained at t = 28.2 with 20.89. The minimum for E(I(t))
is the same at t = 0.4 while its maximum is also the same.

For the variances, it is seen that all of the minimum points are 0 at t = 0 for both cases. The maximum points for
the case with Normally distributed parameters are 0.08246 at t = 0.7 for Var(S (t)), 1.637 at t = 19.2 for Var(V(t)),
2.689 at t = 39.3 for Var(E(t)) and 1.435 at t = 50 for Var(I(t)). For the case with Generalized Beta parameters,
the maximum points are: 0.08114 at t = 0.7 for Var(S (t)), 1.637 at t = 18.92 for Var(V(t)), 2.756 at t = 39.3 for
Var(E(t)) and 1.473 at t = 50 for Var(I(t)).
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FIGURE 3. Variances of the random model

Using these results, the coefficients of variation (CV) for both distributions are calculated. Minimum CV for
both cases are 0 as the minimal variances suggest. The results are shown in Figure 4.

FIGURE 4. Variation coefficients of the random model

The maximum results for coefficients of variation are compared in Table 2 for both cases.
Figures 2, 3 and 4 and the numerical results of the simulations suggest that the expectations of the random model

(2) are almost identical to the solutions of the deterministic model (1) meaning the random equation system is a
sufficient tool for modeling the disease transmission. However, unlike the deterministic model, the random model also
presents results for the variations and enables measurement of the variability between cases of the disease in various
conditions.

Expected values indicate that the number of susceptible people decreases through the process, reaching a min-
imum at the end of the investigation period t = 50 (50th day). The number of vaccinated people increases in the
beginning, reaching its maximum at around t = 1.8 − 1.9, i.e. before the second day of the investigation and then
keeps decreasing. The number of exposed people increases until it reaches its maximum at t = 28.1−28.2, i.e. around

020004-8



TABLE 2. Comparison of maximum variation coefficients

Normal Distribution Generalized Beta Distribution

S (t) %6.902 %6.84

V(t) %14.38 %14.53

E(t) %8.051 %8.148

I(t) %10.06 %10.19

R(t) %12.1 %12.24

the 28th day and keeps approximately the same level until the end. However, the number of infected people is seen to
increase through the process, reaching its maximum on day 50.

Since the distributions of the random variables are similarly defined, as seen in Figure 1, we see that the amounts
of variations and the variation coefficients are very similar for Normally and Generalized Beta distributed parameters
(Table 2 and Figure 4). However, although all of the random parameters were defined with a 5% coefficient of variation,
we see that the CV differs for each compartment. The variability in the number of vaccinated people is the largest with
an approximately 14.5% CV, meaning that the results of the deterministic studies could be 14.5% different from real
life occurences. The results for both distributions are similar, due to the construction of the random parameters, and it
is seen that the randomness in the comartments V,R and I are greater than the others.

The modification of the approximate expected value obtained with DTM through Laplace-Padé method is an
original application for random differential equation systems, although similar examples exist for deterministic stud-
ies. The improvement of results through the modification can be seen in the tables below (Tables 3, 4).

TABLE 3. Numerical results for I(t) (with Generalized Beta parameters (5))

t Deterministic DTM Simulation RDTM Modified

0.0 5.000 5.000 5.000 5.000 5.000

0.1 4.985 4.985 4.985 4.985 4.985

0.2 4.975 4.975 4.975 4.975 4.975

0.3 4.968 4.968 4.968 4.968 4.968

0.4 4.965 4.965 4.965 4.965 4.965

0.5 4.965 4.965 4.965 4.965 4.965

0.6 4.967 4.968 4.967 4.968 4.967

0.7 4.972 4.974 4.972 4.974 4.972

0.8 4.978 4.983 4.978 4.983 4.979

0.9 4.986 4.995 4.986 4.995 4.987

1.0 4.996 5.011 4.996 5.011 4.997

1.1 5.007 5.030 5.007 5.030 5.009

1.2 5.020 5.054 5.020 5.054 5.022

1.3 5.033 5.083 5.033 5.083 5.036

1.4 5.047 5.118 5.047 5.118 5.051

1.5 5.062 5.160 5.062 5.160 5.067

Table 3 contains the values for I(t) (E(I(t)) in the random case) from (i) the approximate solution of the deter-
ministic model (1) obtained in MATLAB, (ii) the approximate solution of the deterministic model (1) obtained with
deterministic DTM, (iii) the Monte-Carlo simulation of the random model (2), (iv) the approximate expected value
obtained with random DTM, (v) the Laplace-Padé modification of the approximate expected value obtained with
random DTM. Results show that for the random model with Generalized Beta random parameters, the modification
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noticeably improves the approximations.

