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Abstract
In this work, we introduce the binomial sequence spaces br,sp and br,s∞ which include
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spaces and give some geometric properties of the space br,sp .
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1 The basic information and notations
The set of all real (or complex) valued sequences is symbolized by w which becomes a
vector space under point-wise addition and scalar multiplication. Any vector subspace of
w is called a sequence space. The spaces of all bounded, null, convergent, and absolutely
p-summable sequences are denoted by �∞, c, c, and �p, respectively, where  ≤ p < ∞.

A Banach sequence space is called a BK-space provided each of the maps pn : X −→ C

defined by pn = xn is continuous for all n ∈ N []. By considering the notion of BK-space,
one can say that the sequence spaces �∞, c, and c are BK-spaces according to their usual
sup-norm defined by ‖x‖∞ = supk∈N |xk| and �p is a BK-space according to its �p-norm
defined by

‖x‖�p =

( ∞∑
k=

|xk|p
) 

p

,

where  ≤ p < ∞.
For an arbitrary infinite matrix A = (ank) of real (or complex) entries and x = (xk) ∈ w,

the A-transform of x is defined by

(Ax)n =
∞∑

k=

ankxk (.)
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and is supposed to be convergent for all n ∈ N []. In terms of the ease of use, we prefer
that the summation without limits runs from  to ∞.

Given two sequence spaces X and Y , and an infinite matrix A = (ank), the sequence space
XA is defined by

XA =
{

x = (xk) ∈ w : Ax ∈ X
}

(.)

which is called the domain of an infinite matrix A. Also, by (X : Y ), we denote the class of
all matrices such that X ⊂ YA. If ank =  for k > n and ann �=  for all n, k ∈ N, an infinite
matrix A = (ank) is called a triangle. Also, a triangle matrix A uniquely has an inverse A–

which is a triangle matrix.
Let the summation matrix S = (snk) be defined as follows:

snk =

{
,  ≤ k ≤ n,
, k > n

for all k, n ∈N. Then the spaces of all bounded and convergent series are defined by means
of the summation matrix such that bs = (�∞)S and cs = cS , respectively.

The theory of matrix transformation was set in motion by the theory of summability
which was developed by Cesàro, Norlund, Riesz, etc. By taking into account this theory,
many authors have constructed new sequence spaces. For example, (�∞)Nq and cNq in [],
Xp and X∞ in [], ar

p and ar∞ in []. Furthermore, many authors have used especially the
Euler matrix for defining new sequence spaces. These are er

 and er
c in [], er

p and er∞ in
[] and [], er

(�), er
c(�) and er∞(�) in [], er

(�(m)), er
c(�(m)) and er∞(�(m)) in [], er

(B(m)),
er

c(B(m)), and er∞(B(m)) in [], er
(�, p), er

c(�, p), and er∞(�, p) in [], er
(u, p) and er

c(u, p)
in [].

In this work, we introduce the binomial sequence spaces br,s
p and br,s∞ which include the

spaces �p and �∞, in turn. Moreover, we show that the spaces br,s
p and br,s∞ are BK-spaces

and prove that these spaces are linearly isomorphic to the spaces �p and �∞, respectively.
Furthermore, we speak of some inclusion relations and give the Schauder basis of the
space br,s

p . Lastly, we determine the α-, β-, and γ -duals of those spaces and give some
geometric properties of the space br,s

p .

2 The binomial sequence spaces which include the spaces �p and �∞
In this part, we define the binomial sequence spaces br,s

p and br,s∞ which include the spaces
�p and �∞, respectively. Furthermore, we show that those spaces are BK-spaces and are
linearly isomorphic to the spaces �p and �∞. Also, we show that the binomial sequence
space br,s

p is not a Hilbert space except the case p = , where  ≤ p < ∞.
Let r, s be nonzero real numbers with r + s �= . Then the binomial matrix Br,s = (br,s

nk) is
defined as follows:

br,s
nk =

{


(s+r)n
(n

k
)
sn–krk ,  ≤ k ≤ n,

, k > n

for all k, n ∈ N. For sr > , one can easily check that the following properties hold for the
binomial matrix Br,s = (br,s

nk):
(i) ‖Br,s‖ < ∞,
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(ii) limn→∞ br,s
nk =  (each k ∈N),

(iii) limn→∞
∑

k br,s
nk = .

