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1 The basic information and notations

The set of all real (or complex) valued sequences is symbolized by w which becomes a
vector space under point-wise addition and scalar multiplication. Any vector subspace of
w is called a sequence space. The spaces of all bounded, null, convergent, and absolutely
p-summable sequences are denoted by £, co, ¢, and £, respectively, where 1 < p < 0.

A Banach sequence space is called a BK-space provided each of the maps p,, : X — C
defined by p, = x, is continuous for all # € N [1]. By considering the notion of BK-space,
one can say that the sequence spaces £, cg, and c are BK-spaces according to their usual
sup-norm defined by ||x|lo = sup;cy |x«| and £, is a BK-space according to its £,-norm
defined by

1
0 p
llle, = (Z |xk|P> :

k=0

where 1 <p < o0.
For an arbitrary infinite matrix A = (a,x) of real (or complex) entries and x = (x¢) € w,

the A-transform of x is defined by

(Ax), = Z AnkXk 1.1)
k=0
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and is supposed to be convergent for all » € N [2]. In terms of the ease of use, we prefer
that the summation without limits runs from 0 to oo.

Given two sequence spaces X and Y, and an infinite matrix A = (a,), the sequence space
X4 is defined by

Xa={x=(w)ew:Ax e X} 1.2)

which is called the domain of an infinite matrix A. Also, by (X : Y), we denote the class of
all matrices such that X C Y4. If a,x = 0 for k > n and a,,, # 0 for all #,k € N, an infinite
matrix A = (a,) is called a triangle. Also, a triangle matrix A uniquely has an inverse A~
which is a triangle matrix.

Let the summation matrix S = (s,x) be defined as follows:

_JL 0<k=mn
Sk = 0, k>n
for all k, n € N. Then the spaces of all bounded and convergent series are defined by means
of the summation matrix such that bs = (€)s and ¢s = cs, respectively.

The theory of matrix transformation was set in motion by the theory of summability
which was developed by Cesaro, Norlund, Riesz, etc. By taking into account this theory,
many authors have constructed new sequence spaces. For example, (¢«)x, and ¢y, in [3],
Xp and Xo in [4], a;, and a7, in [5]. Furthermore, many authors have used especially the
Euler matrix for defining new sequence spaces. These are ¢; and e; in [6], €, and e in
[7]and [8], ep(A), €5(A) and e/ _(A) in [9], eg(A(’”)), eZ(A(”‘)) and ego(A(”’)) in [10], e(’)(B(’”)),
e;(B(”’)), and ego(B(W’)) in [11], e (A, p), €.(A,p), and €. _(A,p) in [12], ej(u, p) and e.(u, p)
in [13].

In this work, we introduce the binomial sequence spaces b;* and b7 which include the
spaces £, and £, in turn. Moreover, we show that the spaces b;* and b are BK-spaces
and prove that these spaces are linearly isomorphic to the spaces £, and £, respectively.
Furthermore, we speak of some inclusion relations and give the Schauder basis of the
space b*. Lastly, we determine the «-, B-, and y-duals of those spaces and give some
geometric properties of the space b}°.

2 The binomial sequence spaces which include the spaces £, and £,
In this part, we define the binomial sequence spaces b;* and b5 which include the spaces
£, and £, respectively. Furthermore, we show that those spaces are BK-spaces and are
linearly isomorphic to the spaces £, and £.,. Also, we show that the binomial sequence
space b’ is not a Hilbert space except the case p = 2, where 1 < p < 0.

Let r,s be nonzero real numbers with 7 + s # 0. Then the binomial matrix B™ = (b7) is
defined as follows:

1 n\ n—k .k
bV,S _ (s+r)" (k)s r, 0 = k =n

: =
e 0, k>n

for all k,n € Ny. For sr > 0, one can easily check that the following properties hold for the
binomial matrix B = (b7):
(i) [1B™] < oo,
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(i) lim,— b7 = 0 (each k € N),

(i) limy, oo Y 75 = 1.
Thus, the binomial matrix is regular whenever sr > 0. Here and in the following, unless
stated otherwise, we suppose that sr > 0.

