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1. INTRODUCTION  

The set of all sequences 𝑥 = (𝑥𝑘) with 𝑥𝑘 ∈ ℂ for all 𝑘 ∈ ℕ = {0, 1, 2, … } is represented with 𝑤, where ℂ 

is a family of all complex numbers. The set 𝑤 becomes a vector space over ℂ under point-wise addition 

and scalar multiplication. Every vector subspace 𝑋 of 𝑤 is called a sequence space. 

We use the notations 𝑙∞, 𝑐, 𝑐0 and 𝑙𝑝 for the classical sequence spaces of all bounded,  convergent, null and 

absolutely 𝑝-summable sequences, respectively, where 0 < 𝑝 < ∞. Also, the symbols 𝑏𝑣 and 𝑏𝑣0 stand 

for the spaces consisting of all sequences 𝑥 = (𝑥𝑘) such that (𝑥𝑘 − 𝑥𝑘+1) ∈ 𝑙1 and intersection of the 

spaces 𝑏𝑣 and 𝑐0, respectively. 

A sequence space 𝑋 with a linear topology is called a 𝐾-space provided each of the maps 𝑝𝑖: 𝑋 ⟶ ℂ defined 

by 𝑝𝑖(𝑥) = 𝑥𝑖 is continuous for all 𝑖 ∈ ℕ. It is assumed that 𝑤 is always endowed with its locally convex 

topology generated by the sequence {𝑝𝑛}𝑛=0
∞  of seminorms on 𝑤 where 𝑝𝑛(𝑥) = |𝑥𝑛|, 𝑛 = 0, 1, 2,…. A 𝐾-

space 𝑋 is called an 𝐹𝐾-space provided 𝑋 is a complete linear metric space. An 𝐹𝐾-space whose topology 

is normable is called a 𝐵𝐾-space [1]. 

The classical sequence spaces 𝑙∞, 𝑐 and 𝑐0 equipped with the usual sup-norm defined by ‖𝑥‖∞ = sup
𝑘∈ℕ

|𝑥𝑘| 

are 𝐵𝐾-spaces. Also, 𝑙𝑝 is a 𝐵𝐾-space with its 𝑙𝑝-norm defined by 

‖𝑥‖𝑙𝑝 = (∑|𝑥𝑘|
𝑝

∞

𝑘=0

)

1
𝑝

 

where 1 ≤ 𝑝 < ∞. In case of 0 < 𝑝 < 1, 𝑙𝑝 is a complete 𝑝-normed space according to the usual 𝑝-norm 

defined by 

‖𝑥‖𝑝 =∑|𝑥𝑘|
𝑝

∞

𝑘=0

 

(see [2]). 
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To use the theory of matrix transformation was motivated by special and classical results in summability 

theory which were obtained by Cesàro, Borel, Norlund, Riesz and others. Because of the most general linear 

operator on one sequence space into another is actually given by an infinite matrix, matrix transformations 

are of great interest in the study of sequence spaces. 

For an infinite matrix 𝐴 = (𝑎𝑛𝑘) and a sequence 𝑥 = (𝑥𝑘), 𝑛, 𝑘 ∈ ℕ of complex numbers, the 𝐴-transform 

of 𝑥 = (𝑥𝑘) is written by 𝑦 = 𝐴𝑥 and is defined by 

                                                 𝑦𝑛 = (𝐴𝑥)𝑛 =∑𝑎𝑛𝑘𝑥𝑘

∞

𝑘=0

                                                                 (1.1) 

for all 𝑛 ∈ ℕ and each of these series being assumed convergent. A sequence 𝑥 = (𝑥𝑘) is said to be 𝐴-

summable to 𝑙 if 𝐴𝑥 converges to 𝑙, which is called 𝐴-limit of 𝑥 [3]. 

Given two sequence spaces 𝑋 and 𝑌, the set of all infinite matrices 𝐴 = (𝑎𝑛𝑘) such that 𝐴𝑥 ∈ 𝑌 for all 𝑥 ∈
𝑋 is denoted by (𝑋: 𝑌). 

For an arbitrary sequence space 𝑋, the set 𝑋𝐴 is called matrix domain of an infinite matrix 𝐴 = (𝑎𝑛𝑘) and 

is defined by 

                                            𝑋𝐴 = {𝑥 = (𝑥𝑘) ∈ 𝑤 ∶ 𝐴𝑥 ∈ 𝑋}                                                            (1.2) 

which is a sequence space also. 

We write 𝑏𝑠 and 𝑐𝑠 for the sequence spaces of all bounded and convergent series, respectively. By using 

the notation (1.2) and summation matrix 𝑆 = (𝑠𝑛𝑘), the sequence spaces 𝑏𝑠 and 𝑐𝑠 are defined by 

𝑏𝑠 = {𝑥 = (𝑥𝑘) ∈ 𝑤 ∶  (∑ 𝑥𝑘

𝑛

𝑘=0

) ∈ 𝑙∞} = (𝑙∞)𝑆 

and 

𝑐𝑠 = {𝑥 = (𝑥𝑘) ∈ 𝑤 ∶  (∑𝑥𝑘

𝑛

𝑘=0

) ∈ 𝑐} = 𝑐𝑆 

respectively, where 𝑆 = (𝑠𝑛𝑘) is defined by 

𝑠𝑛𝑘 = {
1 , 0 ≤ 𝑘 ≤ 𝑛
0 , 𝑘 > 𝑛

 

for all 𝑛, 𝑘 ∈ ℕ. 

A matrix 𝐴 = (𝑎𝑛𝑘) is called a triangle if 𝑎𝑛𝑘 = 0 for 𝑘 > 𝑛 and 𝑎𝑛𝑛 ≠ 0 for all 𝑛 ∈ ℕ. Also a triangle 

matrix 𝐴 = (𝑎𝑛𝑘) uniquely has an inverse 𝐴−1 which is a triangle matrix.  

In the next sections, unless stated otherwise, the summation without limits runs from 0 to ∞ and any term 

with negative subscript is assumed equal to zero, such that 𝑥−1 = 0. 

To define new sequence spaces, most of time, many authors use the notion of the matrix domain of an 

infinite matrix. For example: (𝑙∞)𝑁𝑞 and 𝑐𝑁𝑞 in [4], 𝑋𝑝 and 𝑋∞ in [5], 𝑟∞
𝑡 , 𝑟0

𝑡 and 𝑟𝑐
𝑡 in [6], 𝑐0(∆), 𝑐(∆) and 

𝑙∞(∆) in [7], 𝑐0(∆
2), 𝑐(∆2) and 𝑙∞(∆

2) in [8], 𝑐0(∆
𝑚), 𝑐(∆𝑚) and 𝑙∞(∆

𝑚) in [9], 𝑟𝑞(𝑝, 𝐵𝑚) in [10], 

𝑐0(𝐵), 𝑐(𝐵), 𝑙∞(𝐵) and 𝑙𝑝(𝐵) in [11]. 

In this work, we introduce the sequence spaces 𝑙𝑝
𝜆(𝐺𝑚) and 𝑙∞

𝜆 (𝐺𝑚) derived by the domain of the 

composition of m-th order generalized difference matrix and lambda matrix. Moreover, we determine some 

topological properties and examine inclusion relations related to these spaces. Furthermore, we give 

Schauder basis for the space 𝑙𝑝
𝜆(𝐺𝑚). Finally, we determine 𝛼-, 𝛽- and 𝛾- duals of the spaces 𝑙𝑝

𝜆(𝐺𝑚) and 

𝑙∞
𝜆 (𝐺𝑚).    
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2. THE SEQUENCE SPACES 𝒍𝒑
𝝀(𝑮𝒎) AND 𝒍∞

𝝀 (𝑮𝒎) 

In this section, we define the sequence spaces 𝑙𝑝
𝜆(𝐺𝑚) and 𝑙∞

𝜆 (𝐺𝑚). Also, we determine some topological 

properties related to these spaces. 