Thus, the binomial matrix is regular whenever sr > . Here and in the following, unless
stated otherwise, we suppose that sr > .

By taking into account the binomial matrix Br,s = (br,s
nk), the binomial sequence spaces

br,s
p and br,s∞ are defined by

br,s
p =

{
x = (xk) ∈ w :

∑
n

∣∣∣∣∣ 
(s + r)n

n∑
k=

(
n
k

)
sn–krkxk

∣∣∣∣∣
p

< ∞
}

,  ≤ p < ∞,

and

br,s
∞ =

{
x = (xk) ∈ w : sup

n∈N

∣∣∣∣∣ 
(s + r)n

n∑
k=

(
n
k

)
sn–krkxk

∣∣∣∣∣ < ∞
}

.

By considering the notation of (.), the binomial sequence spaces br,s
p and br,s∞ can be

redefined by the matrix domain of Br,s = (br,s
nk) as follows:

br,s
p = (�p)Br,s and br,s

∞ = (�∞)Br,s . (.)

Let us define a sequence y = (yk) as follows:

(
Br,sx

)
k = yk =


(s + r)k

k∑
j=

(
k
j

)
sk–jrjxj (.)

for all k ∈N. This sequence will be frequently used as the Br,s-transform of x.
We would like to touch on a point, if we take s + r = , we obtain the Euler matrix Er =

(er
nk). So, the binomial matrix Br,s = (br,s

nk) generalizes the Euler matrix.
Now, we want to continue with the following theorem which is needed in the next.

Theorem . The binomial sequence spaces br,s
p and br,s∞ are BK-spaces according to their

norms defined by

‖x‖br,s
p =

∥∥Br,sx
∥∥

�p
=

( ∞∑
n=

∣∣(Br,sx
)

n

∣∣p
) 

p

and

‖x‖br,s∞ =
∥∥Br,sx

∥∥∞ = sup
n∈N

∣∣(Br,sx
)

n

∣∣,
where  ≤ p < ∞.

Proof We know that the sequence spaces �p and �∞ are BK-spaces with their �p-norm
and sup-norm, respectively, where  ≤ p < ∞. Furthermore, (.) holds and the binomial
matrix Br,s = (br,s

nk) is a triangle matrix. By taking into account these three facts and The-
orem .. of Wilansky [], we conclude that the binomial sequence spaces br,s

p and br,s∞
are BK-spaces, where  ≤ p < ∞. This completes the proof of the theorem. �
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Theorem . The binomial sequence spaces br,s
p and br,s∞ are linearly isomorphic to the

sequence spaces �p and �∞, in turn, where  ≤ p < ∞.

Proof To refrain from the usage of similar statements, we prove the theorem for only the
sequence space br,s

p , where  ≤ p < ∞. For the proof of the theorem, we need to show the
existence of a linear bijection between the spaces br,s

p and �p. Let L be a transformation
such that L : br,s

p −→ �p, L(x) = Br,sx. By the definition of the binomial sequence space br,s
p ,

we conclude that, for all x ∈ br,s
p , L(x) = Br,sx ∈ �p. Furthermore, it is obvious that L is a

linear transformation and x =  whenever L(x) = . Therefore, L is injective.
For given y = (yk) ∈ �p, let us define a sequence x = (xk) such that

xk =

rk

k∑
j=

(
k
j

)
(–s)k–j(s + r)jyj

for all k ∈N. Then we get

‖x‖br,s
p =

∥∥Br,sx
∥∥

�p

=

( ∞∑
n=

∣∣(Br,sx
)

n

∣∣p
) 

p

=

( ∞∑
n=

∣∣∣∣∣ 
(s + r)n

n∑
k=

(
n
k

)
sn–krkxk

∣∣∣∣∣
p) 

p

=

( ∞∑
n=

∣∣∣∣∣ 
(s + r)n

n∑
k=

(
n
k

)
sn–k

k∑
j=

(
k
j

)
(–s)k–j(s + r)jyj

∣∣∣∣∣
p) 

p

=

( ∞∑
n=

|yn|p
) 

p

= ‖y‖�p

=
∥∥L(x)

∥∥
�p

< ∞.

Hence, we conclude that L is norm preserving and x ∈ br,s
p , namely L is surjective. As a

consequence, L is a linear bijection. This means that the spaces br,s
p and �p are linearly

isomorphic, that is, br,s
p

∼= �p, where  ≤ p < ∞. This completes the proof of the theorem.
�

Theorem . The binomial sequence space br,s
p is not a Hilbert space except the case p = ,

where  ≤ p < ∞.