By taking into account the binomial matrix B = (b;), the binomial sequence spaces
by and b are defined by

n

1 m\ nk
(s+r) Z (k)s rkxk

k=0

4
<oo}, 1<p<oo,

1 =~ (n n—k_k
D E— S Xl <O ¢.
5+ kXO: (k) ‘ ]

By considering the notation of (1.2), the binomial sequence spaces by* and b7 can be

n

by = {xz(xk)ewzz

and

b= :x:(xk)ew:sup
neN

redefined by the matrix domain of B = (b)) as follows:
b;;s = (Kp)Br,s and bg’é = (ZOO)Br'S' (21)

Let us define a sequence y = (y¢) as follows:

k
1 k .
BSx) = — E Sk—lrlx. 2.2
(B75)y = (s+r)k P </) ’ 22

for all k € N. This sequence will be frequently used as the B"*-transform of x.

We would like to touch on a point, if we take s + r = 1, we obtain the Euler matrix E" =
(¢/). So, the binomial matrix B™* = (b)) generalizes the Euler matrix.

Now, we want to continue with the following theorem which is needed in the next.

Theorem 2.1 The binomial sequence spaces by* and b] are BK-spaces according to their
norms defined by

o 3
g = 1], = (3 |<B“x>n|")

n=1

and
lIxllzs = | B, = sup|(B™x),|,
neN

where1 < p < oc0.

Proof We know that the sequence spaces £, and £, are BK-spaces with their £,-norm
and sup-norm, respectively, where 1 < p < oo. Furthermore, (2.1) holds and the binomial
matrix B = (b}) is a triangle matrix. By taking into account these three facts and The-
orem 4.3.12 of Wilansky [2], we conclude that the binomial sequence spaces by;* and b3
are BK-spaces, where 1 < p < 0o. This completes the proof of the theorem. 0
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Theorem 2.2 The binomial sequence spaces by* and b7 are linearly isomorphic to the

sequence spaces £, and £, in turn, where1 < p < 00.

Proof To refrain from the usage of similar statements, we prove the theorem for only the
sequence space b,*, where 1 < p < cc. For the proof of the theorem, we need to show the
existence of a linear bijection between the spaces b;* and £,. Let L be a transformation
such that L : b;;s —> £, L(x) = B*x. By the definition of the binomial sequence space blr;s,
we conclude that, for all x € b;'s, L(x) = B™x € {,. Furthermore, it is obvious that L is a

linear transformation and x = 0 whenever L(x) = 0. Therefore, L is injective.

For given y = (yx) € £,, let us define a sequence x = (xy) such that

1 o [k o
M= Z (j)(—s)k"(s +1Yy;
j=0
for all k € N. Then we get

Il = |5,

(S, r)
n=1
" in p }7
s" Kk x >
2(:)
1 " (n ik Lk i »
(s+1)" k=0 (k)s i=0 <j>(_S) o r)’y]

(i |¥n |">}7

n=1

1
(s+r)

1
p>p

Il
R
:

= lylle,

- el <00

Hence, we conclude that L is norm preserving and x € b;*, namely L is surjective. As a
consequence, L is a linear bijection. This means that the spaces b,* and ¢, are linearly
isomorphic, that is, b;’S = {,, where 1 < p < oo. This completes the proof of the theorem.

O

Theorem 2.3 The binomial sequence space b’ is not a Hilbert space except the casep = 2,

where 1 < p < 00.

Proof Let p = 2. Remembering Theorem 2.1, one can say that b5° is a BK-space according

to its £3-norm defined by

1
00 2
ol - |754], - (Z |<Bf'Sx>n|2) .

n=1
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Moreover, this norm can be generated by an inner product such that
1
ll%ll s = (B"x, B™x)?.

Therefore, b5’ is a Hilbert space.
Now, we assume that 1 < p < oo and p # 2. We define two sequences y = (yx) and z = (z)

as follows:

—S+k(f+S)( S>k_1 s+k(r+s)( s)k’1
Y= ———— == and zr=-——"(-=

r r r r

for all k € N. Then we obtain
2
ly + 2l + 1y = 2l = 8 720 = 2(11y 1 + 1zls)-

Thus, the norm of the binomial sequence space b}° does not satisfy the parallelogram
equality. As a consequence, the norm cannot be generated by an inner product, that is,
the binomial sequence space by* is not a Hilbert space whenever p # 2. This completes the
proof of the theorem. d

3 The inclusion relations and Schauder basis
In this part, we speak of some inclusion relations and give the Schauder basis for the bi-
nomial sequence space b, where 1 < p < co.

Theorem 3.1 The inclusions e, C by* and e, C b strictly hold, where €, and e, are the
Euler sequence spaces which include the spaces £, and L, respectively.