By using the matrix domain of lambda matrix Λ = (𝜆𝑛𝑘), the sequence spaces 𝑙𝑝
𝜆 and 𝑙∞

𝜆  are first introduced 

by M. Mursaleen and A. K. Noman in [12] and [13]. They defined the sequence spaces 𝑙𝑝
𝜆 and 𝑙∞

𝜆  as follows: 

𝑙𝑝
𝜆 = {𝑥 = (𝑥𝑘) ∈ w ∶  ∑ |

1

𝜆𝑛
∑(𝜆𝑘 − 𝜆𝑘−1)𝑥𝑘

𝑛

𝑘=0

|

𝑝

< ∞

∞

𝑛=0

} 

where 0 < 𝑝 < ∞ and 

𝑙∞
𝜆 = {𝑥 = (𝑥𝑘) ∈ w ∶  sup

𝑛∈ℕ
|
1

𝜆𝑛
∑(𝜆𝑘 − 𝜆𝑘−1)𝑥𝑘

𝑛

𝑘=0

| < ∞} 

respectively, where 𝜆 = (𝜆𝑘) consist of positive reals such that 

0 < 𝜆0 < 𝜆1 < ⋯      𝑎𝑛𝑑     lim
𝑘→∞

𝜆𝑘 = ∞ 

and the lambda matrix Λ = (𝜆𝑛𝑘) is defined by 

𝜆𝑛𝑘 = {

𝜆𝑘 − 𝜆𝑘−1
𝜆𝑛

, 0 ≤ 𝑘 ≤ 𝑛

0 , 𝑘 > 𝑛

 

for all 𝑛, 𝑘 ∈ ℕ. Afterwards, F. Başar and A. Karaisa followed them and improved their work by defining 

the sequence spaces 𝑙𝑝
𝜆(𝐵) and 𝑙∞

𝜆 (𝐵) in [14]. The sequence spaces 𝑙𝑝
𝜆(𝐵) and 𝑙∞

𝜆 (𝐵) are defined by 

𝑙𝑝
𝜆(𝐵) = {𝑥 = (𝑥𝑘) ∈ w ∶  ∑ |

1

𝜆𝑛
∑(𝜆𝑘 − 𝜆𝑘−1)(𝑏1𝑥𝑘 + 𝑏2𝑥𝑘−1)

𝑛

𝑘=0

|

𝑝

< ∞

∞

𝑛=0

} 

where 0 < 𝑝 < ∞ and 

𝑙∞
𝜆 (𝐵) = {𝑥 = (𝑥𝑘) ∈ w ∶  sup

𝑛∈ℕ
|
1

𝜆𝑛
∑(𝜆𝑘 − 𝜆𝑘−1)(𝑏1𝑥𝑘 + 𝑏2𝑥𝑘−1)

𝑛

𝑘=0

| < ∞} 

respectively, where 𝐵 = 𝐵(𝑏1, 𝑏2) is called double band(generalized difference) matrix and is defined by  

𝑏𝑛𝑘 = {
𝑏1 , 𝑘 = 𝑛
𝑏2 , 𝑘 = 𝑛 − 1
0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

for all 𝑛, 𝑘 ∈ ℕ. 

For given two non-zero real numbers 𝑟 and 𝑠, m-th order generalized difference matrix 𝐺𝑚(𝑟, 𝑠) =

(𝑔𝑛𝑘
𝑚 (𝑟, 𝑠)) is defined by  

𝑔𝑛𝑘
𝑚 (𝑟, 𝑠) = {

(
𝑚 − 1
𝑛 − 𝑘

) 𝑟𝑚−𝑛+𝑘−1𝑠𝑛−𝑘 , 𝑚𝑎𝑥{0, 𝑛 − 𝑚 + 1} ≤ 𝑘 ≤ 𝑛

0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

for all 𝑛, 𝑘 ∈ ℕ and 𝑚 ∈ ℕ2 = {2, 3, 4, … } [10]. Here we want to point out that 𝐺2(𝑟, 𝑠) = 𝐵(𝑏1, 𝑏2), 
𝐺3(𝑟, 𝑠) = 𝐵(𝑏1, 𝑏2, 𝑏3), 𝐺

4(𝑟, 𝑠) = 𝐵(𝑏1, 𝑏2, 𝑏3, 𝑏4), … where 𝐵(𝑏1, 𝑏2), 𝐵(𝑏1, 𝑏2, 𝑏3), 𝐵(𝑏1, 𝑏2, 𝑏3, 𝑏4), 
… are double band(generalized difference), triple band, quadruple band, …matrix, respectively. Moreover, 

𝐺𝑚(1,−1) = ∆𝑚, 𝐺3(1,−1) = ∆2 and 𝐺2(1,−1) = ∆ . So, our results obtained from the matrix domain 

of the m-th order difference matrix 𝐺𝑚(𝑟, 𝑠) = (𝑔𝑛𝑘
𝑚 (𝑟, 𝑠)) are more general and more extensive than the 

results on the matrix domain of  𝐵(𝑏1, 𝑏2), 𝐵(𝑏1, 𝑏2, 𝑏3), 𝐵(𝑏1, 𝑏2, 𝑏3, 𝑏4), …, ∆𝑚, ∆2 and ∆. 
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For a given arbitrary sequence 𝑥 = (𝑥𝑘), the 𝐺𝑚(𝑟, 𝑠)-transform of 𝑥 is the sequence 𝜉 = (𝜉𝑘) and is 

defined by 

𝜉𝑘 = ∑ (
𝑚 − 1
𝜗

) 𝑟𝑚−𝜗−1𝑠𝜗𝑥𝑘−𝜗

𝑚−1

𝜗=0

 

for all 𝑘 ∈ ℕ. 

Now, by considering the sequence 𝜉 = (𝜉𝑘) defined above, we define the sequence spaces 𝑙𝑝
𝜆(𝐺𝑚) and 

𝑙∞
𝜆 (𝐺𝑚) by means of m-th order generalized difference matrix and lambda matrix as follows:  

𝑙𝑝
𝜆(𝐺𝑚) = {𝑥 = (𝑥𝑘) ∈ w ∶  ∑ |

1

𝜆𝑛
∑(𝜆𝑘 − 𝜆𝑘−1)𝜉𝑘

𝑛

𝑘=0

|

𝑝

< ∞

∞

𝑛=0

} 

where 0 < 𝑝 < ∞ and 

𝑙∞
𝜆 (𝐺𝑚) = {𝑥 = (𝑥𝑘) ∈ w ∶  sup

𝑛∈ℕ
|
1

𝜆𝑛
∑(𝜆𝑘 − 𝜆𝑘−1)𝜉𝑘

𝑛

𝑘=0

| < ∞} 

respectively. 

