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ABSTRACT 

In this study, a semi-Markovian random walk   with Pareto distributed interference of chance and delay is considered. 

Some exact formulas for the first four stationary moments of the process   are obtained when the random variables   

which express the discrete interference of chance have Pareto distribution with parameters. The random variables   are 

interpreted as loans which insurance company gets from a bank. With the use of these exact formulas, the third-order 

asymptotic expansions for the first four stationary moments of the process X(t) are derived when   is sufficiently large. 

Finally, by using Monte-Carlo simulation method, the accuracy of the obtained approximation formulas is tested. 

Keywords: Insurance model; random walk with delay; Pareto distribution; asymptotic expansion; Monte-Carlo 

simulation method. 
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It is known that numerous interesting problems of 

insurance theory can be expressed and solved by the 

stochastic processes with a discrete interference of chance. 

In general, the capital of an insurance company increases 

by the customer’s payment and it decreases by 

compensating the damage of the accidents that occurring 

randomly. Insurance companies may maintain their 

business prosperously for a short time, but this doesn’t 

signify that they will carry on their profit margin in the 

future. Because, depending on unluckiness, the accidents 

that happen one after another may lead the insurance 

company to bankruptcy. If insurance companies don’t 

want to come up against such risks, they have to take some 

additional precautionary measures. 

In this study, we adopt a random walk approach to 

insurance’s problem. So we consider a stochastic model, 

which can be used for the needs of the insurance theory. 

This model can be described as follows:  

Suppose that the initial capital of an insurance company is 

equal to  . Assume the premiums and claims arrive at the 

insurance company randomly.  ,  , here  ,  , denote; the 

random time intervals between two successive  customers. 

The total capital level of the company passes from a state 

to another by considering  ,  , premiums ,  claims and 

jumping  in the moments. The random variable    

expressing premiums and claims can take both positive 

and negative values. Capital continues its natural variation 

until   random moment which is a first moment of the 

capital level falls below s. Here the constant   is a positive 

number, interpreted as a control level for the capital of the 

company.  When the case above occurs, working of the 

insurance company is stopped at the control level s for a 

random time  . Usually, the random variables   and   are 

called as delaying time and delaying coefficient for the 

insurance company to make a decision on additional 

precautionary measures, respectively. Because of these 

additional measures, the amount of the company’s capital 

is increased to the level  , which is a random variable 

having a certain distribution in the interval  Thus, the first 

period is completed. Then the insurance company keeps 

working in a way similar to the previous period.  

X(t) process denote the variation of  the amount of the 

capital at time t. This process is a semi-Markovian random 

walk with a discrete interference of chance. 

    It is theoretically and practically very important to study 

the stationary characteristics. It is obvious that these 

characteristics depend on the moment’s of the random 

variables   and  . Note that, some important studies on  this 

topic exist in the literature (see, for example, Aliyev R. T. 

and et al. [1-2]; Anisimov V. V., Artalejo J. R. [3]; 

Borovkov A.A. [4]; Khaniyev T.A. and et al. [7-8]; Lotov 

V.I. [9]; Rogozin B.A. [10]; etc.).  

Note that, in the studies [8], [2] and [1] the random variable  

, which describes the discrete interference of chance, have 

an exponential, triangular and gamma distribution, 

respectively and the stationary moments of ergodic 

distribution have been investigated. In this study, unlike 

[8], [2] and [1], we accept that the random variables   , have 

Pareto distribution with parameters  .  Pareto distribution 

was invented by the Italian economist Vilfrido Pareto to 

describe the distribution of income.  Today it has a wide 

application area from economics to insurance theory and 

to sociology. The cause of such popularity of Pareto 

distribution is unlike the other distributions like gamma 

and exponential distribution Pareto distribution follows 

power law.  A random variable which follows power law 

can have large values, and they plays an important role for 

analyzing extreme events.  In studies such as insurance and 

risk theory, such extreme values have a great importance 

and the ignorance of these extreme events can result with 

big losses or bankruptcies. Hence Pareto distribution is the 

best candidate for the interference random variables, 

which allows us to apply the considered random walk 

process to insurance theory.   