Proof If r + s =1, one can easily see that E" = B". Therefore, the inclusion e/ C b7}
holds. Suppose that 0 < r <1 and s = 5. Let us now consider a sequence x = (x;) such that
Xj = (—%)k for all k € N. Then it is clear that x = (x) = ((—% KY¢ b, E'x = (-3 -1)%) ¢ Lo
and Bx = ((££)%) € €oo. As a result of this, x = (x) € b2\ el .. This shows that the in-

547
clusion e/, C b7 is strictly. We can prove the other part of the theorem by using a similar
technique. This completes the proof of the theorem. 0

Theorem 3.2 The inclusion £, C by is strict, where 1 < p < 0o.

Proof First we assume that 1 < p < 0o. From the definition of the space £,,, we write
D lal? <00
k

for all x = (x) € £,,. For given an arbitrary sequence x = (x;) € £,, by taking into account
the equality (2.2) and the Holder inequality, we obtain

k
1 K\ i
ST x
s+ )k ,ZO(J) ’

(et [ 0] (o)

J

'3

’ (Br,sx)k|19 —
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k
1 k) P,
= —— > JIsl bl
s+ r1* (1 ’

Kk s |Kr) »
=2 )l [ wt
j=0
where 1 < p < co. And
k ki1
. K\| s ||/
;|(B’Sx)/(|p5;§(j) ol 5l
2 [k s rf
_ P R I
;'xA;(j) s+r||s
s+r

If we consider the comparison test, we conclude that B"*x € £, namely x € b;*. As a con-
sequence £, C b7, where 1 < p < 0.

Now, we keep in view the sequence v = (1) defined by v = (~1)X for all k € N. Then it is
clear that v = (vx) ¢ £, and B™v = ((%)k) € £y, namely v = (vx) € b}’;S. Because of v=(1y) €
b;s \ £,, the inclusion £, C b;'s is strict. In case of p = 1, the theorem can be proved by using

a similar method. This completes the proof of the theorem. O

Theorem 3.3 The spaces by* and L, overlap but these spaces do not include each other,

where 1 < p < 00.

Proof Tt is obvious that v = ((-1)%) € £, and v = ((-1)¥) € b;;s. So, the spaces b;;s and £,
overlap, where 1 < p < co. Here, we consider the sequences e = (1,1,1,...) and u = (uy)
defined by u; = (—f)k for all k € N, where |}| > 1. Then we conclude that e € £, but
Bfe=e ¢ Ly, that is, e ¢ b,* and u ¢ € but B u = (1,0,0,...) € £y, namely u € by*. As
a consequence, e € £ \ b;;s and u € b;;s \ £5. On account of this, b;;s and {,, do not in-
clude each other, where 1 < p < 0co. This completes the proof of the theorem. d

Theorem 3.4 The inclusions £, C b and blr;s C bl are strict, where 1 < p < co.

Proof The inequality

=< lI*lleo

k
1 K\ i
- ST x;
<s+r)k,zo<f> '

%5 = sup
©  keN

holds for all x € £«. In this way, the inclusion £, C b7 holds. Now, we consider the se-
quence v = (v,) defined by vy = (—%)k for all k € N. Then we conclude that v = (v) ¢ £
but By = ((—ﬁ)k) € Lo, namely v = () € b2, Therefore, the inclusion £, C b7$ strictly
holds.

For given x = (x;) € b;’s, where 1 < p < 00, by taking into account Theorem 2.2 and the
inclusion £, C £, we conclude that B™x € £, namely x € b7%. Thus, the inclusion b;;s C
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bZZ holds. Also, it is clear that e € b5 \ b),°. Hence, the inclusion b;* C b is strict. This

completes the proof of the theorem. d

Now, let us continue with the definition of the Schauder basis of a normed space. Let
(X, || - Ilx) be a normed sequence space and d = (di) be a sequence in X. If for every x € X,
there exists a unique sequence of scalars A = () such that

=0
X

X — ikkdk

k=0

lim

n—00

then d = (dy) is called a Schauder basis for X [1].

Theorem 3.5 Let ;. = {B"*x}; be given for all k € N. We define the sequence g™ (r,s) =
{gﬁ,k)(r,s)} neN Of the elements of the binomial sequence space b;’s as follows:

0 0<n<k
(k) — ’ = ’
g, (r,s) { i(:)(—s)"_k(5+r)k, n>k

P

for all fixed k € N. Then the sequence (g™ (r,s)}xen is a Schauder basis for the binomial
sequence space b, and every x € b,* has a unique representation of the form

x=Y wghrs),
k

where 1 < p < 00.

