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1 Introduction

Triangular norms based on a notion used by Menger [1] were introduced by Schweizer
and Sklar [2] in the framework of probabilistic metric spaces, and they play a fundamental
role in several branches of mathematics like in fuzzy logics and their applications [3, 4],
the games theory [5], the non-additive measures and integral theory [6-8].

A triangular norm (¢-norm for short) 7 : [0,1]> — [0,1] is a commutative, associative,
non-decreasing operation on [0,1] with a neutral element 1. The four basic £-norms on
[0,1] are the minimum Ty, the product Tp, the Lukasiewicz t-norm T and the drastic
product Tp given by, respectively, Ta(x,y) = min(x,y), Tp(x,) = xy, TL(x,y) = max(0,x +
y—1)and

x, ify=1,
Tp(,y) =1y, ifx=1,

0, otherwise.

Recall that for any £-norms 7 and T, T} is called weaker than T if for every (x,y) € [0,1]?,
Ti(x,y) < Ta(x, ).

T-norms are defined on a bounded lattice (L, <, 0,1) in a similar way, and then extremal
t-norms Tp as well as T, on L are defined similarly T and T, on [0,1]. For more details
on t-norms on bounded lattices, we refer to [9—-17]. Also, the order between t-norms on
a bounded lattice is defined similarly.

In the present paper, we introduce the notion of T-distributivity for any ¢-norms
on a bounded lattice (L, <,0,1). The aim of this study is to discuss the properties of
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T-distributivity. The paper is organized as follows. Firstly, we recall some basic notions in
Section 2. In Section 3, we define the T-distributivity for any £-norm on a bounded lattice.
For any two t-norms 7 and T,, where T is T,-distributive, we show that T is weaker than
T, and give an example illustrating the converse of this need not be true. Also, we prove
that the only £-norm 7', where every t-norm is T-distributive, is the infimum ¢-norm 7,
when the lattice L is especially a chain. If L is not a chain, we give an example illustrating
any t-norm need not be T,. Also, we show that for any £-norm T on a bounded lattice, T
is T-distributive. Moreover, we show that the T-distributivity is preserved under the iso-
morphism. For any two ¢-norms 77 and T; such that 7 is T5-distributive, we prove that
the divisibility of t-norm T; requires the divisibility of £-norm T,. Also, we obtain that
for any two ¢t-norms T and T5, where T is T,-distributive, the T;-partial order implies
T,-partial order. Finally, we construct a family of z-norms which are not distributive over
each other with the help of incomparable elements in a bounded lattice.

2 Notations, definitions and a review of previous results

Definition 1 [14] Let (L, <,0,1) be a bounded lattice. A triangular norm T (¢-norm for
short) is a binary operation on L which is commutative, associative, monotone and has a
neutral element 1.

Let

x, ify=1,
Tpx,y) =1y, ifx=1,

0, otherwise.

Then Tp is a t-norm on L. Since it holds that 7p < T for any t-norm T on L, T} is the
smallest -norm on L.

The largest t-norm on a bounded lattice (L, <,0,1) is given by TA(x,y) =x A y.
Definition 2 [18] A t-norm T on L is divisible if the following condition holds:
Vx,y € L with x <y, thereisaz € L such that x=T(y,z2).

A basic example of a non-divisible £-norm on any bounded lattice (i.e., card L > 2) is the

weakest t-norm Tp. Trivially, the infimum T, is divisible: x < y is equivalent to x A y = .

Definition 3 [12] Let L be a bounded lattice, T be a t-norm on L. The order defined as
follows is called a T-partial order (triangular order) for a t-norm 7.

x=<ry: < Ty =x forsomelel.

Definition 4 [19]
(i) A t-norm T on a lattice L is called A-distributive if

T(a,by A by) =T(a,bi) A T(a,by)

for every a, by, by € L.
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Figure1 (L=1{0,a,b,c,1},<,0,1). 1

(ii) A ¢z-norm T on a complete lattice (L, <,0,1) is called infinitely A-distributive if
T(ﬂ’ /\Ibr) = A1 T(ﬂ, b‘[)
for every subset {a,b; € L,t €I} of L.

3 T-distributivity
Definition 5 Let (L, <,0,1) be a bounded lattice and T; and T, be two t-norms on L. For
every x,9,z € L such that at least one of the elements y, z is not 1, if the condition

Tl (x; T2 O’, Z)) = TZ (Tl (x;)’), Tl(x’ Z))
is satisfied, then Tj is called T5-distributive or we say that T; is distributive over T5.