Proof Let p = . Remembering Theorem ., one can say that br,s
 is a BK-space according

to its �-norm defined by

‖x‖br,s


=
∥∥Br,sx

∥∥
�

=

( ∞∑
n=

∣∣(Br,sx
)

n

∣∣
) 



.
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Moreover, this norm can be generated by an inner product such that

‖x‖br,s


=
〈
Br,sx, Br,sx

〉 
 .

Therefore, br,s
 is a Hilbert space.

Now, we assume that  ≤ p < ∞ and p �= . We define two sequences y = (yk) and z = (zk)
as follows:

yk =
–s + k(r + s)

r

(
–

s
r

)k–

and zk = –
s + k(r + s)

r

(
–

s
r

)k–

for all k ∈N. Then we obtain

‖y + z‖
br,s

p
+ ‖y – z‖

br,s
p

=  �= 

p + = 

(‖y‖
br,s

p
+ ‖z‖

br,s
p

)
.

Thus, the norm of the binomial sequence space br,s
p does not satisfy the parallelogram

equality. As a consequence, the norm cannot be generated by an inner product, that is,
the binomial sequence space br,s

p is not a Hilbert space whenever p �= . This completes the
proof of the theorem. �

3 The inclusion relations and Schauder basis
In this part, we speak of some inclusion relations and give the Schauder basis for the bi-
nomial sequence space br,s

p , where  ≤ p < ∞.

Theorem . The inclusions er
p ⊂ br,s

p and er∞ ⊂ br,s∞ strictly hold, where er
p and er∞ are the

Euler sequence spaces which include the spaces �p and �∞, respectively.

Proof If r + s = , one can easily see that Er = Br,s. Therefore, the inclusion er∞ ⊂ br,s∞
holds. Suppose that  < r <  and s = . Let us now consider a sequence x = (xk) such that
xk = (– 

r )k for all k ∈N. Then it is clear that x = (xk) = ((– 
r )k) /∈ �∞, Erx = ((– – r)k) /∈ �∞

and Br,sx = (( 
+r )k) ∈ �∞. As a result of this, x = (xk) ∈ br,s∞ \ er∞. This shows that the in-

clusion er∞ ⊂ br,s∞ is strictly. We can prove the other part of the theorem by using a similar
technique. This completes the proof of the theorem. �

Theorem . The inclusion �p ⊂ br,s
p is strict, where  ≤ p < ∞.

Proof First we assume that  < p < ∞. From the definition of the space �p, we write

∑
k

|xk|p < ∞

for all x = (xk) ∈ �p. For given an arbitrary sequence x = (xk) ∈ �p, by taking into account
the equality (.) and the Hölder inequality, we obtain

∣∣(Br,sx
)

k

∣∣p =

∣∣∣∣∣ 
(s + r)k

k∑
j=

(
k
j

)
sk–jrjxj

∣∣∣∣∣
p

≤
(


|s + r|k

)p
[( k∑

j=

(
k
j

)
|s|k–j|r|j

)p–

×
( k∑

j=

(
k
j

)
|s|k–j|r|j|xj|p

)]
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=


|s + r|k
k∑

j=

(
k
j

)
|s|k–j|r|j|xj|p

=
k∑

j=

(
k
j

)∣∣∣∣ s
s + r

∣∣∣∣
k∣∣∣∣ r

s

∣∣∣∣
j

|xj|p,

where  ≤ p < ∞. And

∑
k

∣∣(Br,sx
)

k

∣∣p ≤
∑

k

k∑
j=

(
k
j

)∣∣∣∣ s
s + r

∣∣∣∣
k∣∣∣∣ r

s

∣∣∣∣
j

|xj|p

=
∑

j

|xj|p
∞∑
k=j

(
k
j

)∣∣∣∣ s
s + r

∣∣∣∣
k∣∣∣∣ r

s

∣∣∣∣
j

=
∣∣∣∣ s + r

s

∣∣∣∣∑
j

|xj|p.

If we consider the comparison test, we conclude that Br,sx ∈ �p, namely x ∈ br,s
p . As a con-

sequence �p ⊂ br,s
p , where  < p < ∞.

