Letter to the Editor

Clinical Microbiology

Ann Lab Med 2016;36:611-613 http://dx.doi.org/10.3343/alm.2016.36.6.611 ISSN 2234-3806 eISSN 2234-3814

ANNALS OF LABORATORY MEDICINE

A Novel Integron Gene Cassette Harboring VIM-38 Metallo-β-lactamase in a Clinical *Pseudomonas aeruginosa* Isolate

Fatih **Ş**aban Beriş, Ph.D.¹, Esma Akyildiz, M.S.¹, Azer Özad Düzgün, Ph.D.², Umut Safiye Say Coşkun, M.D.³, Cemal Sandalli, Ph.D.¹, and Ayşegül Çopur Çiçek, M.D.⁴

Department of Biology¹, Faculty of Arts & Sciences, Recep Tayyip Erdoğan University, Rize; Department of Genetics and Bioengineering², Faculty of Engineering and Natural Sciences, Gümüşhane University, Gümüşhane; Department of Medical Microbiology³, Faculty of Medicine, Gaziosmanpaşa University, Tokat; Department of Medical Microbiology, Faculty of Medicine, Recep Tayyip Erdogan University⁴, Rize, Turkey

Dear Editor,

Multidrug resistance of Pseudomonas aeruginosa has been attributed to both intrinsic and acquired antibiotic-resistance mechanisms. Multidrug-resistant (MDR) P. aeruginosa isolates have become a serious healthcare problem worldwide because they are resistant to almost all β-lactams, aminoglycosides, and quinolones. Production of zinc-dependent metallo-β-lactamases (MBLs) has been identified as the most significant mechanism among carbapenem-resistant P. aeruginosa isolates [1]. MBLs are of particular clinical concern because of their broad-spectrum activities, and Imipenemase (IMP)-, Verona Integron-Encoded Metallo-β-lactamase (VIM)-, Sao Paulo metallo-β-lactamase (SPM)-, Germany imipenemase (GIM)-, and New Delhi Metalloβ-lactamase (NDM)-type MBLs have been identified in P. aeruginosa worldwide [2]. Forty-six variants of VIM enzymes have been identified to date (http://www.lahey.org/Studies/other.asp). VIM-38 was recently identified in P. aeruginosa isolates in Turkey and was shown to differ from VIM-5 by a single substitution (Ala-316Val) [3]. In P. aeruginosa, VIM-type MBLs have been reported within mobile genetic elements such as integrons, which contribute to the dissemination of antibiotic resistance [3].

We here report a new clinical *P. aeruginosa* strain isolated from a blood sample on January 2015 at Rize State Hospital in Turkey and identified by using the API 32GN system (bioMerieux, Marcy-l'Etoile, France). Minimal inhibitory concentrations were determined on a VITEK system for the following antibiotics: piperacillin/tazobactam, ceftazidime, cefepime, amikacin, netilmicin, ciprofloxacin, levofloxacin, imipenem, meropenem, cefoperazone-sulbactam, and inducible β -lactamase. 16S rDNA sequencing was used for molecular identification, performed according to Cicek *et al* [4].

The *P. aeruginosa* isolate was screened for β -lactamaseencoding genes and the class 1–class 2 integrases conserved region by PCR. The primers used for detection of β -lactamaseencoding genes and class 1 and class 2 integron gene cassettes are listed in Table 1 [4-8].

The positive PCR product of the class 1 integron was cloned into pGEM-T easy vector (Promega, Madison, WI, USA) and then sequenced by Macrogen (Amsterdam, The Netherlands). Sequencing results were analyzed by using the BLAST alignment search tool (http://www.ncbi.nlm.nih.gov/BLAST) and the multiple sequence alignment program CLUSTALW2 (http://www.

Received: March 28, 2016 Revision received: June 7, 2016 Accepted: July 18, 2016

Corresponding author: Cemal Sandalli Department of Biology, Faculty of Arts and Sciences, Recep Tayyip Erdoşan University, Zihni Derin Yerleşkesi - Fener Mahallesi, 53100 Rize, Turkey Tel: +90-464-223-6126, Fax: +90-464-223-6140 E-mail: cemal.sandalli@erdogan.edu.tr