Examplel Let (L ={0,4,b,c,1},<,0,1) be a bounded lattice whose lattice diagram is dis-
played in Figure 1.
The functions 77 and T; on the lattice L defined by

o, ifx=a,y=a,
Ti(x,9) =1 b, ifx=cy=c

x Ay, otherwise
and

b, ifx=cy=c¢
Ty(x,y) =
x Ay, otherwise

are obviously £-norms on L such that T; is T>-distributive.

Proposition 1 Let (L, <,0,1) be a bounded lattice and T and T, be two t-norms on L. If
T, is Ty-distributive, then T is weaker than T,.

Proof Since all £-norms coincide on the boundary of L?, it is sufficient to show that 7; < T
for all w,y,z € L\{0,1}. By the T,-distributivity of T7, it is obtained that

Tl(x’y) = TI(T2(x) 1)?)’) = TZ(Tl(x)y)’ Tl(lry)) = TZ(Tl(xry))y) =< TZ(xry)

Thus, T1 < T,, i.e., T} is weaker than T,. O
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Remark1 The converse of Proposition 1 need not be true. Namely, for any two ¢-norms T}
and T, even if T} is weaker than T5, 77 may not be T,-distributive. Now, let us investigate
the following example.

Example 2 Consider the product Tp and the Lukasiewicz t-norm Tj. It is clear that
T < Tp. Since

(3 (3o (3 5) 2
Na"P\g2)) ""\a16) 16
o (35) 7 (3 )\ (3 1) .3
P L4>8;L412 —P8;4 —32

T; is not Tp-distributive.

and

Corollary 1 Let L be a bounded lattice and Ty and T, be any two t-norms on L. If both Ty
is To-distributive and T, is Ti-distributive, then Ty = T,.

Proposition 2 Let L be a bounded chain and T' be a t-norm on L. For every t-norm T, T
is T'-distributive if and only if T' = T .

Proof := Let T be an arbitrary t-norm on L such that T”-distributive. By Proposition 1, it
is obvious that 7 < T’ for any t-norm T. Thus, T’ = T,.

«: Since L is a chain, for any y,z € L, either y < z or z < y. Suppose that y < z. By using
the monotonicity of any ¢-norm 7, it is obtained that for any x € L, T'(x,y) < T'(x,z). Then

T(x,y) =Ty AT(x,2)
holds. Thus, for any x,y,z € L,

T (x, Tr(9,2)) = T(%,)
=T(xy) A T(x,2)

= T\ (T(x9), T(x,2))
is satisfied, which shows that any t-norm T is T, -distributive. O

Remark 2 In Proposition 2, if L is not a chain, then the left-hand side of Proposition 2 may
not be satisfied. Namely, if L is not a chain, then any t-norm T need not be T, -distributive.
Moreover, even if L is a distributive lattice, any £-norm on L may not be T, -distributive.
Now, let us investigate the following example.

Example 3 Consider the lattice (L = {0,%,y,z,4,1}, <) as displayed in Figure 2.
Obviously, L is a distributive lattice. Define the function T on L as shown in Table 1.
One can easily check that T is a t-norm. Since

T(a, Tr(y, z)) =T(a,x)=0
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Figure2 (L={0,x,y,z,a,1},<). 1

Table 1 T-norm on the lattice (L = {0,x,y,2,a,1}, <)

T 0 x y z a 1
0o o o o0 0 0 O
x 0 0 0 0 0 «x
y 0 0 y 0 y vy
z 0 0 0 2z 2z 2z
a 0 0 y z a a
1 0 x y z a 1

and
T\(T(a,y), T(a,2) = Ta(y,2) = %,
T is not T -distributive.
Remark 3 The fact that any ¢£-norm 7 is T, -distributive means that T is A-distributive.

Theorem 1 Let (L,<,0,1) be a bounded lattice. For any t-norm T on L, Tp is T-

distributive.