Now, we keep in view the sequence v = (vk) defined by vk = (–)k for all k ∈N. Then it is
clear that v = (vk) /∈ �p and Br,sv = (( s–r

s+r )k) ∈ �p, namely v = (vk) ∈ br,s
p . Because of v = (vk) ∈

br,s
p \�p, the inclusion �p ⊂ br,s

p is strict. In case of p = , the theorem can be proved by using
a similar method. This completes the proof of the theorem. �

Theorem . The spaces br,s
p and �∞ overlap but these spaces do not include each other,

where  ≤ p < ∞.

Proof It is obvious that v = ((–)k) ∈ �∞ and v = ((–)k) ∈ br,s
p . So, the spaces br,s

p and �∞
overlap, where  ≤ p < ∞. Here, we consider the sequences e = (, , , . . .) and u = (uk)
defined by uk = (– s

r )k for all k ∈ N, where | s
r | > . Then we conclude that e ∈ �∞ but

Br,se = e /∈ �p, that is, e /∈ br,s
p and u /∈ �∞ but Br,su = (, , , . . .) ∈ �p, namely u ∈ br,s

p . As
a consequence, e ∈ �∞ \ br,s

p and u ∈ br,s
p \ �∞. On account of this, br,s

p and �∞ do not in-
clude each other, where  ≤ p < ∞. This completes the proof of the theorem. �

Theorem . The inclusions �∞ ⊂ br,s∞ and br,s
p ⊂ br,s∞ are strict, where  ≤ p < ∞.

Proof The inequality

‖x‖br,s∞ = sup
k∈N

∣∣∣∣∣ 
(s + r)k

k∑
j=

(
k
j

)
sk–jrjxj

∣∣∣∣∣ ≤ ‖x‖∞

holds for all x ∈ �∞. In this way, the inclusion �∞ ⊂ br,s∞ holds. Now, we consider the se-
quence v = (vk) defined by vk = (– s+r

r )k for all k ∈ N. Then we conclude that v = (vk) /∈ �∞
but Br,sv = ((– r

r+s )k) ∈ �∞, namely v = (vk) ∈ br,s∞. Therefore, the inclusion �∞ ⊂ br,s∞ strictly
holds.

For given x = (xk) ∈ br,s
p , where  ≤ p < ∞, by taking into account Theorem . and the

inclusion �p ⊂ �∞, we conclude that Br,sx ∈ �∞, namely x ∈ br,s∞. Thus, the inclusion br,s
p ⊂
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br,s∞ holds. Also, it is clear that e ∈ br,s∞ \ br,s
p . Hence, the inclusion br,s

p ⊂ br,s∞ is strict. This
completes the proof of the theorem. �

Now, let us continue with the definition of the Schauder basis of a normed space. Let
(X,‖ · ‖X) be a normed sequence space and d = (dk) be a sequence in X. If for every x ∈ X,
there exists a unique sequence of scalars λ = (λk) such that

lim
n→∞

∥∥∥∥∥x –
n∑

k=

λkdk

∥∥∥∥∥
X

= 

then d = (dk) is called a Schauder basis for X [].

Theorem . Let μk = {Br,sx}k be given for all k ∈ N. We define the sequence g(k)(r, s) =
{g(k)

n (r, s)}n∈N of the elements of the binomial sequence space br,s
p as follows:

g(k)
n (r, s) =

{
,  ≤ n < k,


rn
(n

k
)
(–s)n–k(s + r)k , n ≥ k

for all fixed k ∈ N. Then the sequence {g(k)(r, s)}k∈N is a Schauder basis for the binomial
sequence space br,s

p , and every x ∈ br,s
p has a unique representation of the form

x =
∑

k

μkg(k)(r, s),

where  ≤ p < ∞.

Proof Let x = (xk) ∈ br,s
p be given, where  ≤ p < ∞. For all non-negative integer m, we

define

x[m] =
m∑

k=

μkg(k)(r, s).