TABLE 4. Numerical results for R(t) (with Normal parameters (5))

t Deterministic DTM Simulation RDTM Modified

0.0 0 0 0 0 0

0.1 0.00249 0.00249 0.00249 0.00249 0.00249

0.2 0.00496 0.00496 0.00496 0.00496 0.00496

0.3 0.00741 0.00741 0.00742 0.00741 0.00741

0.4 0.00985 0.00985 0.00985 0.00984 0.00985

0.5 0.01227 0.01227 0.01228 0.01226 0.01227

0.6 0.01468 0.01467 0.01469 0.01467 0.01468

0.7 0.01707 0.01707 0.01708 0.01706 0.01707

0.8 0.01946 0.01945 0.01947 0.01944 0.01946

0.9 0.02184 0.02181 0.02185 0.02180 0.02184

1.0 0.02421 0.02416 0.02422 0.02415 0.02421

1.1 0.02657 0.02650 0.02658 0.02648 0.02658

1.2 0.02892 0.02882 0.02894 0.02879 0.02893

1.3 0.03127 0.03112 0.03129 0.03108 0.03129

1.4 0.03361 0.03340 0.03363 0.03335 0.03363

1.5 0.03595 0.03565 0.03597 0.03560 0.03598

1.6 0.03828 0.03788 0.03830 0.03781 0.03832

1.7 0.04060 0.04008 0.04063 0.03999 0.04065

1.8 0.04292 0.04224 0.04295 0.04214 0.04299

1.9 0.04524 0.04437 0.04527 0.04425 0.04532

2.0 0.04756 0.04645 0.04759 0.04631 0.04764

2.1 0.04987 0.04848 0.04990 0.04831 0.04997

2.2 0.05217 0.05045 0.05222 0.05026 0.05229

2.3 0.05448 0.05237 0.05451 0.05215 0.05462

2.4 0.05678 0.05422 0.05681 0.05397 0.05694

2.5 0.05907 0.05599 0.05911 0.05571 0.05926

The simulations have been performed 105 times in MATLAB. Considering the simulation values, which are in
accordance with the deterministic results, the absolute error percentages of the random DTM and the modified method
for E(I(t)) at t = 1.5 are as follows:

Random DT M → 100 × |5.062−5.160|
5.062 ' 1.94% (22)

Modi f ied → 100 × |5.062−5.067|
5.062 ' 0.10%

It is seen that by using a 5-term approximate solution within the interval t ∈ [0, 1.5] (the first 36 hours of the disease),
the modified method decreases the error from 1.94% to 0.10%.

Similarly, Table 4 contains a comparison of the results for R(t) in the deterministic model (1) and E(R(t)) in the
random model (2) with Normally distributed parameters. The Laplace-Padé modification of the approximate expected
value is once again considerably improved compared to the approximate expected value obtained with random DTM.
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The error percentages of random DTM and the modification, compared to simulation results for E(R(t)) at t = 2.5 are
given as follows:

Random DT M → 100 × |0.05911−0.05571|
0.05911 ' 5.75% (23)

Modi f ied → 100 × |0.05911−0.05926|
0.05911 ' 0.25%

Once again, the modification dramatically decreases the error of random DTM from 5.75% to 0.25%.

CONCLUSION

In this study, a deterministic model of Polio transmission has been analyzed with Generalized Beta and Normally
distributed random parameters to investigate the random behavior of disease transmission. The probability distribu-
tions of the random parameters have been constructed similarly to ensure similar statistical properties for the random
parameters for both cases. The resulting random model has been analyzed by Monte-Carlo simulations, random Dif-
ferential Transformation Method (DTM) and a modified version of the random DTM using Laplace-Padé technique.
Simulation results of the model has proven that the expectations of the random model provides similar results to the
deterministic model and can be used for analyzing long term disease transmission. However, unlike the deterministic
model, the random model provides the ability to analyze possible variations in the disease transmission which could
be caused by geographical, climatic or environmental factors affecting the disease and the population. The random
model was also investigated by using random DTM and a modification of the approximate-analytical model was pro-
posed to improve the approximations. Results for E(R(t)) and E(I(t)) were investigated by using both methods and it
was shown that the modification reduces the error percentage considerably. The random model was also examined for
the coefficients of variation of the compartments to show the randomness of the population groups and it was seen that
the vaccinated population group has the most randomess in the equation system. The randomization of the parameters
were hypothetically determined, however this could be done more accurately if data from health organizations are
obtained for the disease transmission. Such data would provide a more accurate random modeling approach. Never-
theless, it was shown that our random approach to modeling disease transmission has advantages over the popular
deterministic approach and the modified random DTM, along with other approximation techniques in the literature,
could be used to investigate the models. This approach could be used for any compartmental model for a variety of
diseases.
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