 The exact formulas for the first four stationary moments 

of the process are obtained. In addition to these, third-order 

asymptotic expansions for the first four stationary 

moments of the process X(t) are offered,  as  . Finally, by 

using Monte-Carlo simulation method, the accuracy of the 

given approximating formulas is tested.  

2. MATHEMATICAL CONSTRUCTION OF THE 

PROCESS   

Let 
 n


, 
 n , 

  1n,n 
 be three independent 

sequences of random variables defined on any probability 

space
 P,,

, such that variables in each sequence 

independent and identically distributed. Suppose that i

’s and i ’s  take only positive values,   i ’s take positive 

and negative values and their distribution functions are 

denoted by 
 Φ t

, 
)u(H

 and 
 F x

 respectively. So, 

   1Φ t P ξ t , t 0   ; 

   1F x P η x , x 0   ;  

  0u,uP)u(H 1  . 

Introduce also, sequence of random variables 

 n
, n 1 

, which describes the discrete interference 

of chance has Pareto distribution with parameters 
( , ) 

:

),[z,
z

1)z( 






 




. Define renewal 

sequence 
}T{ n  and random walk 

}S{ n  as follows: 





n

1i

inT

,  





n

1i

inS

, 
0ST 00 

, 

,...2,1n 
. and a sequence of integer valued random 

variables 
 nN

 as: 

0N0  , 

 1 nN N(z) inf n 1:  z-S 0 ,  z s    
. 
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1 2 n

1 2 n

N +N +...+N +k

n+1 n i

i=N +N +...+N +1

N = inf k 1: ζ 0
   

     
   

  

1 2 n 1 2 nN N ... N k N N ... N n
inf{k 1: S S }

      
     ,  

,...2,1n 
 

Here s 0  and 
}inf{

 is stipulated. 

Let
000 

, n1 N...Nn T 
, nnn 

 , 

1n     

and define 
 t

 as:  
   tT:0nmaxt n 

.  

We can now construct the desired stochastic 

process 
 X t

 as follows: 














 





)t(

1N...NNi

in

n21

s)t(X

 

)SS(s
n10 N...NN)t(n  

, if 

1nn t 
, 

,...2,1,0n 
; 0 z [ , )    

. 

In this study, the process 
 X t

 will be called “a 

semi-Markovian random walk with delay and Pareto 

distributed interference of chance”.  

The main purpose of this study is to investigate the 

asymptotic behavior of the stationary moments of the 

process 
)t(X

, as 
 )(E 1 . For this purpose, we 

first discuss the ergodicity of the process 
)t(X

. 

3. PRELIMINARY DISCUSSIONS 

Firstly, we can state the following lemma from [1]. 

Lemma 3.1. Let the initial sequences of the random 

variables 
 n


, 
 n


, 
 n  and 

 n
, n 1 

 

satisfy the following supplementary conditions: 

1) 1E 
; 2) 

1E
; 3) 10 E  

; 4) 1   

is non-arithmetic random variable;  5)

2

1E( )  
; 6) 

the sequence of the random variables 
 n

, n 1 
, 

which describes the discrete interference of chance has 

Pareto  distribution with the parameters 
( , ) 

. Then the 

process 
)t(X

 is ergodic and the following relation for 

ergodic distribution function X
Q (x)

 holds: 

  1

X t
1

E(A(x, ))
Q (x) lim P X(t) x

E(N( ))


  


. 

      

     (3.1)         

where 

1 1

0 0

E(N( )) E(N(z))d (z);  E(A(x, )) A(x,z)d (z);  

 

      
  

 n n i n
n 0

A(x, z)= a (x, z); a (x, z) P z S 0,i 1,n;z S x




     

, 
x 0; z  

.                                                                                                           

Remark 3.1. Let’s now put 

 ,))t(iuXexp(Elim)u(
t

X



Ru . Using 

the basic identity for the random walks (see, Feller W., [5], 

p.514) and Lemma 3.1, we obtain the following Lemma 

3.2.  