Then, if we apply the binomial matrix Br,s = (br,s
nk) to x[m], we write

Br,sx[m] =
m∑

k=

μkBr,sg(k)(r, s) =
m∑

k=

(
Br,sx

)
ke(k)

and

{
Br,s(x – x[m])}

n =

{
,  ≤ n ≤ m,
(Br,sx)n, n > m

for all m, n ∈ N.
For any given ε > , there exists a non-negative integer m such that

∞∑
n=m+

∣∣(Br,sx
)

n

∣∣p ≤
(

ε



)p
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for all m ≥ m. Thus,

∥∥x – x[m]∥∥
br,s

p
=

( ∞∑
n=m+

∣∣(Br,sx
)

n

∣∣p
) 

p

≤
( ∞∑

n=m+

∣∣(Br,sx
)

n

∣∣p
) 

p

≤ ε


< ε

for all m ≥ m. This shows us that

x =
∑

k

μkg(k)(r, s).

Lastly, we should show the uniqueness of this representation. For this purpose, assume
that

x =
∑

k

λkg(k)(r, s).

Since the linear transformation L defined from br,s
p to �p in the proof of Theorem . is

continuous, we have

(
Br,sx

)
n =

∑
k

λk
{

Br,sg(k)(r, s)
}

n =
∑

k

λke(k)
n = λn

for every n ∈ N, which contradicts the fact that (Br,sx)n = μn for every n ∈ N. Therefore,
every x ∈ br,s

p has a unique representation. This completes the proof of the theorem. �

From Theorem ., we know that br,s
p is a Banach space, where  ≤ p < ∞. If we consider

this fact and Theorem ., we can give the next corollary.

Corollary . The binomial sequence space br,s
p is separable, where  ≤ p < ∞.

4 The α- , β-, and γ -duals
In this part, we determine the α-, β-, and γ -duals of the binomial sequence spaces br,s

p and
br,s∞, where  ≤ p < ∞.

Now, we start with a definition. The multiplier space of the sequence spaces X and Y is
denoted by M(X, Y ) and defined by

M(X, Y ) =
{

y = (yk) ∈ w : xy = (xkyk) ∈ Y for all x = (xk) ∈ X
}

.

By taking into account the definition of a multiplier space, the α-, β -,and γ -duals of a
sequence space X are defined by

Xα = M(X,�), Xβ = M(X, cs) and Xγ = M(X, bs),

respectively.



Bişgin Journal of Inequalities and Applications  (2016) 2016:304 Page 9 of 15

For use in the next lemma, we now give some properties:

sup
n∈N

∑
k

|ank|q < ∞, (.)

sup
n,k∈N

|ank| < ∞, (.)

lim
n→∞ ank = ak for each k ∈N, (.)

sup
K∈F

∑
k

∣∣∣∣∑
n∈K

ank

∣∣∣∣
q

< ∞, (.)

lim
n→∞

∑
k

|ank| =
∑

k

∣∣∣ lim
n→∞ ank

∣∣∣, (.)

sup
k∈N

∑
n

|ank| < ∞, (.)

where F is the collection of all finite subsets of N, 
p + 

q =  and  < p ≤ ∞.

Lemma . (see []) Let A = (ank) be an infinite matrix, then the following hold:
(i) A = (ank) ∈ (� : �) ⇔ (.) holds,

(ii) A = (ank) ∈ (� : c) ⇔ (.) and (.) hold,
(iii) A = (ank) ∈ (� : �∞) ⇔ (.) holds,
(iv) A = (ank) ∈ (�p : �) ⇔ (.) holds with 

p + 
q =  and  < p ≤ ∞,

(v) A = (ank) ∈ (�p : c) ⇔ (.) and (.) hold with 
p + 

q =  and  < p < ∞,
(vi) A = (ank) ∈ (�p : �∞) ⇔ (.) holds with 

p + 
q =  and  < p < ∞,

(vii) A = (ank) ∈ (�∞ : c) ⇔ (.) and (.) hold,
(viii) A = (ank) ∈ (�∞ : �∞) ⇔ (.) holds with q = .

Theorem . Let vr,s
 and vr,s

 be defined as follows:

vr,s
 =

{
a = (ak) ∈ w : sup

K∈F

∑
k

∣∣∣∣∑
n∈K

(
n
k

)
(–s)n–kr–n(r + s)kan

∣∣∣∣
q

< ∞
}

and

vr,s
 =

{
a = (ak) ∈ w : sup

k∈N

∑
n

∣∣∣∣
(

n
k

)
(–s)n–kr–n(r + s)kan

∣∣∣∣ < ∞
}

.

Then {br,s
 }α = vr,s

 and {br,s
p }α = vr,s

 , where  < p ≤ ∞.