Proof Let x = (x) € by* be given, where 1 < p < co. For all non-negative integer m, we
define

m
A= wg®s).
k=0

Then, if we apply the binomial matrix B™ = (%) to ", we write

m m
Br,sx[m] _ Z MkBr,sg(k)(r, S) _ Z(Br,sx)ke(k)
k=0 k=0
and
0, 0<n=<m,

o), -

(B™x),, n>m

for all m,n e N.
For any given € > 0, there exists a non-negative integer m1, such that

> I, = (5)

n=mp+1
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for all m > mg. Thus,

1
o r
o — ! brs—(Z|B” p)
n=m+1
1
()
n=mp+1
€
<§ €

for all m > my. This shows us that
X = Z ukg(k)(r, s).
k

Lastly, we should show the uniqueness of this representation. For this purpose, assume
that

x= Z Akg(k)(r,s).
k

Since the linear transformation L defined from by* to ¢, in the proof of Theorem 2.2 is

continuous, we have
Brs Zkk B” (r,s) Z)Lke =

for every n € N, which contradicts the fact that (B"*x), = u, for every n € N. Therefore,
every x € b;* has a unique representation. This completes the proof of the theorem. U

From Theorem 2.1, we know that by* is a Banach space, where 1 < p < 0o. If we consider
this fact and Theorem 3.5, we can give the next corollary.

Corollary 3.6 The binomial sequence space b’ is separable, where 1 < p < cc.

4 The -, -, and y-duals
In this part, we determine the a-, -, and y -duals of the binomial sequence spaces b}* and
b, where 1 < p < oo.

Now, we start with a definition. The multiplier space of the sequence spaces X and Y is
denoted by M(X, Y) and defined by

MX,Y)= {y (yx) e w:xy = (xxyx) € Y forall x = (xk)eX}.

By taking into account the definition of a multiplier space, the «-, 8 -,and y-duals of a
sequence space X are defined by

X% = M(X, 1), XP =M(X,cs) and X" =M(X,bs),

respectively.
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For use in the next lemma, we now give some properties:

sup ) il < oo, (41)
neN k
sup |auk| < 0o, (4.2)
n,keN
lim a,; =a; foreachkeN, (4.3)
n—0o0
q

sup Z Z“”k < 00, (4.4)
KeF © nek
Tim " a] = Z‘nlij;o auk, (4.5)

k k
sup Z |@ux| < 00, (4.6)
keN

where F is the collection of all finite subsets of N, 117 + % =landl<p <oo.
Lemma 4.1 (see [14]) Let A = (a,x) be an infinite matrix, then the following hold:
(i) A= (au) € (ly:4) & (4.6) holds,
(ii) A=(am) € (1:¢c) < (4.2) and (4.3) hold,
(ili) A = (aun) € (£1: L) < (4.2) holds,
(iv) A=(aw) e ly,:t) & (4.4) holds with 117 + é =landl<p <oo,
(V) A=(aw) € (ly:c) & (4.1) and (4.3) hold with % + % =landl<p<oo,
(vi) A =(aw) € (lp:Lls) & (4.1) holds with }7 + %1 =landl<p<oo,
(vii) A =(au) € (oo : €) & (4.3) and (4.5) hold,
(vill) A = (au) € (Ueo : €oo) & (4.1) holds with g = 1.

Theorem 4.2 Let vy’ and vy’ be defined as follows:

yrs = {a = (ax) € w: sup Z Z (Z)(—s)n-kr—n(r +s)a,

KeF k 'neK

q
<oc)

and

vy = {a = (ax) € w:supZ

keN

<ocl.

n n-k_—n k
(k)(—s) r"(r+s)a,

Then {b7*}* = vy’ and by = vi*, where 1 < p < o0.