If we consider the notation (1.2), the sequence spaces 𝑙𝑝
𝜆(𝐺𝑚) and 𝑙∞

𝜆 (𝐺𝑚) are redefined by 

                                         𝑙𝑝
𝜆(𝐺𝑚) = (𝑙𝑝

𝜆)
𝐺𝑚

  and  𝑙∞
𝜆 (𝐺𝑚) = (𝑙∞

𝜆 )
𝐺𝑚

                                (2.1) 

respectively. Moreover, by using a same way, we can redefine the sequence spaces 𝑙𝑝
𝜆(𝐺𝑚) and 𝑙∞

𝜆 (𝐺𝑚) 

by means of the infinite matrix 𝑇𝑚𝜆(𝑟, 𝑠) = (𝑡𝑛𝑘
𝑚𝜆(𝑟, 𝑠)) as follows: 

                                      𝑙𝑝
𝜆(𝐺𝑚) = (𝑙𝑝)𝑇𝑚𝜆   and  𝑙∞

𝜆 (𝐺𝑚) = (𝑙∞)𝑇𝑚𝜆                                 (2.2) 

respectively, where the infinite matrix 𝑇𝑚𝜆(𝑟, 𝑠) = (𝑡𝑛𝑘
𝑚𝜆(𝑟, 𝑠)) that is composition of m-th order 

generalized difference matrix and lambda matrix is defined by  

𝑡𝑛𝑘
𝑚𝜆 =

{
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 1

𝜆𝑛
∑ (

𝑚− 1
𝜗

) 𝑟𝑚−𝜗−1𝑠𝜗(𝜆𝑘+𝜗 − 𝜆𝑘+𝜗−1)

𝑚−1

𝜗=0

1

𝜆𝑛
∑ (

𝑚− 1
𝜗 − 1

) 𝑟𝑚−𝜗𝑠𝜗−1(𝜆𝑛−𝑚+𝜗+1 − 𝜆𝑛−𝑚+𝜗)

𝑚−1

𝜗=1

1

𝜆𝑛
∑ (

𝑚− 1
𝜗 − 2

) 𝑟𝑚−𝜗+1𝑠𝜗−2(𝜆𝑛−𝑚+𝜗+1 − 𝜆𝑛−𝑚+𝜗)

𝑚−1

𝜗=2

,
 
    ,
   
,

𝑘 < 𝑛 −𝑚 + 2 
 
 
    

𝑘 = 𝑛 −𝑚 + 2
 
 
  

𝑘 = 𝑛 −𝑚 + 3

.

.

.

.

.

.

.

.

.

𝑟𝑚−1(𝜆𝑛−1 − 𝜆𝑛−2) + (𝑚 − 1)𝑟𝑚−2𝑠(𝜆𝑛 − 𝜆𝑛−1)

𝜆𝑛
𝑟𝑚−1(𝜆𝑛 − 𝜆𝑛−1)

𝜆𝑛
0

 
 
, 
 
, 
,
 

  
 

𝑘 = 𝑛 − 1 
 

𝑘 = 𝑛 
𝑘 > 𝑛
 

 

for all 𝑛, 𝑘 ∈ ℕ and 𝑚 ∈ ℕ2. 

For a given arbitrary sequence 𝑥 = (𝑥𝑘), the 𝑇𝑚𝜆-transform of 𝑥 is defined by 
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           𝑦𝑘 = (𝑇
𝑚𝜆𝑥)

𝑘
=
1

𝜆𝑘
∑(𝜆𝑗 − 𝜆𝑗−1) ∑ (

𝑚 − 1
𝜗

) 𝑟𝑚−𝜗−1𝑠𝜗𝑥𝑗−𝜗                               (2.3)

𝑚−1

𝜗=0

𝑘

𝑗=0

 

or 

      𝑦𝑘 =
1

𝜆𝑘
∑ ∑ (

𝑚− 1
𝜗

) 𝑟𝑚−𝜗−1𝑠𝜗(𝜆𝑗+𝜗 − 𝜆𝑗+𝜗−1)𝑥𝑗 +⋯+
𝑟𝑚−1(𝜆𝑘 − 𝜆𝑘−1)

𝜆𝑘
𝑥𝑘                 (2.4)

𝑚−1

𝜗=0

𝑘−𝑚+1

𝑗=0

 

for all 𝑘 ∈ ℕ. 

Theorem 2.1 The following statements hold. 

   (a) In case of  0 < 𝑝 < 1 ,  𝑙𝑝
𝜆(𝐺𝑚) is a complete 𝑝-normed space according to its 𝑝-norm defined by 

‖𝑥‖𝑙𝑝𝜆(𝐺𝑚) = ‖𝑇
𝑚𝜆𝑥‖

𝑝
= ∑ |(𝑇𝑚𝜆𝑥)

𝑛
|
𝑝

∞

𝑛=0

 

   (b) In case of  1 ≤ 𝑝 < ∞ ,  𝑙𝑝
𝜆(𝐺𝑚) is a 𝐵𝐾-space with its 𝑙𝑝-norm defined by 

‖𝑥‖𝑙𝑝𝜆(𝐺𝑚) = ‖𝑇
𝑚𝜆𝑥‖

𝑙𝑝
= (∑ |(𝑇𝑚𝜆𝑥)

𝑛
|
𝑝

∞

𝑛=0

)

1
𝑝

 

   (c) The sequence space 𝑙∞
𝜆 (𝐺𝑚) is a 𝐵𝐾-space according to its sup-norm defined by 

‖𝑥‖𝑙∞𝜆 (𝐺𝑚) = ‖𝑇
𝑚𝜆𝑥‖

∞
= sup

𝑛∈ℕ
|(𝑇𝑚𝜆𝑥)

𝑛
| 

Proof It is known that 𝑙𝑝 is a complete 𝑝-normed space with its 𝑝-norm and a 𝐵𝐾-space with its 𝑙𝑝-norm 

in case of  0 < 𝑝 < 1 and in case of  1 ≤ 𝑝 < ∞, respectively. Also, the sequence space 𝑙∞ equipped with 

its usual sup-norm is a 𝐵𝐾-space. Moreover, (2.2) holds and 𝑇𝑚𝜆(𝑟, 𝑠) = (𝑡𝑛𝑘
𝑚𝜆(𝑟, 𝑠)) is a triangle matrix. 

By combining these five facts and Theorem 4.3.12 of Wilansky [3], we deduce that (a), (b) and (c) hold. 

This step completes the proof.  

Theorem 2.2 In the event of  0 < 𝑝 ≤ ∞, the sequence space 𝑙𝑝
𝜆(𝐺𝑚) is linearly isomorphic to the sequence 

space 𝑙𝑝, namely 𝑙𝑝
𝜆(𝐺𝑚) ≅ 𝑙𝑝. 

Proof For the proof, the existence of a linear bijection between 𝑙𝑝
𝜆(𝐺𝑚) and 𝑙𝑝 is necessary. We define a 

transformation 𝐿 such that 𝐿: 𝑙𝑝
𝜆(𝐺𝑚) ⟶ 𝑙𝑝 , 𝐿(𝑥) = 𝑇

𝑚𝜆𝑥. Then, it is clear that 𝐿(𝑥) = 𝑇𝑚𝜆𝑥 ∈ 𝑙𝑝 for all 

𝑥 ∈ 𝑙𝑝
𝜆(𝐺𝑚). Also, it is trivial that 𝐿 is a linear transformation and 𝑥 = 𝜃 whenever 𝐿(𝑥) = 𝜃. Because of 

this 𝐿 is injective. 

Moreover, given a sequence 𝑦 = (𝑦𝑘) ∈ 𝑙𝑝, we define a sequence 𝑥 = (𝑥𝑘) such that 

𝑥𝑘 =
1

𝑟𝑚−1
∑(

𝑚+ 𝑘 − 𝑗 − 2
𝑚 − 2

) (−
𝑠

𝑟
)
𝑘−𝑗

∑ (−1)𝑗−𝑖
𝜆𝑖

𝜆𝑗 − 𝜆𝑗−1
𝑦𝑖

𝑗

𝑖=𝑗−1

𝑘

𝑗=0

 

for all 𝑘 ∈ ℕ and 𝑚 ∈ ℕ2. Then, for every 𝑘 ∈ ℕ, we obtain  

∑ (
𝑚− 1
𝜗

) 𝑟𝑚−𝜗−1𝑠𝜗𝑥𝑘−𝜗

𝑚−1

𝜗=0

= ∑ (−1)𝑘−𝑖
𝜆𝑖

𝜆𝑘 − 𝜆𝑘−1
𝑦𝑖

𝑘

𝑖=𝑘−1

 