Proof Let a = (an) ∈ w be given. Remembering the sequence x = (xn), which is defined in
the proof of Theorem ., we have

anxn =
n∑

k=

(
n
k

)
(–s)n–kr–n(r + s)kanyk =

(
Hr,sy

)
n

for all n ∈ N. Then, by considering the equality above, we deduce that ax = (anxn) ∈
� whenever x = (xk) ∈ br,s

 or x = (xk) ∈ br,s
p if and only if Hr,sy ∈ � whenever y =
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(yk) ∈ � or y = (yk) ∈ �p, respectively, where  < p ≤ ∞. This shows us that a = (an) ∈
{br,s

 }α or a = (an) ∈ {br,s
p }α if and only if Hr,s ∈ (� : �) or Hr,s ∈ (�p : �), respectively,

where  < p ≤ ∞. If we combine these two facts and Lemma .(i) and (iv), we ob-
tain

a = (an) ∈ {
br,s


}α ⇔ sup

k∈N

∑
n

∣∣∣∣
(

n
k

)
(–s)n–kr–n(r + s)kan

∣∣∣∣ < ∞

or

a = (an) ∈ {
br,s

p
}α ⇔ sup

K∈F

∑
k

∣∣∣∣∑
n∈K

(
n
k

)
(–s)n–kr–n(r + s)kan

∣∣∣∣
q

< ∞,

respectively, where  < p ≤ ∞. Therefore, {br,s
 }α = vr,s

 and {br,s
p }α = vr,s

 , where  < p ≤ ∞.
This completes the proof of the theorem. �

Theorem . Let vr,s
 , vr,s

 , vr,s
 , vr,s

 , and vr,s
 be defined as follows:

vr,s
 =

{
a = (ak) ∈ w :

∞∑
j=k

(
j
k

)
(–s)j–kr–j(r + s)kaj exists for each k ∈N

}
,

vr,s
 =

{
a = (ak) ∈ w : sup

n,k∈N

∣∣∣∣∣
n∑

j=k

(
j
k

)
(–s)j–kr–j(r + s)kaj

∣∣∣∣∣ < ∞
}

,

vr,s
 =

{
a = (ak) ∈ w : lim

n→∞
∑

k

∣∣∣∣∣
n∑

j=k

(
j
k

)
(–s)j–kr–j(r + s)kaj

∣∣∣∣∣
=

∑
k

∣∣∣∣∣
∞∑
j=k

(
j
k

)
(–s)j–kr–j(r + s)kaj

∣∣∣∣∣
}

,

vr,s
 =

{
a = (ak) ∈ w : sup

n∈N

n∑
k=

∣∣∣∣∣
n∑

j=k

(
j
k

)
(–s)j–kr–j(r + s)kaj

∣∣∣∣∣
q

< ∞
}

,  < q < ∞,

vr,s
 =

{
a = (ak) ∈ w : sup

n∈N

n∑
k=

∣∣∣∣∣
n∑

j=k

(
j
k

)
(–s)j–kr–j(r + s)kaj

∣∣∣∣∣ < ∞
}

.

Then the following equalities hold:
(I) {br,s

 }β = vr,s
 ∩ vr,s

 ,
(II) {br,s

p }β = vr,s
 ∩ vr,s

 , where  < p < ∞,
(III) {br,s∞}β = vr,s

 ∩ vr,s
 ,

(IV) {br,s
 }γ = vr,s

 ,
(V) {br,s

p }γ = vr,s
 , where  < p < ∞,

(VI) {br,s∞}γ = vr,s
 .

Proof To avoid the repetition of similar statements, we give the proof of the theorem for
only the sequence space br,s

p , where  < p < ∞.
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Let a = (ak) ∈ w be given. By considering the sequence x = (xk), which is used in the
proof of Theorem ., we obtain

n∑
k=

akxk =
n∑

k=

[

rk

k∑
j=

(
k
j

)
(–s)k–j(r + s)jyj

]
ak

=
n∑

k=

[ n∑
j=k

(
j
k

)
(–s)j–kr–j(r + s)kaj

]
yk

=
(
Gr,sy

)
n

for all n ∈N, where the matrix Gr,s = (gr,s
nk ) is defined by

gr,s
nk =

{∑n
j=k

( j
k
)
(–s)j–kr–j(r + s)kaj,  ≤ k ≤ n,

, k > n

for all k, n ∈N. Then:
(II) ax = (akxk) ∈ cs whenever x = (xk) ∈ br,s

p if and only if Gr,sy ∈ c whenever y = (yk) ∈ �p,
where  < p < ∞. This fact shows that a = (ak) ∈ {br,s

p }β if and only if Gr,s ∈ (�p : c), where
 < p < ∞. By combining this result and Lemma .(v), we deduce that

sup
n∈N

n∑
k=

∣∣∣∣∣
n∑

j=k

(
j
k

)
(–s)j–kr–j(r + s)kaj

∣∣∣∣∣
q

< ∞ (.)