Lemma 3.2. Let the conditions of Lemma 3.1 be 

satisfied. Then for 
 u R / 0

, the characteristic 

function 
)u(

X


of the ergodic distribution of the process 

)t(X
can be expressed by means of the characteristics of 

the pair 
N(x)

(N(x),S )
 and the random variable 1  as 

follows: 

     
 

 
N x

ius
S1 iuz

X

1 0

u 1e
u x e dx

EN( ) K u 1


 



  
 

    
 

 

N

ius
1 iuz

S (x)
0

1

K e
x e ( u)dx,

EN( ) K

  
  

  
 (3.2) 

where  

 1

1

0

EN( ) x EN(x)dx


    

; 

N(x )S N(x)
( u) Eexp( iuS )   

; 

1
( u) E exp( iu )


    

; 11  EEK 
. 

 

 

 

 

4. EXACT FORMULAS FOR THE FIRST FOUR MOMENTS OF THE ERGODIC DISTRIBUTION OF PROCESS 

X(T) 
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The aim of this section is to express the first four moments of the ergodic distribution of the process 
)t(X

 by the characteristics 

of the boundary functional N(x)
S

 and the random variable 1 . For this aim, introduce the following notations:  

)(Em k

1k  ,  ),S(E)x(M k

)x(Nk    ,
)x(M

)x(M
)x(M ,

m

m
m 

1

k
1k

1

k
1k  5,1k  ; x 0 ; 

 n 1n

1 k 1 k

0

E( M ( )) x M (x)dx


       ,  n 0,4 ;  )(Ee k

1k  , 4,1k  ; 

and for the shortness of the expressions we put: 

k k

t
E(X ) limE((X(t)) )




,  
4,1k 

 and 
s)t(X)t(X 

. 

Now, we can state the following proposition from [2]. 

Proposition 4.1.  Let the conditions of Lemma 3.1 be satisfied and also 

5

1E   
. Then the first four moments of the 

ergodic distribution of the process 
)t(X

 exist and can be expressed by means of the characteristics of the boundary functional 

 XNS
 and the random variable 1  as follows: 

1 1 1 2 1

1 1 1

1 1
E(X) E( M ( ) E(M ( ))

E(M ( )) Km 2


    

  
 

21 1 1 1 1 1

1
(m 2Km )E(M ( )) Km e

2


    


;   (4.1) 








 ))(M(E
3

1
))(M(E)(M(E

Km))(M(E

1
)X(E 1312111

2

1

111

2
 

 ))(M((E2))(M(EKm))(M(E
2

1
))(M(Em 1111211211121 








  

21111 eKm))(M(EA  ;  (4.2) 

))(M(E
4

1
))(M(E))(M(E

2

3
)(M(E

Km))(M(E

1
)X(E 1413112

2

111

3

1

111

3 







  

  ))(M(E)Km2m(
2

1
))(M(E)(M(E)Km2m(

2

3
1312112111

2

1121   





 311121211111 eKm))(M(EA3))(M(EA
2

3
))(M(EA3 ;  (4.3) 

 ))(M(E))(M(E2))(M(E2)(M(E
Km))(M(E

1
)X(E 14113

2

112

3

111

4

1

111

4 












 ))(M(E

2

1
))(M(E2))(M(E3))(M)(E2)Km2m( 1413112

2

111

3

1121  









 ))(M(E

3

1
))(M(E))(M(EA6))(M(E

5

1
1312111

2

1115  
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  41113121112 eKm))(M(EA3))(M(E))(M(E2A6  ;  (4.4) 

where 
21

1

m
A

2
 ; 

2

3121

2

mm
A

2 3
  ; 

3

31 2141 21

3

m mm m
A

12 3 4
   ;  

          

2 24

31 21 31 5121 41 21

4

m m m mm m m
A

4 2 6 9 30
     ;  

k

k 1e E( ), k 1,4   ; 
11 EEK  . 