If we consider the equality above, we obtain 

(𝑇𝑚𝜆𝑥)
𝑛
=
1

𝜆𝑛
∑(𝜆𝑘 − 𝜆𝑘−1) ∑ (

𝑚 − 1
𝜗

) 𝑟𝑚−𝜗−1𝑠𝜗𝑥𝑘−𝜗

𝑚−1

𝜗=0

𝑛

𝑘=0
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               =
1

𝜆𝑛
∑(𝜆𝑘 − 𝜆𝑘−1) ∑ (−1)𝑘−𝑖

𝜆𝑖
𝜆𝑘 − 𝜆𝑘−1

𝑦𝑖

𝑘

𝑖=𝑘−1

𝑛

𝑘=0

 

 =
1

𝜆𝑛
∑ ∑ (−1)𝑘−𝑖𝜆𝑖𝑦𝑖

𝑘

𝑖=𝑘−1

𝑛

𝑘=0

                          

= 𝑦𝑛                                                                  

for all 𝑛 ∈ ℕ. So, 𝑇𝑚𝜆𝑥 = 𝑦 and since 𝑦 ∈ 𝑙𝑝, we conclude that 𝑇𝑚𝜆𝑥 ∈ 𝑙𝑝. This shows that 𝑥 ∈ 𝑙𝑝
𝜆(𝐺𝑚) 

and 𝐿(𝑥) = 𝑦. Thus 𝐿 is surjective. From the Theorem 2.1 , we have  

‖𝐿(𝑥)‖𝑙𝑝 = ‖𝑇
𝑚𝜆𝑥‖

𝑙𝑝
= ‖𝑥‖𝑙𝑝𝜆(𝐺𝑚) 

for all 𝑥 ∈ 𝑙𝑝
𝜆(𝐺𝑚) and 0 < 𝑝 ≤ ∞. So, 𝐿 is norm preserving. As a results of these 𝐿 is a linear bijection. 

This last step shows that 𝑙𝑝
𝜆(𝐺𝑚) and 𝑙𝑝 are linearly isomorphic in case of 0 < 𝑝 ≤ ∞. This step completes 

the proof. 

Theorem 2.3 The sequence space 𝑙𝑝
𝜆(𝐺𝑚) is not a Hilbert space whenever 𝑝 ∈ [1,∞)\{2}. 

Proof From the Theorem 2.1 (b), we know that 𝑙2
𝜆(𝐺𝑚) is a 𝐵𝐾-space with its 𝑙2-norm defined by 

‖𝑥‖𝑙2𝜆(𝐺𝑚)
= ‖𝑇𝑚𝜆𝑥‖

𝑙2
, where 𝑙2-norm can be obtained from an inner product on 𝑙2 such that 

‖𝑥‖𝑙2𝜆(𝐺𝑚)
= 〈𝑥, 𝑥〉

1
2 = 〈𝑇𝑚𝜆𝑥, 𝑇𝑚𝜆𝑥〉𝑙2

1
2  

for all 𝑥 ∈ 𝑙2
𝜆(𝐺𝑚). If we consider this fact, we deduce that 𝑙2

𝜆(𝐺𝑚) is a Hilbert space. 

Now, by taking into account 𝑝 ∈ [1,∞)\{2}, we define two sequences 𝑏 = (𝑏𝑘) and 𝑑 = (𝑑𝑘) as follows: 

𝑏𝑘 =

{
  
 

  
 

1

𝑟𝑚−1
, 𝑘 = 0

𝑟 + (1 − 𝑚)𝑠

𝑟𝑚
, 𝑘 = 1

1

𝑟𝑚−1
(−

𝑠

𝑟
)
𝑘−2

[
𝑠2

𝑟2
(
𝑚 + 𝑘 − 2
𝑚 − 2

) −
𝑠

𝑟
(
𝑚 + 𝑘 − 3
𝑚 − 2

) −
𝜆1

𝜆2 − 𝜆1
(
𝑚 + 𝑘 − 4
𝑚 − 2

)] , 𝑘 > 1

 

and  

𝑑𝑘 =

{
  
 

  
 

1

𝑟𝑚−1
, 𝑘 = 0

−
1

𝑟𝑚−1
[
(𝑚 − 1)𝑠

𝑟
+
𝜆1 + 𝜆0
𝜆1 − 𝜆0

] , 𝑘 = 1

1

𝑟𝑚−1
(−

𝑠

𝑟
)
𝑘−2

[
𝑠2

𝑟2
(
𝑚 + 𝑘 − 2
𝑚 − 2

) +
𝑠

𝑟
(
𝑚 + 𝑘 − 3
𝑚 − 2

)
𝜆1 + 𝜆0
𝜆1 − 𝜆0

+
𝜆1

𝜆2 − 𝜆1
] , 𝑘 > 1

 

for all 𝑘 ∈ ℕ and 𝑚 ∈ ℕ2. Then we write 

𝑇𝑚𝜆𝑏 = (1, 1, 0, 0, … )  and  𝑇𝑚𝜆𝑑 = (1,−1, 0, 0, … ) 

If we consider the norm of the space 𝑙𝑝
𝜆(𝐺𝑚), we obtain 

‖𝑏 + 𝑑‖
𝑙𝑝
𝜆(𝐺𝑚)
2 + ‖𝑏 − 𝑑‖

𝑙𝑝
𝜆(𝐺𝑚)
2 = 8 ≠ 2

2
𝑝
+2
= 2(‖𝑏‖

𝑙𝑝
𝜆(𝐺𝑚)
2 + ‖𝑑‖

𝑙𝑝
𝜆(𝐺𝑚)
2 ) 

whenever 𝑝 ∈ [1,∞)\{2}. So, the parallelogram equality does not hold. As a result of this, the norm of 

𝑙𝑝
𝜆(𝐺𝑚) can not be obtained from an inner product. Thus the space 𝑙𝑝

𝜆(𝐺𝑚) is not a Hilbert space whenever 

𝑝 ∈ [1,∞)\{2}. This step completes the proof. 
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3. SOME INCLUSION RELATIONS 

In this section, we examine some inclusion relations related to the sequence spaces 𝑙𝑝
𝜆(𝐺𝑚) and 𝑙∞

𝜆 (𝐺𝑚), 

where 0 < 𝑝 < ∞.  

Theorem 3.1 The inclusion 𝑙𝑝
𝜆(𝐺𝑚) ⊂ 𝑙𝑞

𝜆(𝐺𝑚) strictly holds in the meantime 0 < 𝑝 < 𝑞 < ∞. 

Proof Given an arbitrary sequence 𝑥 = (𝑥𝑘) ∈ 𝑙𝑝
𝜆(𝐺𝑚). In case of 0 < 𝑝 < 𝑞 < ∞, we know that the 

inclusion 𝑙𝑝 ⊂ 𝑙𝑞 holds. If 𝑥 ∈ 𝑙𝑝
𝜆(𝐺𝑚), then 𝑇𝑚𝜆𝑥 ∈ 𝑙𝑝. By considering these two results, we conclude 

that 𝑇𝑚𝜆𝑥 ∈ 𝑙𝑞, namely 𝑥 ∈ 𝑙𝑞
𝜆(𝐺𝑚). So, we have 𝑙𝑝

𝜆(𝐺𝑚) ⊂ 𝑙𝑞
𝜆(𝐺𝑚). 