© The Korean Society for Laboratory Medicine.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Primers	5′→3′	Amplicon size	T _m (°C)
bla _{тем}	F: AGTATTCAACATTTYCGTGT	847	56
	R: TAATCAGTGAGGCACCTATCTC		
bla _{shv}	F: ATGCGTTATATTCGCCTGTG	843	55
	R: TTAGCGTTGCCAGTGCTC		
<i>bla</i> стх-м1	F: GCGTGATACCACTTCACCTC	260	
	R: TGAAGTAAGTGACCAGAATC		
<i>bla</i> _{стх-м2}	F: TGATACCACCACGCCGCTC	341	
	R: TATTGCATCAGAAACCGTGGG		
bla _{GES}	F: ATGCGCTTCATTCACGCAC	863	56
	R: CTATTTGTCCGTGCTCAGGA		
bla _{VEB}	F: ATTTCCCGATGCAAAGCGT	542	55
	R: TTATTCCGGAAGTCCCTGT		
bla _{PER-2}	F: ATGAATGTCATCACAAAATG	860	45
	R: ATAATAGCTTCATTGGTTC		
Ыа _{крс}	F: ATGTCACTGTATCGCCGTCT	893	55
	R: TTTTCAGAGCCTTACTGCCC		
bla _{IMP}	F: CATGGTTTGGTGGTTCTTGT	488	56
	R: ATAATTTGGCGGACTTTGGC		
bla _{vıм}	F: ATTGGTCTATTTGACCGCGTC	780	58
	R: TGCTACTCAACGACTGAGCG		
bla _{ndm}	F: GAGATTGCCGAGCGACTTG	497	57
	R: CGAATGTCTGGCAGCACACTT		
<i>bla</i> _{0XA-51}	F: TAATGCTTTGATCGGCCTTG	353	52
	R: TGGATTGCACTTCATCTTGG		
<i>bla</i> _{0XA-23}	F: GATCGGATTGGAGAACCAGA	501	
	R: ATTTCTGACCGCATTTCCAT		
<i>bla</i> _{0XA-40}	F: GGTTAGTTGGCCCCCTTAAA	246	
	R: AGTTGAGCGAAAAGGGGATT		
<i>bla</i> _{0XA-58}	F: AAGTAT TGGGGCTTGTGCTG	599	
	R: CCCCTCTGCGCTCTACATAC		
<i>bla</i> _{GIM-1}	F: TCGACACACCTTGGTCTG AA	477	
	R: AACTTCCAACTTTGCCATGC		
<i>bla</i> _{SPM-1}	F: AAAATCTGGGTACGCAAACG	271	
	R: ACATTATCCGCTGGAACAGG		
<i>bla</i> sım-1	F: TACAAGGGATTCGGCATC G	570	
	R: TAATGGCCT GTTCCCATGTG		
bla _{сму}	F: GACAGCCTCTTTCTCCACA	1,000	50
	R: TGGAACGAAGGCTA CGTA		
5´-CS	F: GGCATCCAAGCAGCAAG		56
3′-CS	R: AAGCAGACTTGACCTGA		
hep51	F: GATGCCATCGCAAGTACGAG		55

 Table 1. Primers used in the amplification of selected genes

Abbreviations: Tm, melting temperature; CS, conserved segment of class-l integron; hep51, forward primer of of class-ll integron; hep75, reverse primer of of class-ll integron; CMY cephalomycinase coding gene.

R: CGGGATCCCGGACGGATGCACGATTTGTA

ebi.ac.uk/Tools/msa/clustalw2/).

Transferability of antibiotic resistance was tested according to the previously defined protocol [9], by using the rifampin-resistant Escherichia coli K-12 strain J53-2 as a recipient [4]. Susceptibility testing of the MBL-producing integron-positive P. aeruginosa isolate showed that it was resistant to imipenem, meropenem, piperacillin/tazobactam, ceftazidime, cefepime, and cefoperazone-sulbactam. PCR analysis showed that the isolate did not harbor any of the antibiotic resistance genes listed in Table 1, except for *bla*_{VIM}-type MBL. Sequence analysis of the blavim-variant identified it as blavim-38. The P. aeruginosa isolate contained a class 1 integron gene cassette, but not a class 2 integron gene cassette. The *bla*_{VIM-38}-harboring class 1 integron gene cassette was sequenced and was found to be 3,239 bp long. DNA sequence analysis revealed that blavIM-38 MBL was located on the class 1 integron gene cassette together with AAC(6')-Ib/EmrE/aadA1 (Fig. 1). The conjugation assay revealed that the class 1 integron cassette is not transferable.

The *bla*_{VIM-38} gene was identified in *P. aeruginosa* isolates in Turkey in 2014, and found to be located in a class 1 integron containing only two gene cassettes (*bla*_{VIM-38}/orfD) [3]. This genetic structure has also been associated with the *bla*_{VIM-5} gene in a clinical isolate of *Enterobacter cloaceae* from Turkey [9]. Moreover, steady-state kinetic analyses in a study on the enzymatic properties of VIM-38 showed that VIM-38 hydrolyzed all of the tested penicillins, cephalosporins, and carbapenems [10].