 

5. THIRD-ORDER ASYMPTOTIC EXPANSIONS FOR THE FIRST FOUR MOMENTS OF THE ERGODIC 

DISTRIBUTION 

In this section, we will obtain asymptotic expansions for the first four moments of the ergodic distribution of the process 
)t(X

. For this aim, we will the use the ladder variables of the random walk 

1n,S
n

1i

in 
 , with initial state 

0S0  .    

Let  1 n
min{n 1: S 0}   

,  

1

1
1 i

i 1

S












   
.  

Note that, the random variables  1


 and 1


 are called the first strict ascending ladder epoch and ladder height of the random 

walk 
0n},S{ n 

, respectively (see, Feller W., [5], p.391). 

Now, we state the following auxiliary lemma, by using Lemma 5.1 in [7]: 

Lemma 5.1. Suppose that the first three moments of the random variable 


 are finite. Then we can write the following third-

order asymptotic expansions for the first five moments of boundary functional 
 N x

S
,  as 0 : 

       o
2

1
EME 21111

,                                                                                                           (5.1) 

        1o
3

1
EEME 31121

2

112 
,                                                                 (5.2)   

         











1
oEE

2

3
EME 131

2

121

3

113

,                                                                                    (5.3) 

         











2

2

131

3

121

4

114

1
oE2E2EME

,                                                                                 (5.4) 

         











3

3

131

4

121

5

115

1
oE

3

10
E

2

5
EME

.                                                                             (5.5) 

where 
 

k

k k k 1E ;      
;

k

k N(x)M (x) E(S )
; 

5,1k 
. 

Moreover, let us give the following key lemma. 

Lemma 5.2. Let g(x) (
RRg :

) be a bounded function, Lebesque measurable function and 

1
x 0

g(x)
lim c, 0, c R

x 


   
.  Then for each 0   the following relation holds: 

0)(lim
0

/1
0




 
dt

t
g






. 
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Proof. If we use transformation of 



/1t

x 
 on 




 

0

/1
0

)(lim dt
t

g






 we get   










 


1

)1(

0

1

0

)1(

0
)(lim)(lim dxxgxdxxgx 








                                                                            (5.6) 

For the proof the sum in (5.6) have to be equal to zero. Firstly, we show that  




1

0

)1( )( dxxgx 

. 

Under the conditions of Lemma 5.2, for the any
0)(,0  

  exist such that for any  x0 , the inequality 

xallforc
x

xg
,

)(
1







  holds.                                                                                            (5.7) 

From (5.7), it is obtained that 







xc
x

xg
0,

)(
1

. Namely, for all x 

    xxcxgxc 0,)()()( 11

. 

If we choose 

1
1, min ,

2

 
     

                                                                                                                         (5.8) 

We get 

 
  xxcxgxc 0,)1()()1( 11 

                                                                      (5.9) 

From (5.9), we see that 

 

1 1

( 1)

1

0 0

g(x)
x g(x)dx dx

x

 


 

                                                                                                         (5.10) 

We can write (5.10) as the following: 

 

1 1

( 1)

1 1

0 0

g(x) g(x)
x g(x)dx dx dx

x x



 

 



   
                                                                 (5.11) 

Now, we show that 






1

1

)(
dx

x

xg


. Since 
)(xg

 is bounded, M  so that 
g(x) M

. From this, it is obtained that, 

11 1

( 1)

1

g(x) x M
dx M x dx M (1 )

x


  



  

     
  

                                                          (5.12) 

In addition, from (5.8) we get 




xccc
x

xg

x

xg
0,1

)()(
11 

                                                                               (5.13) 
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If we use (5.13), it becomes  

 



)1()1(

)(

00

1
cdxcdx

x

xg


. So 





dx

x

xg

0

1

)(


                                                                                                                 (5.14) 

From (5.12) and (5.14), it is concluded that; 

0)(lim

1

0

)1(

0




 
dxxgx 




                                                                                           (5.15) 