Now, we define a sequence 𝑢 = (𝑢𝑘) as follows: 

𝑢𝑘 =
1

𝑟𝑚−1
∑(

𝑚+ 𝑘 − 𝑗 − 2
𝑚 − 2

) (−
𝑠

𝑟
)
𝑘−𝑗

∑ (−1)𝑗−𝑖
𝜆𝑖(𝑖 + 1)

−1
𝑝

𝜆𝑗 − 𝜆𝑗−1

𝑗

𝑖=𝑗−1

𝑘

𝑗=0

 

for all 𝑘 ∈ ℕ. Then we obtain 𝑇𝑚𝜆𝑢 = (
1

(𝑘+1)
1
𝑝

) ∈ 𝑙𝑞\𝑙𝑝, that is 𝑢 ∈ 𝑙𝑞
𝜆(𝐺𝑚)\𝑙𝑝

𝜆(𝐺𝑚). As a consequence, 

the inclusion 𝑙𝑝
𝜆(𝐺𝑚) ⊂ 𝑙𝑞

𝜆(𝐺𝑚) is strict. This step completes the proof. 

Theorem 3.2 The inclusions 𝑙𝑝
𝜆(𝐺𝑚) ⊂ 𝑐0

𝜆(𝐺𝑚) ⊂ 𝑐𝜆(𝐺𝑚) ⊂ 𝑙∞
𝜆 (𝐺𝑚) are strict, where 0 < 𝑝 < ∞ and 

𝑐0
𝜆(𝐺𝑚) = (𝑐0)𝑇𝑚𝜆  and 𝑐𝜆(𝐺𝑚) = 𝑐𝑇𝑚𝜆  are defined in [15].   

Proof We know the fact that the inclusions 𝑙𝑝 ⊂ 𝑐0 ⊂ 𝑐 ⊂ 𝑙∞ hold. By considering a similar way as used 

in the proof of Theorem 3.1, one can easily obtain that the inclusions 𝑙𝑝
𝜆(𝐺𝑚) ⊂ 𝑐0

𝜆(𝐺𝑚) ⊂ 𝑐𝜆(𝐺𝑚) ⊂

𝑙∞
𝜆 (𝐺𝑚) hold. 

Now, we define three sequences 𝑥 = (𝑥𝑘), 𝑦 = (𝑦𝑘) and 𝑧 = (𝑧𝑘) as follows: 

𝑥𝑘 =
1

𝑟𝑚−1
∑(

𝑚+ 𝑘 − 𝑗 − 2
𝑚 − 2

) (−
𝑠

𝑟
)
𝑘−𝑗

∑ (−1)𝑗−𝑖
𝜆𝑖(𝑖 + 1)

−1
𝑝

𝜆𝑗 − 𝜆𝑗−1

𝑗

𝑖=𝑗−1

𝑘

𝑗=0

 

𝑦𝑘 =
1

𝑟𝑚−1
∑(

𝑚+ 𝑗 − 2
𝑚 − 2

) (−
𝑠

𝑟
)
𝑗

𝑘

𝑗=0

 

and  

𝑧𝑘 =
1

𝑟𝑚−1
∑(

𝑚+ 𝑘 − 𝑗 − 2
𝑚 − 2

) (−
𝑠

𝑟
)
𝑘−𝑗

∑ (−1)𝑗
𝜆𝑖

𝜆𝑗 − 𝜆𝑗−1

𝑗

𝑖=𝑗−1

𝑘

𝑗=0

 

for all 𝑘 ∈ ℕ. Then we obtain 𝑇𝑚𝜆𝑥 = (
1

(𝑘+1)
1
𝑝

) ∈ 𝑐0\𝑙𝑝, 𝑇𝑚𝜆𝑦 = (1, 1, 1, … ) ∈ 𝑐\𝑐0 and 𝑇𝑚𝜆𝑧 =

((−1)𝑘) ∈ 𝑙∞\𝑐, that is 𝑥 ∈ 𝑐0
𝜆(𝐺𝑚)\𝑙𝑝

𝜆(𝐺𝑚), 𝑦 ∈ 𝑐𝜆(𝐺𝑚)\𝑐0
𝜆(𝐺𝑚) and 𝑧 ∈ 𝑙∞

𝜆 (𝐺𝑚)\𝑐𝜆(𝐺𝑚). Hence the 

inclusions 𝑙𝑝
𝜆(𝐺𝑚) ⊂ 𝑐0

𝜆(𝐺𝑚) ⊂ 𝑐𝜆(𝐺𝑚) ⊂ 𝑙∞
𝜆 (𝐺𝑚) strictly hold. This step completes the proof. 

Theorem 3.3 The inclusion 𝑙∞ ⊂ 𝑙∞
𝜆 (𝐺𝑚) is strict. 

Proof For a given arbitrary sequence 𝑥 = (𝑥𝑘) ∈ 𝑙∞, we write  

‖𝑥‖𝑙∞𝜆 (𝐺𝑚) = sup𝑘∈ℕ
|(𝑇𝑚𝜆𝑥)

𝑘
|                                                                        

                   = sup
𝑘∈ℕ

|
1

𝜆𝑘
∑(𝜆𝑗 − 𝜆𝑗−1) ∑ (

𝑚 − 1
𝜗

) 𝑟𝑚−𝜗−1𝑠𝜗𝑥𝑗−𝜗

𝑚−1

𝜗=0

𝑘

𝑗=0

| 
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                      ≤ sup
𝑘∈ℕ

1

𝜆𝑘
∑(𝜆𝑗 − 𝜆𝑗−1) ∑ (

𝑚 − 1
𝜗

) |𝑟𝑚−𝜗−1𝑠𝜗||𝑥𝑗−𝜗|

𝑚−1

𝜗=0

𝑘

𝑗=0

 

                           ≤ (∑ (
𝑚 − 1
𝜗

) |𝑟𝑚−𝜗−1𝑠𝜗|

𝑚−1

𝜗=0

)‖𝑥‖∞ sup
𝑘∈ℕ

1

𝜆𝑘
∑(𝜆𝑗 − 𝜆𝑗−1)

𝑘

𝑗=0

 

= (∑ (
𝑚 − 1
𝜗

) |𝑟𝑚−𝜗−1𝑠𝜗|

𝑚−1

𝜗=0

)‖𝑥‖∞               

< ∞                                                                          

This shows that 𝑥 = (𝑥𝑘) ∈ 𝑙∞
𝜆 (𝐺𝑚), namely the inclusion 𝑙∞ ⊂ 𝑙∞

𝜆 (𝐺𝑚) holds. 

Let us define a sequence 𝑢 = (𝑢𝑘) as follows: 

𝑢𝑘 =
1

𝑟𝑚−1
∑(

𝑚+ 𝑗 − 2
𝑚 − 2

) (−
𝑠

𝑟
)
𝑗

𝑘

𝑗=0

 

for all 𝑘 ∈ ℕ with |
𝑠

𝑟
| ≥ 1. It is obvious that 𝑢 = (𝑢𝑘) ∉ 𝑙∞. But 𝑇𝑚𝜆𝑢 = (1, 1, 1, … ) ∈ 𝑙∞, that is 𝑢 =

(𝑢𝑘) ∈ 𝑙∞
𝜆 (𝐺𝑚). Thus the inclusion 𝑙∞ ⊂ 𝑙∞

𝜆 (𝐺𝑚) strictly holds. This step completes the proof. 

Theorem 3.4 If the inclusion 𝑙𝑝 ⊂ 𝑙𝑝
𝜆(𝐺𝑚) holds, then the sequence (

1

𝜆𝑘
) ∈ 𝑙𝑝 , where 0 < 𝑝 < ∞. 

Proof We assume that the inclusion 𝑙𝑝 ⊂ 𝑙𝑝
𝜆(𝐺𝑚) holds for 0 < 𝑝 < ∞. It is clear that 𝑒(0) = (1, 0, 0, … ) ∈

𝑙𝑝. Then, by assumption, we conclude that 𝑒(0) ∈ 𝑙𝑝
𝜆(𝐺𝑚), that is 𝑇𝑚𝜆𝑒(0) ∈ 𝑙𝑝. This shows that  

∑|(𝑇𝑚𝜆𝑒(0))
𝑘
|
𝑝

𝑘

= |𝑟𝑚−1𝜆0|∑(
1

𝜆𝑘
)
𝑝

𝑘

< ∞ 

namely, (
1

𝜆𝑘
) ∈ 𝑙𝑝 , where 0 < 𝑝 < ∞. This step completes the proof. 