In the present study, the class 1 integron included four gene cassettes with $bl_{a_{VIM-38}}$ followed by AAC(6)-*lb*, *EmrE* (multi-drug transporter), and *aadA1*. This is the first report in Turkey of the $bl_{a_{VIM-38}}/AAC(6)$ -*lb/EmrE/aadA1* gene cassette array. Therefore, we report a novel gene cassette array with an MBL gene in a *P. aeruginosa* clinical isolate, and this is the second report for the detection of VIM-38 in a *P. aeruginosa* isolate in Turkey with different hospitalization and isolation times.

In conclusion, the presence of class 1 integrons in *P. aeruginosa* leads to increased resistance to antibiotics. The present study demonstrates the emergence of VIM-producing MDR *P. aeruginosa* strains harboring class 1 integrons and a gene cassette in Turkey. In particular, the *bla*_{VIM-38} MBL gene appears to be spreading among *P. aeruginosa* isolates in Turkey.

Authors' Disclosures of Potential Conflicts of Interest

No potential conflicts of interest relevant to this article were reported.

hep74

Fig. 1. Structure of the bla_{VIM-38} -carrying class 1 integron gene cassette in *Pseudomonas aeruginosa*. Abbreviations: $P_{int,}$ integrase promoter; P_{ant} , promoter of inserted gene(s); *int*/1, class 1 integrase; *att*/1, integron-associated recombination site; *qacE* Δ 1, quaternary ammonium compound resistance gene cassette; *sul*1, sulfonamide resistance gene; *bla*_{VIM-38}, Verona Integron-Encoded Metallo- β -lactamase 38; CS, conserved segment.

Acknowledgments

This work was partially supported by Recep Tayyip Erdogan University Research Fund Grants (BAP-2014.102.03.03. and BAP-2014.102.03.02).

REFERENCES

- 1. Cornaglia G, Giamarellou H, Rossolini GM. Metallo- β -lactamases: a last frontier for β -lactams? Lancet Infect Dis 2011;11:381-93.
- Bebrone C. Metallo-β-lactamases (classification, activity, genetic organization, structure, zinc coordination) and their superfamily. Biochem Pharmacol 2007;74:1686-701.
- Iraz M, Duzgun AO, Cicek AC, Bonnin RA, Ceylan A, Saral A, et al. Characterization of novel VIM carbapenemase, VIM-38, and first detection of GES-5 carbapenem-hydrolyzing β-lactamases in *Pseudomonas aeruginosa* in Turkey. Diagn. Microbiol Infect Dis 2014;78:292-4.
- Cicek AC, Duzgun AO, Saral A, Sandalli C. Determination of a novel integron-located variant (*bla*_{0XA-320}) of Class D β-lactamase in *Proteus mi*-

rabilis. J Basic Microbiol 2014;54:1030-5.

- Iraz M, Özad Düzgün A, Sandallı C, Doymaz MZ, Akkoyunlu Y, Saral A, et al. Distribution of β-lactamase genes among carbapenem-resistant *Klebsiella pneumoniae* strains isolated from patients in Turkey. Ann Lab Med 2015;35:595-601.
- Ellington MJ, Kistler J, Livermore DM, Woodford N. Multiplex PCR for rapid detection of genes encoding acquired metallo-beta-lactamases. J Antimicrob Chemother 2007;59:321-2.
- 7. Woodford N, Ellington MJ, Coelho JM, Turton JF, Warda ME, Brown S, et al. Multiplex PCR for genes encoding prevalent OXA carbapenemases in *Acinetobacter* spp. Int J Antimicrob Agents 2006;27:351-3.
- 8. Zhao S, Qaiyumi S, Friedman S, Singh R, Foley SL, White DG, et al. Characterization of *Salmonella enterica* serotype newport isolated from humans and food animals. J Clin Microbiol 2003;41:5366-71.
- Gacar GG, Midilli K, Kolayli F, Ergen K, Gundes S, Hosoglu S, et al. Genetic and enzymatic properties of metallo-β-lactamase VIM-5 from a clinical isolate of *Enterobacter cloacae*. Antimicrob Agents Chemother 2005;49:4400-3.
- Makena A, Düzgün AÖ, Brem J, McDonough MA, Rydzik AM, Abboud MI, et al. Comparison of Verona Integron-Borne Metallo-β-lactamase (VIM) variants reveals differences in stability and inhibition profiles. Antimicrob Agents Chemother 2015; 60:1377-84.