Thus, it is obtained that first part of the sum of limits in (5.6) is equal to zero. Secondly, we show that the second part is also 

equal to zero. For this, since 
)(xg

 is a bounded function, for all 
x R, g(x) M 

 where M . Using this, it gives 

( 1) ( 1) ( 1)

1 1 1

M
x g(x)dx x g(x) dx M x dx

  

         
  

,    for 0  

So we get that, 






1

)1( )( dxxgx 

                                                                                                                          (5.16) 

From (5.16)  

0)(lim
1

)1(

0






 
dxxgx 




                                                                                                    (5.19) 

Thus, it is obtained that second part of the sum of limits in (5.6) is also equal to zero. From (5.15) and (5.17) 

0)(lim
0

/1
0




 
dx

t
g






. 

The proof of the Lemma 5.2 is completed.                                                                ■ 

Let’s give the following corollary, which proof is similar to proof of Lemma 5.2. 

Corollary 5.1. Let 𝑔(𝑥) be defined as in Lemma 5.2 and the function 𝑅𝑛(𝑥) be defined as 

n

nR (x) x g(x),

n 1,0,1,2,... 
Then each 𝛼 > 0, the following asymptotic relation is true, when 𝜆 → 0: 

 n

n 1

0

R dt o
t





 
  

 


. 

Now, we can state the first main result of this section as follows: 

Theorem 5.1. Let the conditions of Proposition 4.1 be satisfied. Then the following asymptotic expansion can be written for 

the first four moments of the ergodic distribution of the process 
)t(X

, for each 6  , as 0 : 

21 11 12

1 1
E(X) D ( ) B B o

 
       

            (5.20) 

2 2

31 21 22E(X ) D ( ) B ( ) B ( ) o(1)       
, (5.21) 
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3 3 2

41 31 32E(X ) D ( ) B ( ) B ( ) o( )         
,   (5.22) 

 4 4 3 2 2

51 41 42E(X ) D ( ) B ( ) B o( )          
, (5.23)  

where 
k

D ( )
k


 

  ,  >k ;  

k
k1

1

D ( )
D ( )

kD ( )


 


, 

k 1,5
,  

21
11 21 21 1

1

D ( )1
B ( ) m ( 2Km )

2 D ( )

 
     

  , 

 

 
221

12 21 12

1

D ( )
B ( ) 2Km

4D ( )


   


31 21 1 2

1

1
( 3 m K 3m K)

6D ( )
    


, 

31
21 21 21 21 1

1

D ( )1
B ( ) 2D ( )m ( 2Km )

2 D ( )

 
      

  , 

231
22 21 12

1

D ( )
B ( ) ( 2Km )

4D ( )


   



2

21 3121
21 21 2

1

3m 2mD ( )
(m 2Km )

2D ( ) 6


   


, 

31 41
31 21 21 1

1

3D ( ) D ( )
B ( ) m ( 2Km )

2 2D ( )

 
    


, 

2 2 2 221 41
32 21 31 21 21 1 12

1

D ( ) 2D ( ) 3 3
B ( ) (3m 2m ) ( Km K m )

2 3D ( ) 2 2

 
       


 

31
21 21 2

1

3D ( )
(m 2Km )

4D ( )


  


, 

51
41 41 21 21 1 21 1

1

D ( )4
B ( ) 6D ( ) (m Km ) ( 2Km )

3 2D ( )


       


, 

2

42 31 21 31 21 21 31 1 21B ( ) D ( )(3m 2m 6m 3 12Km )         

251
21 12

1

D ( )
( 2Km )

4D ( )


  


 

2 2 241
21 21 21 2 1 21 1

1

D ( )
(3m 3 6Km 10Km 8K m )

D ( )


       


. 