4. SCHAUDER BASIS AND 𝜶-, 𝜷- AND 𝜸-DUALS 

In this section, we give the Schauder basis for the sequence space 𝑙𝑝
𝜆(𝐺𝑚). Also, we determine 𝛼-, 𝛽- and 

𝛾-duals of the sequence spaces 𝑙𝑝
𝜆(𝐺𝑚) and 𝑙∞

𝜆 (𝐺𝑚). 

Let (𝑋, ‖ . ‖𝑋) be a normed space. A set {𝑥𝑘: 𝑥𝑘 ∈ 𝑋 , 𝑘 ∈ ℕ} is called a Schauder basis for 𝑋 if for every 

𝑥 ∈ 𝑋 there exist unique scalars 𝜇𝑘  , 𝑘 ∈ ℕ, such that 𝑥 = ∑ 𝜇𝑘𝑥𝑘𝑘 ; i.e., 

‖𝑥 −∑𝜇𝑘𝑥𝑘

𝑛

𝑘=0

‖

𝑋

⟶ 0 

as 𝑛 → ∞. 

We know that the sequence {𝑒(𝑘)} is a Schauder basis for 𝑙𝑝 , where 𝑒(𝑘) is a sequence with 1 in k-th place 

and zeros elsewhere. Because of the transformation 𝐿 defined in the proof of Theorem 2.2 is an 

isomorphism; the inverse image of {𝑒(𝑘)} is a Schauder basis for 𝑙𝑝
𝜆(𝐺𝑚). 

So, we can give the following theorem. 

 

Theorem 4.1 Let 𝜎𝑘 = {𝑇
𝑚𝜆𝑥}

𝑘
 for all 𝑘 ∈ ℕ. Define a sequence ℎ(𝑘)

𝑚𝜆(𝑟, 𝑠) = {ℎ𝑛(𝑘)
𝑚𝜆 (𝑟, 𝑠)}

𝑛∈ℕ
 as 

following: 
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ℎ𝑛(𝑘)
𝑚𝜆 (𝑟, 𝑠) =

{
  
 

  
 1

𝑟𝑚−2
(−

𝑠

𝑟
)
𝑛−𝑘

[
(
𝑚 + 𝑛 − 𝑘 − 2

𝑚 − 2
)𝜆𝑘

𝑟(𝜆𝑘 − 𝜆𝑘−1)
+
(
𝑚 + 𝑛 − 𝑘 − 3

𝑚 − 2
)𝜆𝑘

𝑠(𝜆𝑘+1 − 𝜆𝑘)
] , 𝑘 < 𝑛

𝜆𝑘
𝑟𝑚−1(𝜆𝑘 − 𝜆𝑘−1)

, 𝑘 = 𝑛

0 , 𝑘 > 𝑛

 

for all fixed 𝑘 ∈ ℕ. Then the sequence {ℎ(𝑘)
𝑚𝜆(𝑟, 𝑠)}

𝑘∈ℕ
 is a Schauder basis for the space 𝑙𝑝

𝜆(𝐺𝑚) and every 

𝑥 ∈ 𝑙𝑝
𝜆(𝐺𝑚) has a unique representation of the form 

𝑥 =∑𝜎𝑘ℎ(𝑘)
𝑚𝜆(𝑟, 𝑠)

𝑘

 

If we consider the results of Theorem 2.1 (b) and Theorem 4.1, we can give next result. 

 

Corollary 4.2 The sequence space 𝑙𝑝
𝜆(𝐺𝑚) is separable for 1 ≤ 𝑝 < ∞. 

Given arbitrary sequence spaces 𝑋 and 𝑌, the set 𝑀(𝑋, 𝑌) defined by 

                  𝑀(𝑋, 𝑌) = {𝑦 = 𝑦𝑘 ∈ 𝑤 ∶ 𝑥𝑦 = (𝑥𝑘𝑦𝑘) ∈ 𝑌 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 = (𝑥𝑘) ∈ 𝑋}                    (4.1) 

is called the multiplier space of 𝑋 and 𝑌. For a sequence space 𝑍 with 𝑌 ⊂ 𝑍 ⊂ 𝑋, one can easily observe 

that 𝑀(𝑋, 𝑌) ⊂ 𝑀(𝑍, 𝑌) and 𝑀(𝑋, 𝑌) ⊂ 𝑀(𝑋, 𝑍) hold, respectively. 

By using the sequence spaces 𝑙1, 𝑐𝑠 and 𝑏𝑠 and the notation (4.1), the 𝛼-, 𝛽- and 𝛾-duals of a sequence 

space 𝑋 are defined by 

𝑋𝛼 = 𝑀(𝑋, 𝑙1) , 𝑋
𝛽 =  𝑀(𝑋, 𝑐𝑠)  and  𝑋𝛾 = 𝑀(𝑋, 𝑏𝑠) 

respectively. 

Now we write some properties which will be needed in the next lemma. 

                                                            sup
𝐾∈ℱ

∑|∑𝑎𝑛𝑘
𝑛∈𝐾

|

𝑞

< ∞

𝑘

                                                         (4.2) 

                                                               sup
𝑘∈ℕ

∑|𝑎𝑛𝑘|

𝑛

< ∞                                                                 (4.3) 

                                                lim
𝑛→∞

𝑎𝑛𝑘   𝑒𝑥𝑖𝑠𝑡𝑠 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘 ∈ ℕ                                                        (4.4) 

                                                               sup
𝑛∈ℕ

∑|𝑎𝑛𝑘|
𝑞

𝑘

< ∞                                                               (4.5) 

                                                                   sup
𝑘,𝑛∈ℕ

|𝑎𝑛𝑘| < ∞                                                                  (4.6) 

                                                   lim
𝑛→∞

∑|𝑎𝑛𝑘 − lim
𝑛→∞

𝑎𝑛𝑘| = 0                  

𝑘

                                     (4.7) 

where ℱ denotes the collection of all finite subsets of ℕ and 
1

𝑝
+
1

𝑞
= 1. 

Theorem 4.3 (see [16]) Given an infinite matrix 𝐴 = (𝑎𝑛𝑘), the following hold: 

   (i) 𝐴 = (𝑎𝑛𝑘) ∈ (𝑙𝑝: 𝑙1) for 1 < 𝑝 ≤ ∞ ⇔ (4.2) holds, 

   (ii) 𝐴 = (𝑎𝑛𝑘) ∈ (𝑙1: 𝑙1) ⇔ (4.3) holds, 

   (iii) 𝐴 = (𝑎𝑛𝑘) ∈ (𝑙𝑝: 𝑐) for 1 < 𝑝 < ∞ ⇔ (4.4) and (4.5) hold, 
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   (iv) 𝐴 = (𝑎𝑛𝑘) ∈ (𝑙1: 𝑐) ⇔ (4.4) and (4.6) hold, 

   (v) 𝐴 = (𝑎𝑛𝑘) ∈ (𝑙∞: 𝑐) ⇔ (4.4), (4.5) and (4.7) hold with 𝑞 = 1, 

   (vi) 𝐴 = (𝑎𝑛𝑘) ∈ (𝑙𝑝: 𝑙∞) for 1 < 𝑝 ≤ ∞ ⇔ (4.5) holds, 

   (vii) 𝐴 = (𝑎𝑛𝑘) ∈ (𝑙1: 𝑙∞) ⇔ (4.6) holds. 