and

∞∑
j=k

(
j
k

)
(–s)j–kr–j(r + s)kaj exists for each k ∈N,

where  < p < ∞ and 
p + 

q = . As a result of this, we obtain {br,s
p }β = vr,s

 ∩ vr,s
 , where

 < p < ∞.
(V) By following a similar way, ax = (akxk) ∈ bs whenever x = (xk) ∈ br,s

p if and only if
Gr,sy ∈ �∞ whenever y = (yk) ∈ �p, where  < p < ∞. This says us that a = (ak) ∈ {br,s

p }γ if
and only if Gr,s ∈ (�p : �∞), where  < p < ∞. By using this result and Lemma .(vi), we
conclude that (.) holds, where  < p < ∞ and 

p + 
q = . As a consequence of this, we

obtain {br,s
p }γ = vr,s

 , where  < p < ∞. This completes the proof of the theorem. �

5 Geometric properties of the binomial sequence space br,s
p

In this part, we give some geometric properties of the binomial sequence space br,s
p . Let us

start with some notions.
Let (X,‖ · ‖X) be a Banach space. Then X is said to have the Banach-Saks property, if

every bounded sequence u = (un) contains a subsequence v = (vn) such that the Cesàro
means 

n+
∑n

k= vk are norm convergent [].
X is said to have the weak Banach-Saks property, if every weakly null sequence u = (un)

contains a subsequence v = (vn) such that the Cesàro means 
n+

∑n
k= vk are norm conver-

gent [].
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X is said to have Banach-Saks type p, if every weakly null sequence u = (un) has a subse-
quence v = (vn) such that, for some M > ,∥∥∥∥∥

n∑
k=

vk

∥∥∥∥∥
X

≤ M(n + )

p

for all n ∈N, where  < p < ∞ [].
Let C be a weakly compact convex subset of X. Then X is said to have the weak fixed

point property, if every self mapping T : C −→ C that provides ‖Tx – Ty‖ ≤ ‖x – y‖ for all
x, y ∈ C has a fixed point [].

Let X be a normed linear space and S(X) be a unit sphere of X. Then the Gurarii modulus
of convexity is defined as follows:

βX(ε) = inf
{

 – inf
≤λ≤

∥∥λx + ( – λ)y
∥∥ : x, y ∈ S(X),‖x – y‖ = ε

}
,

where  ≤ ε ≤  [].

Theorem . (see []) A Banach space X has the weak fixed point property, if X provides
the condition

R(X) = sup
{

lim inf
n→∞ ‖xn + x‖

}
< ,

where the supremum is taken over all weakly null sequences (xn) of the unit ball and all
points x of the unit ball.

Theorem . The binomial sequence space br,s
p is of the Banach-Saks type p.

Proof Let (un) be a weakly null sequence in the B(br,s
p ) unit ball of br,s

p . We suppose that
(εn) is a sequence of positive numbers provided

∑
εn ≤ 

 . Construct v = u =  and v =
un = u. Then we can find an m ∈N such that∥∥∥∥∥

∞∑
i=m+

v(i)e(i)

∥∥∥∥∥
br,s

p

< ε.

By virtue of un
w−→  implying un −→  coordinatewise, we can find an n ∈N such that∥∥∥∥∥

m∑
i=

un(i)e(i)

∥∥∥∥∥
br,s

p

< ε,

as n ≥ n. Construct v = un . Then we can find an m > m such that∥∥∥∥∥
∞∑

i=m+

v(i)e(i)

∥∥∥∥∥
br,s

p

< ε.