Proof Let a = (a,) € w be given. Remembering the sequence x = (x,), which is defined in

the proof of Theorem 2.2, we have

n

@n¥n = Z <Z)(—5)n_kf T+ 8) anyi = (H™),

k=0

for all n € N. Then, by considering the equality above, we deduce that ax = (a,x,) €
¢, whenever x = (xx) € b)* or x = (%) € by’ if and only if H™y € ¢; whenever y =
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(k) € 41 or y = (yx) € £, respectively, where 1 < p < co. This shows us that 2 = (a,) €
{b7°}* or a = (a,) € {by°)* if and only if H™ € (& : &) or H™ € (£, : {1), respectively,

where 1 < p < oco. If we combine these two facts and Lemma 4.1(i) and (iv), we ob-

( ) (r+ s)a,

tain

S

(an) e ; <00

Q
1l

keN

or

<00,

a=(a,) e b’s < sup Z
KeF ©

Z ( ) (=) " (r + 5)¥a, !

nek

respectively, where 1 < p < co. Therefore, {b7°}* = v;* and {by} = v*, where 1 < p < o0.

This completes the proof of the theorem. d

Theorem 4.3 Let vi*, vi*, vi*, vi*, and V* be defined as follows:

o0

vii={a=(a) ew: Z <]k> (=sY K17 (r + s)*a; exists for each k € N},

j=k
<oo},

Z ( ) (=Y r7(r + s)kaj

j=k
ﬂj },

Z ( > (=Y r 7 (r + s)kaj

j=k

Z( > S)’_kr_j(r+s)kaj
j=k

vii=1a=(ax) ew: sup (])(—s)j‘kr‘j(r +s)ka;
nkeN =k k

vi'=da=(a) ew: 11 Z
k

Z <i> (=Y r 7 (r + s)k

j=k

q
<oo}, l<g<oo,

m}.

v = {a =(ay) ew: supZ

neNkO

v = {a =(ay) ew: supZ

neNkO

Then the following equalities hold:
(I) () = N,
(I1) {b;'s}ﬂ =V N, where 1 < p < 00,
(1) {p75}F = vg’s nves,
V) (7 = 5
(V)
(VI)

{b”}V =v*, where1 < p < 00,

oy =vy".

Proof To avoid the repetition of similar statements, we give the proof of the theorem for

7,8
only the sequence space by*, where 1 < p < 00.
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Let a = (ax) € w be given. By considering the sequence x = (x¢), which is used in the

proof of Theorem 2.2, we obtain

" " Ny , .
Z axg = Z |:rik Z <}<> (=) (r + S)]J’j:| Ak
k=0

k=0 j=0

=y [Z <;(> (=Y r G+ s)ka,-:|yk

for all # € N, where the matrix G = (g7) is defined by

rs _ Z;l:k (i)(_s)jikrij(r + S)kaj: 0<k<mn,
n 0, k>n

for all k,n € N. Then:

(II) ax = (axxy) € cs whenever x = (xi) € b;;s ifand only if G’y € c whenever y = (y) € £,
where 1 < p < 0co. This fact shows that a = (a;) € {171’7’5}/S if and only if G™ € (¢, : c), where
1 < p < 00. By combining this result and Lemma 4.1(v), we deduce that

q
<00 (4.7)

sup Zn:

neN k=0

Z (/]() (=Y r 7 (r + S)k(lj

Jj=k

and

Z (;() (=Y r 7 (r + s)kozj exists for each k € N,

j=k

where 1 < p < 00 and 117 + %1 = 1. As a result of this, we obtain {171’;5}‘6 = vy* N v, where
l<p<oo.

(V) By following a similar way, ax = (axxx) € bs whenever x = (x;) € b;'s if and only if
Gy € £ whenever y = (i) € £,, where 1 < p < 0co. This says us that a = (ax) € {b;'S}V if
and only if G € (¢, : ), where 1 < p < co. By using this result and Lemma 4.1(vi), we
conclude that (4.7) holds, where 1 < p < 00 and 117 + é = 1. As a consequence of this, we

obtain {b;*}7 = ve®, where 1 < p < 0o. This completes the proof of the theorem. g

5 Geometric properties of the binomial sequence space b;;*
In this part, we give some geometric properties of the binomial sequence space b)*. Let us
start with some notions.

Let (X, || - |lx) be a Banach space. Then X is said to have the Banach-Saks property, if
every bounded sequence u = (,) contains a subsequence v = (v,) such that the Cesaro
means ﬁ Y k-0 Vk are norm convergent [15].

X is said to have the weak Banach-Saks property, if every weakly null sequence u = (u,,)
contains a subsequence v = (v,,) such that the Cesaro means ﬁ Y k-0 Vk are norm conver-
gent [15].
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X is said to have Banach-Saks type p, if every weakly null sequence u = (i,,) has a subse-
quence v = (v,) such that, for some M > 0,

n
v
k=0

=

<M(n+1)
X

for all n € N, where 1 < p < 0o [16].