Theorem 4.4 Define the sets 𝑣1
𝑚𝜆(𝑟, 𝑠) and 𝑣2

𝑚𝜆(𝑟, 𝑠) as follows: 

𝑣1
𝑚𝜆(𝑟, 𝑠) = {𝑎 = (𝑎𝑘) ∈ 𝑤 ∶ sup

𝐾∈ℱ
∑|∑𝑑𝑛𝑘

𝑚𝜆

𝑛∈𝐾

|

𝑞

< ∞

𝑘

 } 

and 

𝑣2
𝑚𝜆(𝑟, 𝑠) = {𝑎 = (𝑎𝑘) ∈ 𝑤 ∶ sup

𝑘∈ℕ
∑|𝑑𝑛𝑘

𝑚𝜆|

𝑛

< ∞} 

where the matrix 𝐷𝑚𝜆 = (𝑑𝑛𝑘
𝑚𝜆(𝑟, 𝑠)) is defined via the sequence 𝑎 = (𝑎𝑛) by 

𝑑𝑛𝑘
𝑚𝜆(𝑟, 𝑠) =

{
  
 

  
 1

𝑟𝑚−2
(−

𝑠

𝑟
)
𝑛−𝑘

[
(
𝑚 + 𝑛 − 𝑘 − 2

𝑚 − 2
)𝜆𝑘

𝑟(𝜆𝑘 − 𝜆𝑘−1)
+
(
𝑚 + 𝑛 − 𝑘 − 3

𝑚 − 2
)𝜆𝑘

𝑠(𝜆𝑘+1 − 𝜆𝑘)
] 𝑎𝑛 , 𝑘 < 𝑛

𝜆𝑛
𝑟𝑚−1(𝜆 𝑛 − 𝜆𝑛−1)

𝑎𝑛 , 𝑘 = 𝑛

0 , 𝑘 > 𝑛

 

for all 𝑛, 𝑘 ∈ ℕ and 𝑚 ∈ ℕ2. Then, {𝑙𝑝
𝜆(𝐺𝑚)}

𝛼
= 𝑣1

𝑚𝜆(𝑟, 𝑠) for 1 < 𝑝 ≤ ∞ and {𝑙1
𝜆(𝐺𝑚)}

𝛼
= 𝑣2

𝑚𝜆(𝑟, 𝑠). 

Proof Given 𝑎 = (𝑎𝑛) ∈ 𝑤, we consider the sequence 𝑥 = (𝑥𝑛) defined by 

            𝑥𝑛 =
1

𝑟𝑚−1
∑(

𝑚+ 𝑛 − 𝑘 − 2
𝑚 − 2

) (−
𝑠

𝑟
)
𝑛−𝑘

∑ (−1)𝑘−𝑖
𝜆𝑖

𝜆𝑘 − 𝜆𝑘−1
𝑦𝑖

𝑘

𝑖=𝑘−1

𝑛

𝑘=0

                    (4.8) 

for all 𝑛 ∈ ℕ and 𝑚 ∈ ℕ2. Then, we obtain 

  𝑎𝑛𝑥𝑛 =
1

𝑟𝑚−1
∑(

𝑚+ 𝑛 − 𝑘 − 2
𝑚 − 2

) (−
𝑠

𝑟
)
𝑛−𝑘

∑ (−1)𝑘−𝑖
𝜆𝑖

𝜆𝑘 − 𝜆𝑘−1
𝑎𝑛𝑦𝑖

𝑘

𝑖=𝑘−1

𝑛

𝑘=0

 

= 𝐷𝑛
𝑚𝜆(𝑦)                                                                                                  

for all 𝑛 ∈ ℕ and 𝑚 ∈ ℕ2. Hence, we conclude that 𝑎𝑥 = (𝑎𝑛𝑥𝑛) ∈ 𝑙1 whenever 𝑥 = (𝑥𝑘) ∈ 𝑙𝑝
𝜆(𝐺𝑚) if 

and only if  𝐷𝑚𝜆𝑦 ∈ 𝑙1 whenever 𝑦 = (𝑦𝑘) ∈ 𝑙𝑝, that is 𝑎 = (𝑎𝑘) ∈ {𝑙𝑝
𝜆(𝐺𝑚)}

𝛼
 if and only if 𝐷𝑚𝜆 ∈

(𝑙𝑝: 𝑙1). If we consider this and Theorem 4.3 (i), we deduce that {𝑙𝑝
𝜆(𝐺𝑚)}

𝛼
= 𝑣1

𝑚𝜆(𝑟, 𝑠) for 1 < 𝑝 ≤ ∞. 

By using a similar way, we obtain that 𝑎 = (𝑎𝑘) ∈ {𝑙1
𝜆(𝐺𝑚)}

𝛼
 if and only if 𝐷𝑚𝜆 ∈ (𝑙1: 𝑙1). If we consider 

this and Theorem 4.3 (ii), we deduce that {𝑙1
𝜆(𝐺𝑚)}

𝛼
= 𝑣2

𝑚𝜆(𝑟, 𝑠). This step completes the proof. 

Theorem 4.5 Define the sets 𝑣3
𝑚𝜆(𝑟, 𝑠), 𝑣4

𝑚𝜆(𝑟, 𝑠), 𝑣5
𝑚𝜆(𝑟, 𝑠), 𝑣6

𝑚𝜆(𝑟, 𝑠) and 𝑣7
𝑚𝜆(𝑟, 𝑠) as follows: 

𝑣3
𝑚𝜆(𝑟, 𝑠) = {𝑎 = (𝑎𝑘) ∈ 𝑤 ∶ ∑(

𝑚 + 𝑛 − 𝑗 − 2
𝑚 − 2

) (−
𝑠

𝑟
)
𝑛−𝑗

𝑎𝑗

∞

𝑗=𝑘

  𝑒𝑥𝑖𝑠𝑡𝑠  ∀𝑘 ∈ ℕ } 

𝑣4
𝑚𝜆(𝑟, 𝑠) = {𝑎 = (𝑎𝑘) ∈ 𝑤 ∶ sup

𝑛∈ℕ
∑|𝑏𝑘

𝑚𝜆(𝑛)|
𝑞

𝑛−1

𝑘=0

< ∞} 
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𝑣5
𝑚𝜆(𝑟, 𝑠) = {𝑎 = (𝑎𝑘) ∈ 𝑤 ∶ sup

𝑛,𝑘∈ℕ
|𝑏𝑘
𝑚𝜆(𝑛)| < ∞} 

𝑣6
𝑚𝜆(𝑟, 𝑠) = {𝑎 = (𝑎𝑘) ∈ 𝑤 ∶ lim

𝑛→∞
∑|𝑏𝑘

𝑚𝜆(𝑛)|

𝑘

=∑|𝑏𝑘
𝑚𝜆|

𝑘

} 

and 

𝑣7
𝑚𝜆(𝑟, 𝑠) = {𝑎 = (𝑎𝑘) ∈ 𝑤 ∶ sup

𝑛∈ℕ
|

𝜆𝑛
𝑟𝑚−1(𝜆 𝑛 − 𝜆𝑛−1)

𝑎𝑛|
𝑞

< ∞} 

where  

𝑏𝑘
𝑚𝜆(𝑛) = 𝜆𝑘 [

1

𝑟𝑚−2
∑ (−

𝑠

𝑟
)
𝑛−𝑗

(
(
𝑚 + 𝑛 − 𝑗 − 2

𝑚 − 2
)

𝑟(𝜆𝑘 − 𝜆𝑘−1)
+
(
𝑚 + 𝑛 − 𝑗 − 3

𝑚 − 2
)

𝑠(𝜆𝑘+1 − 𝜆𝑘)
)𝑎𝑗

𝑛

𝑗=𝑘+1

] 

 

+𝜆𝑘 [
𝑎𝑘

𝑟𝑚−1(𝜆 𝑘 − 𝜆𝑘−1)
]                                                                     

for all 𝑘 < 𝑛 and  

𝑏𝑘
𝑚𝜆 = lim

𝑛→∞
𝑏𝑘
𝑚𝜆(𝑛). 