Proof. Firstly, we obtain the asymptotic expansion for the expectation of the ergodic distribution of the process 
)t(X

, as 

0 . For this aim, the exact formula (4.1) was obtained for 
)X(E

 in Proposition 4.1. For the shortness, we put  

3E(X) K( ) J ( )  
,                    (5.24) 

where 1 1 1

1
K( )

E(M ( )) Km
 

 
; 3 1 2J ( ) J ( ) J ( )    

;   

   1 1 1 1 2 1

1
J ( ) E M ( ) E M ( )

2
     

; 
2 21 1 1 1 1 1

1
J ( ) (m 2Km )E(M ( )) Km e .

2
    
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By using Lemma 5.1 and Corollary 5.1, we get the following expansion, as 0 : 

 2 2 31
1

D
J ( ) o(1)

2 6

 
    

.      (5.25) 

Using Lemma 5.1 and Corollary 5.1, we obtain the following asymptotic expansion for 
)(J 2 

, as 0 : 

 1

2 21 21 1 21

D 1 1
J ( ) m (m 2Km ) o( )

2 4


     

 .    (5.26) 

By using asymptotic expansions (5.25) and (5.26), we get: 

 
 

   
21 12

3 2 21 1 21 31 2 2

2 2

m D1 1 1 1 1 1 1
J ( ) D (m 2Km ) o( ) .

2 2D D 4 6

   
            

              (5.27) 

Analogically, we calculate: 

     

2

21 1 21 1

2 2

1 1 1

2Km 2Km1 1 1 1 1
K( ) 1 o( )

D 2D 2D

     
                 . (5.28) 

Taking into account the asymptotic expansions (5.27) and (5.28), we obtain the following asymptotic expansion, as 0 : 

 

 
2

3 21 21 21 1 2

1

D1
K( ) J ( ) D m ( 2Km )

2 D

 
        

 

 

 
22

21 1 3

1

D
( 2Km )

8D

 
  

  

 
31 21 1 2

1

1 1 1
( 3 Km 3Km ) o( )

6D


     

   . (5.29) 

Substituting (5.29) in (5.24), we finally get the asymptotic expansion (5.20) for 
)X(E

, as 
 nE  

. 

Now, we can analogically derive the asymptotic expansion for the second moment of the ergodic distribution of the process 

)t(X
. For this aim, the exact formula (4.2) was obtained for 

)X(E 2

 in Theorem 4.1. For the shortness, we put  

2

6E(X ) R( ) J ( )  
, (5.30) 

where 6 4 5J ( ) J ( ) J ( )    
;   

   2

4 1 1 1 1 2 1 3 1

1
J ( ) E M ( ) E M ( ) E(M ( ))

3
        

; 

5 21 1 1 1 1 21 1 2 1 1 1 1 1 2

1
J ( ) (m 2Km )E( M ( )) (m 2Km )E(M ( )) A E(M ( )) Km e .

2
          

 

Using Lemma 5.1 and Corollary 5.1, we obtain the following asymptotic expansion for 4J ( )
, as 0 : 

 3 3

4

D 1
J ( ) o( )

3


   

                                                                                               (5.31) 

Taking Lemma 5.1 and Corollary 5.1 into account, we write the following asymptotic expansion for 5J ( )
, as 0 : 

   221 1 21 21 1
5 2 1 1 31

m A (m Km )
J ( ) D A D o(1)

2 2 6

 
          

.                                              (5.32) 
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Using asymptotic expansions (5.31) and (5.32), we obtain the following asymptotic expansion for 6J ( )
,  as 0 : 

   

 

 

 
3 2 13 21

6 1 2

3 3

D D D3m 1 1
J ( ) 1 A

3 2 D D

  
    

     

 
1 21 21 1

31

3

A (m Km ) 1
o(1) .

2 6 D

  
     

                                                                           (5.33) 

Substituting asymptotic expansions (5.28) and (5.33) in the formula (5.30), and carrying out the corresponding calculation, we 

finally get the asymptotic expansion (5.21) for 
2E(X )

, as 0 . 

 

Analogically, we can calculate the asymptotic expansions for the third and fourth moments of the ergodic distribution of the 

process 
)t(X

. 