Let C be a weakly compact convex subset of X. Then X is said to have the weak fixed
point property, if every self mapping 7: C —> C that provides || Tx — Ty|| < ||x — y|| for all
%,y € C has a fixed point [17].

Let X be a normed linear space and S(X) be a unit sphere of X. Then the Gurarii modulus
of convexity is defined as follows:

B (e) = inf{1—oigf1||xx+ @ =2)y| 1%y € SO, llx -yl = e},

where 0 < e <2 [18].

Theorem 5.1 (see [19]) A Banach space X has the weak fixed point property, if X provides
the condition

R(X) = sup{liminfﬂxn +x||} <2,
n—0o0

where the supremum is taken over all weakly null sequences (x,) of the unit ball and all
points x of the unit ball.

Theorem 5.2 The binomial sequence space by* is of the Banach-Saks type p.

Proof Let (u,) be a weakly null sequence in the B(b}*) unit ball of b,°. We suppose that
(€4) is a sequence of positive numbers provided Y ¢, < % Construct vy = g =0 and v; =
Uy, = u1. Then we can find an m1; € N such that

oo

Z n(@)e?

i=m+1

< €1.
r,s
bp

w
By virtue of u,, — 0 implying u,, — 0 coordinatewise, we can find an #, € N such that

my
Z u, (i)
i=0

<€,
7,8
hI’

as 1 > ny. Construct v, = u,,. Then we can find an 7, > m; such that

oo

Z vo(i)e?

i=mp+1

< €7.
78
bp

If we use x,, —> 0 coordinatewise one more time, we can find an #n3 > 1, such that

my
Z 1, (i)
i=0

< €,
7,8
bp

as n > ns.
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By continuing this method, we can constitute two increasing sequences (n1;) and (n)
such that
my
Z u,(i)e? < €
i=0 by

for all # > ny,1 and

[e¢]

Z va(i)e?

i=my+1

< €k,
7,8
hp

where v = u,, . Thus

n
2w
k=0

n /mp_y my oo
(Z Vk(i)e(i) + Z vk(i)e“) + Z Vk(i)e(i)>
0

b;'S k= i=0 i=mp_1+1 i=my+1 b;'s
n mi n
< Z vie(i)e? +2 E €x
k=0 \i=my_1+1 b? k=0
and
n my p n my i . p
NG 1 B\ gy (i
E E vi(i)e = Z Z ( )I,Z s v())
k=0 i=my_;+1 bzs k=0 i=my_1+1 Str j=0
oo i R »
n 1 i ; iy ’
< E , E s 7Pw()| <m+ L
—| (s + 1)t 4
k=0 i=0 j=0

Thus we obtain

n
v
k=0

1 1
<(n+1)P +1<2(mn+1)>r.
By

As a consequence, the binomial sequence space b, is of the Banach-Saks type p. This
completes the proof of the theorem. d

We know from Theorem 2.2 that by* is linearly isomorphic to ¢,. So, it is clear that

R() = R(E,) = 27.
By combining this fact and Theorem 5.1, we can give the next theorem.

Theorem 5.3 The binomial sequence space by* has the weak fixed point property, where
l<p<oo.

Theorem 5.4 The inequality 5171’;3 (e)<1-[1- (%)p]%’ holds, where 0 < e < 2.

Proof Let 0 <€ <2 be given. By assuming the inverse of the binomial matrix B™* is D, we
construct two sequences u and v as follows:

(5 ol
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(oo 5) ol o)

[Bul,, = Nl =1 and BV, = vl = 1.

This shows that u,v € S(b;’s) and || B u — B"*v|l¢, = |u - v||b;;s =€.
For 0 < <1, we have

||Au +(1-A)v

i;,s = ||AB”su +(1- A)B”SV”‘ZP

e\’ e\’
=1—<—> +|2x-1|(—)
2 2
b =1- (%)p (5.1)

and

inf Hku +1-A)v
0<r<l

Thus, we obtain

Bys(€) <1- [1— <§>p]p

This completes the proof of the theorem. d
By using the equality (5.1), we find two more results.
Corollary 5.5 Since ,Bb;;s(e) =1, the binomial sequence space b’ is strictly convex.