Then, the following hold: 

   (a) {𝑙𝑝
𝜆(𝐺𝑚)}

𝛽
= 𝑣3

𝑚𝜆(𝑟, 𝑠) ∩ 𝑣4
𝑚𝜆(𝑟, 𝑠) ∩ 𝑣7

𝑚𝜆(𝑟, 𝑠), for 1 < 𝑝 < ∞, 

   (b) {𝑙1
𝜆(𝐺𝑚)}

𝛽
= 𝑣3

𝑚𝜆(𝑟, 𝑠) ∩ 𝑣5
𝑚𝜆(𝑟, 𝑠) ∩ 𝑣7

𝑚𝜆(𝑟, 𝑠) with 𝑞 = 1, 

   (c) {𝑙∞
𝜆 (𝐺𝑚)}

𝛽
= 𝑣3

𝑚𝜆(𝑟, 𝑠) ∩ 𝑣4
𝑚𝜆(𝑟, 𝑠) ∩ 𝑣6

𝑚𝜆(𝑟, 𝑠) ∩ 𝑣7
𝑚𝜆(𝑟, 𝑠) with 𝑞 = 1, 

   (d) {𝑙𝑝
𝜆(𝐺𝑚)}

𝛾
= 𝑣4

𝑚𝜆(𝑟, 𝑠) ∩ 𝑣7
𝑚𝜆(𝑟, 𝑠), for 1 < 𝑝 ≤ ∞, 

   (e) {𝑙1
𝜆(𝐺𝑚)}

𝛾
= 𝑣5

𝑚𝜆(𝑟, 𝑠) ∩ 𝑣7
𝑚𝜆(𝑟, 𝑠) with 𝑞 = 1. 

Proof For an arbitrary sequence  𝑎 = (𝑎𝑘) ∈ 𝑤, by taking into account the sequence 𝑥 = (𝑥𝑘) that is 

defined with the relation (4.8), we obtain 

𝑧𝑛 =∑𝑎𝑘𝑥𝑘

𝑛

𝑘=0

                                                                                                                           

 = ∑{
1

𝑟𝑚−1
∑(

𝑚+ 𝑘 − 𝑗 − 2
𝑚 − 2

) (−
𝑠

𝑟
)
𝑘−𝑗

∑ (−1)𝑗−𝑖
𝜆𝑖

𝜆𝑗 − 𝜆𝑗−1
𝑦𝑖

𝑗

𝑖=𝑗−1

𝑘

𝑗=0

}𝑎𝑘

𝑛

𝑘=0

 

          = ∑ 𝑏𝑘
𝑚𝜆(𝑛)𝑦𝑘

𝑛−1

𝑘=0

+
𝜆𝑛

𝑟𝑚−1(𝜆 𝑛 − 𝜆𝑛−1)
𝑎𝑛𝑦𝑛                                                                   

= 𝑈𝑛
𝑚𝜆(𝑦)                                                                                                                      

for all n ∈ ℕ, where the matrix  𝑈𝑚𝜆 = (𝑢𝑛𝑘
𝑚𝜆(𝑟, 𝑠)) is defined as follows: 

𝑢𝑛𝑘
𝑚𝜆(𝑟, 𝑠) =

{
 

 
𝑏𝑘
𝑚𝜆(𝑛) , 𝑘 < 𝑛
𝜆𝑛

𝑟𝑚−1(𝜆 𝑛 − 𝜆𝑛−1)
𝑎𝑛 , 𝑘 = 𝑛

0 , 𝑘 > 𝑛
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for all 𝑛, 𝑘 ∈ ℕ and 𝑚 ∈ ℕ2. Then,  

(a) 𝑎𝑥 = (𝑎𝑘𝑥𝑘) ∈ 𝑐𝑠 whenever 𝑥 = (𝑥𝑘) ∈ 𝑙𝑝
𝜆(𝐺𝑚) if and only if  𝑈𝑚𝜆𝑦 ∈ 𝑐 whenever 𝑦 = (𝑦𝑘) ∈ 𝑙𝑝, 

that is 𝑎 = (𝑎𝑘) ∈ {𝑙𝑝
𝜆(𝐺𝑚)}

𝛽
 if and only if 𝑈𝑚𝜆 ∈ (𝑙𝑝: 𝑐). If we combine this fact and Theorem 4.3 (iii), 

we obtain 

∑(
𝑚+ 𝑛 − 𝑗 − 2

𝑚 − 2
) (−

𝑠

𝑟
)
𝑛−𝑗

𝑎𝑗

∞

𝑗=𝑘

  𝑒𝑥𝑖𝑠𝑡𝑠  ∀𝑘 ∈ ℕ 

sup
𝑛∈ℕ

∑|𝑏𝑘
𝑚𝜆(𝑛)|

𝑞
𝑛−1

𝑘=0

< ∞ 

and  

sup
𝑛∈ℕ

|
𝜆𝑛

𝑟𝑚−1(𝜆 𝑛 − 𝜆𝑛−1)
𝑎𝑛|

𝑞

< ∞ 

 

As a consequence, these three results show that  

{𝑙𝑝
𝜆(𝐺𝑚)}

𝛽
= 𝑣3

𝑚𝜆(𝑟, 𝑠) ∩ 𝑣4
𝑚𝜆(𝑟, 𝑠) ∩ 𝑣7

𝑚𝜆(𝑟, 𝑠) 

for 1 < 𝑝 < ∞. 

 (b), (c), (d) and (e) can be proven by using a similar way. So, to avoid the repetition of similar statements, 

we omit the details. This step completes the proof. 

5. CONCLUSION 

 By considering the definitions of m-th order generalized difference matrix and the lambda matrix, one can 

observe that 𝐺2(𝑟, 𝑠) = 𝐵(𝑏1, 𝑏2), 𝐺
3(𝑟, 𝑠) = 𝐵(𝑏1, 𝑏2, 𝑏3), 𝐺

4(𝑟, 𝑠) = 𝐵(𝑏1, 𝑏2, 𝑏3, 𝑏4), … where 

𝐵(𝑏1, 𝑏2), 𝐵(𝑏1, 𝑏2, 𝑏3), 𝐵(𝑏1, 𝑏2, 𝑏3, 𝑏4), … are double band(generalized difference), triple band, 

quadruple band, …matrix, respectively. Moreover, 𝐺𝑚(1,−1) = ∆𝑚, 𝐺3(1,−1) = ∆2 and 𝐺2(1,−1) = ∆ 

. Furthermore, if we take 𝜆𝑛 = 𝑛 + 1 and 𝜆𝑛 = 𝑃𝑛 in the definition of the lambda matrix, we obtain the 

Cesàro mean of order one and the Riesz mean matrix which are defined by 

𝑐𝑛𝑘 = {
1

𝑛+1
, 0 ≤ 𝑘 ≤ 𝑛

0 , 𝑘 > 𝑛
    and    𝑟𝑛𝑘

𝑝
= {

𝑝𝑘

𝑃𝑛
, 0 ≤ 𝑘 ≤ 𝑛

0 , 𝑘 > 𝑛
 

respectively, where 𝑝0 > 0, 𝑝𝑛 ≥ 0 (𝑛 ≥ 1) and 𝑃𝑛 = ∑ 𝑝𝑘
𝑛
𝑘=0 . So, the results obtained from the matrix 

domain of the composition of m-th order generalized difference matrix and lambda matrix are more general 

and more comprehensive than the others that we have mentioned above.  

As we finalize our work, we would like to mention that in the next one, we will focus on geometric 

properties of the space 𝑙𝑝
𝜆(𝐺𝑚) and matrix classes related to the spaces 𝑙𝑝

𝜆(𝐺𝑚) and 𝑙∞
𝜆 (𝐺𝑚). 
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