 

This completes the proof of Theorem 5.1.                                                        ■ 

 

Corollary 5.2. Let the conditions of Theorem 5.1 are satisfied. Then the following asymptotic expansion can be written for the 

variance of the ergodic distribution of the process 
)t(X

, as 0 : 

 2 2

31 21 21 11 12Var(X) D ( ) D ( ) B ( ) 2B ( )D ( )              

2

22 11 21 12
B ( ) B ( ) 2D ( )B ( ) o(1)          . 

Remark 5.1. Thus, we obtained the asymptotic expansions for the first four ergodic moments of the process 
)t(X

. Using 

these moments, it is possible to calculate skewness ( 3 ) and kurtosis ( 4 ) of the ergodic distribution of 
)t(X

: 

3

3

3

)aX(E






, 

3
)aX(E

4

4

4 





, where 
)X(Ea 

, 
)X(Var2 

. 

Corollary 5.3. Under the conditions of Theorem 5.1, the following asymptotic expansions can be written for the skewness (

3 ) and kurtosis ( 4 ) of the ergodic distribution of the process 
)t(X

, as 0 : 

3

41 21 31 21
3

2 2

31 21 31 21

D ( ) 3D ( ) D ( ) 2D ( )
O( )

[D ( ) D ( )] D ( ) D ( )

     
   

     
, 

2 4

51 31 21 21 41 21
4 2 2

31 21

D ( ) 6D ( ) D ( ) 4D ( ) D ( ) 3D ( )
3 O( )

[D ( ) D ( )]

        
    

  
. 

 

6. SIMULATION RESULTS  

Thus, main aim of this study has been attained. But it is 

advisable to test an adequateness of approximate formulas 

to the exact ones. For this purpose, using the Monte Carlo 

experiments we can give the following simulation results. 

First, let’s denote by 
)4,3,2(  ),(ˆ nXE n

 and 

)(
~ nXE

 the simulating and asymptotic values of the 
thn  

moment (
)( nXE

) of ergodic distribution of the process 

, respectively. Moreover, we put 
)t(X
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)(
~

)(ˆ nn

n XEXE 
; 

n
n n

100%
Ê(X )


 

; 

nnAp  %100
,  n=1,2,3,4. 

In other words, n , n , nAp
, (n=1,2,3,4) are the 

absolute error, relative error and accuracy percent between 

the simulating and asymptotic values of 
thn ergodic 

moments of the process X(t), respectively. The following 

tables contain 
)4,3,2,1(),(ˆ nXE n

computed by 

using Monte Carlo experiments when the variable 1  has 

a Normal distribution with parameters (-1,1). For 

calculation of each quantity, 
810 trajectories were 

simulated. Moreover, here s=1; 1 1K E E 1   
. 

Now, let’s give the tables regarding the 
thn  moment (

)( nXE
) of ergodic distribution of the process

)t(X
, 

when the variable 1  has a Normal distribution with 

parameters (-1,1). 

 

 

 

 

By using Monte Carlo experiments, it is shown that the 

given approximating formulas provide high accuracy even 

for small values of parameter  . This indicates that the 

obtained formulas can safely be used for the various needs 

of the application. 

7. CONCLUSIONS 

In this study, the stationary characteristics of the process 

X(t) are  investigated by using some asymptotic methods, 

whenever the random variable 1 , which describes credit 

policy, has 1  has Pareto distribution with parameters 

( , ) 
, as 0 . To take the second and third terms 

in the asymptotic expansions, in addition to the first term, 

allow us to approximate the exact expressions for the 

moments of X(t) by some approximation formulas that 

they have sufficiently high accuracy. The evident and clear 

forms of the asymptotic expansions with three terms are 

allowed us to observe how the initial random variables 

11,
, 1  influences the stationary characteristic’s of 

the process.  Therefore, this provides us to see that which 

parameters of the system influence the working of the 

insurance company and how does this happen. On the 

other hand, the first term of the obtained asymptotic 

expansions are depended on only the probabilistic 

characteristics of the random variable 1  which describes 

the credit policy of insurance company. This knowledge 

demonstrates the dominant character of the credit policy. 

Thus, it is possible to keep under the control the whole 

working process of the company, by appropriately 

changing the properties of the credit policy. 
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