If we use xn −→  coordinatewise one more time, we can find an n > n such that∥∥∥∥∥
m∑
i=

un(i)e(i)

∥∥∥∥∥
br,s

p

< ε,

as n ≥ n.
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By continuing this method, we can constitute two increasing sequences (mk) and (nk)
such that∥∥∥∥∥

mk∑
i=

un(i)e(i)

∥∥∥∥∥
br,s

p

< εk

for all n ≥ nk+ and
∥∥∥∥∥

∞∑
i=mk +

v(i)e(i)

∥∥∥∥∥
br,s

p

< εk ,

where vk = unk . Thus

∥∥∥∥∥
n∑

k=

vk

∥∥∥∥∥
br,s

p

=

∥∥∥∥∥
n∑

k=

(mk–∑
i=

vk(i)e(i) +
mk∑

i=mk–+

vk(i)e(i) +
∞∑

i=mk +

vk(i)e(i)

)∥∥∥∥∥
br,s

p

≤
∥∥∥∥∥

n∑
k=

( mk∑
i=mk–+

vk(i)e(i)

)∥∥∥∥∥
br,s

p

+ 
n∑

k=

εk

and ∥∥∥∥∥
n∑

k=

mk∑
i=mk–+

vk(i)e(i)

∥∥∥∥∥
p

br,s
p

=
n∑

k=

mk∑
i=mk–+

∣∣∣∣∣ 
(s + r)i

i∑
j=

(
i
j

)
si–jrjvk(j)

∣∣∣∣∣
p

≤
n∑

k=

∞∑
i=

∣∣∣∣∣ 
(s + r)i

i∑
j=

(
i
j

)
si–jrjvk(j)

∣∣∣∣∣
p

≤ n + .

Thus we obtain∥∥∥∥∥
n∑

k=

vk

∥∥∥∥∥
br,s

p

≤ (n + )

p +  ≤ (n + )


p .

As a consequence, the binomial sequence space br,s
p is of the Banach-Saks type p. This

completes the proof of the theorem. �

We know from Theorem . that br,s
p is linearly isomorphic to �p. So, it is clear that

R(br,s
p ) = R(�p) = 


p .

By combining this fact and Theorem ., we can give the next theorem.

Theorem . The binomial sequence space br,s
p has the weak fixed point property, where

 < p < ∞.

Theorem . The inequality βbr,s
p (ε) ≤  – [ – ( ε

 )p]

p holds, where  ≤ ε ≤ .

Proof Let  ≤ ε ≤  be given. By assuming the inverse of the binomial matrix Br,s is D, we
construct two sequences u and v as follows:

u =
((

D
(

 –
(

ε



)p)) 
p

, D
(

ε



)
, , , . . .

)
,
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v =
((

D
(

 –
(

ε



)p)) 
p

, D
(

–
ε



)
, , , . . .

)
.

Then we obtain

∥∥Br,su
∥∥

�p
= ‖u‖br,s

p =  and
∥∥Br,sv

∥∥
�p

= ‖v‖br,s
p = .

This shows that u, v ∈ S(br,s
p ) and ‖Br,su – Br,sv‖�p = ‖u – v‖br,s

p = ε.
For  ≤ λ ≤ , we have

∥∥λu + ( – λ)v
∥∥p

br,s
p

=
∥∥λBr,su + ( – λ)Br,sv

∥∥p
�p

=  –
(

ε



)p

+ |λ – |
(

ε



)p

and

inf
≤λ≤

∥∥λu + ( – λ)v
∥∥p

br,s
p

=  –
(

ε



)p

. (.)

Thus, we obtain

βbr,s
p (ε) ≤  –

[
 –

(
ε



)p] 
p

.

This completes the proof of the theorem. �

By using the equality (.), we find two more results.

Corollary . Since βbr,s
p (ε) = , the binomial sequence space br,s

p is strictly convex.

Corollary . Since  < βbr,s
p (ε) ≤ , for  < ε ≤ , the binomial sequence space br,s

p is uni-
formly convex.

6 Conclusion
By taking into account the binomial matrix Br,s = (br,s

nk), we conclude that Br,s = (br,s
nk) re-

duces in the case r +s =  to Er = (er
nk) which is called the Euler matrix of order r. Therefore,

our results obtained from the matrix domain of the binomial matrix Br,s = (br,s
nk) are more

general and more extensive than the results on the matrix domain of the Euler matrix of
order r. Furthermore, the binomial matrix Br,s = (br,s

nk) is not a special case of the weighed
mean matrices. Thus, this paper has filled up a gap in the existent literature.
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