Corollary 5.6 Since 0 < lgb;;S(E) <1, for 0 < € <2, the binomial sequence space b’ is uni-
formly convex.

6 Conclusion

By taking into account the binomial matrix B™* = (b7), we conclude that B = (b7) re-

ducesinthe caser+s=1toE" = (e;) which is called the Euler matrix of order r. Therefore,

our results obtained from the matrix domain of the binomial matrix B" = (b)) are more

general and more extensive than the results on the matrix domain of the Euler matrix of
,S

order r. Furthermore, the binomial matrix B = (b}) is not a special case of the weighed
mean matrices. Thus, this paper has filled up a gap in the existent literature.

Competing interests
The author declares that they have no competing interests.

Author’s contributions
The author read and approved the final manuscript.

Acknowledgements
| would like to express my thanks to the anonymous reviewers for their valuable comments.

Received: 13 August 2016 Accepted: 17 November 2016 Published online: 25 November 2016



Bisgin Journal of Inequalities and Applications (2016) 2016:304 Page 15 of 15

References

1.
2.

3.

Choudhary, B, Nanda, S: Functional Analysis with Applications. Wiley, New Delhi (1989)

Wilansky, A: Summability Through Functional Analysis. North-Holland Mathematics Studies, vol. 85. Elsevier,
Amsterdam (1984)

Wang, C-S: On Nérlund sequence spaces. Tamkang J. Math. 9, 269-274 (1978)

4. Ng, P-N, Lee, P-Y: Cesaro sequence spaces of non-absolute type. Comment. Math. Prace Mat. 20(2), 429-433 (1978)

14.
15.
16.
17.
18.
19.

. Aydin, C, Basar, F: Some new sequence spaces which include the spaces £, and £,. Demonstr. Math. 38(3), 641-656

(2005)

. Altay, B, Basar, F: Some Euler sequence spaces of non-absolute type. Ukr. Math. J. 57(1), 1-17 (2005)
. Altay, B, Basar, F, Mursaleen, M: On the Euler sequence spaces which include the spaces €, and €. . Inf. Sci. 176(10),

1450-1462 (2006)

. Mursaleen, M, Basar, F, Altay, B: On the Euler sequence spaces which include the spaces £, and £«. Il. Nonlinear Anal.

65(3), 707-717 (2006)

. Altay, B, Polat, H: On some new Euler difference sequence spaces. Southeast Asian Bull. Math. 30(2), 209-220 (2006)
. Polat, H, Basar, F: Some Euler spaces of difference sequences of order m. Acta Math. Sci. Ser. B Engl. Ed. 27(2), 254-266

(2007)

. Kara, EE, Basarir, M: On compact operators and some Euler 8™ -difference sequence spaces. J. Math. Anal. Appl.

379(2),499-511 (2011)

. Karakaya, V, Polat, H: Some new paranormed sequence spaces defined by Euler difference operators. Acta Sci. Math.

76,87-100 (2010)

. Demiriz, S, Cakan, C: On some new paranormed Euler sequence spaces and Euler core. Acta Math. Sin. Engl. Ser.

26(7),1207-1222 (2010)

Stieglitz, M, Tietz, H: Matrix transformationen von folgenrdumen eine ergebnistbersicht. Math. Z. 154, 1-16 (1977)
Beauzamy, B: Banach-Saks properties and spreading models. Math. Scand. 44, 357-384 (1997)

Knaust, H: Orlicz sequence spaces of Banach-Saks type. Arch. Math. 59, 562-565 (1992)

Garcia-Falset, J: Stability and fixed points for nonexpansive mappings. Houst. J. Math. 20, 495-505 (1994)

Sanchez, L, Ulldn, A: Some properties of Gurarii's modulus of continuity. Arch. Math. 71, 399-406 (1998)
Garcia-Falset, J: The fixed point property in Banach spaces with NUS-property. J. Math. Anal. Appl. 215(2), 532-542
(1997)

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Immediate publication on acceptance

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com




	The binomial sequence spaces which include the spaces lp and linfty and geometric properties
	Abstract
	MSC
	Keywords

	The basic information and notations
	The binomial sequence spaces which include the spaces lp and linfty
	The inclusion relations and Schauder basis
	The alpha- , beta-, and gamma-duals
	Geometric properties of the binomial sequence space bpr,s
	Conclusion
	Competing interests
	Author's contributions
	Acknowledgements
	References