Proof Let T be an arbitrary £-norm on L. We must show that the equality

Tp(x, T(9,2)) = T(Tpx,y), T, 2))

holds for every element x, y, z of L with y #1 or z # 1. Suppose that z # 1. If x = 1, the desired
equality holds since Tp(x, T(y,2)) = T(y,2z) and T(Tp(x,y), Tp(x,2)) = T(y,z). Let x # 1.
Then y=1ory#1. If y =1, since Tp(x, T(y,2)) = Tp(x,z) = 0 and T(Tp(x,y), Tp(x,2)) =
T(x,0) = 0, the equality holds again. Now, let y # 1. Since T(y,z) <y <1l and y #1,
T(y,z) #1. Then Tp(x, T(y,2)) = 0 and T(Tp(x,y), Tp(x,z)) = T(0,0) = 0, whence the
equality holds. Thus, T is T-distributive for any t-norm 7 on L. g

Proposition 3 [20] If T is a t-norm and ¢ : [0,1] — [0,1] is a strictly increasing bijection,
then the operation T, : [0, 1]2 — [0,1] given by

T,(xy) = ¢ (T (), 0(»)))

is a t-norm which is isomorphic to T. This t-norm is called @-transform of T .
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Let T and T, be any two ¢-norms on [0,1] and let ¢ be a strictly increasing bijection
from [0,1] to [0,1]. Denote the ¢-transforms of the ¢-norms 77 and 7, by qu, and Té,

respectively.

Theorem 2 Let Ty and T, be any t-norms on [0,1] and let ¢ be a strictly increasing bijec-
tion from [0,1] to [0,1]. Ty is Ty-distributive if and only if T, is T,-distributive.

Proof Let T; be T,-distributive. We must show that for every x,y,z € [0,1] with y #1 or
z#1,

T) (%, T2(,2)) = To(T)(x,9), T (%,2)).

Since ¢ : [0,1] — [0,1] is a strictly increasing bijection, for every element y, z € [0,1] with
y#1orz#1,it must be p(y) #1 or ¢(z) # 1. By using T,-distributivity of 77, we obtain
that the equality

T) (% T2(,2) = 0~ (Ti (0 (%), (T2 (3, 2))))

= ¢ (Ti(e@), 9 (97 (T2 (90), 9(2))))))
= ¢ (Ti(e&), T2 (0(), 9(2))))

= ¢ (Ta(T1 (o), 0(9), T1(¢(), 0(2))))
=9 (T2((p oo ™) Ti(e(), 0®), (¢ 0 0™") T1(0(x), 9(2))))
=7 (Ta(e(e™ (Ta(e(), 0 ) (97 (T2 (0 (), 0(2))))))
= ¢ (Ta(o(T,(5.9)), 0(T, (%,2))))

T; (T; (x,9), T(p (x,2))

-1 T2

(
(
(¢
(¢

holds. Thus, T}, is T-distributive.

Conversely, let T, be T_-distributive. We will show that T1(x, To(y,2)) = To(T1(x,),
T1(x,z)) for every element x,7,z € [0,1] with y #1 or z # 1. Since T(}, is the @-transform
of the z-norm T}, for every x,y € [0,1], T, (%,7) = ¢~ (T1(¢(x), 9(»))). Since ¢ is a bijection,
it is clear that

Ti(p), 0(0) = (T, (x,)) o)
holds. Also, by using (1), it is obtained that

Ti(x,9) = Ti(e(e7' ), 0(07'0)) = o(T) (¢ ®), 07 () 2)
From (2), it follows

Ty (97 @), 07 ) = 07 (Ta(x,9))- 3)

Also, the similar equalities for t-norm T, can be written. Since ¢}(y) #1 or ¢~}(z) #1 for
every ¥,z € [0,1] with y #1 or z #1, by using Té—distributivity of T;, it is obtained that the
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following equalities:

Ti(x, To(,2) 2 Ti(x 0 (T2 (7' 0),072))))
2 o(Ty (e 0™ (e(T2 (07 0197 (2)))))
('@, T2 (07" 0), 07 (2))))
T2(TH (97 (@), 07 0)), T2 (07 @), 07(2)))
(

o (T1(x,9)), 07 (T1(%,2))))

hold. Thus, T; is T,-distributive. O

Proposition4 Let (L, <,0,1) be a bounded lattice and Ty and T, be two t-norms on L such
that Ty is Ty-distributive. If Ty is divisible, then T, is also divisible.

Proof Consider two elements x, y of L with x <y. If x = y, then T, would be always a
divisible t-norm since T5(y,1) = y = x. Letx # y. Since T is divisible, there exists an element
1 #z of L such that T1(y, z) = x. Then, by using T,-distributivity of 77, it is obtained that

x=Ti(5,2) = Tl(y, Ty(z, 1))
= TZ(TIO/! Z)’ Tl(y’ l))
= TZ(Tl(y’Z)’y)'

Thus, for any elements x, y of L with x <y and x # , since there exists an element 71 (y,z) €
L such that x = T»,(T1(y,2),y), T5 is a divisible £-norm. O

Corollary 2 Let (L, <,0,1) be a bounded lattice and Ty and T, be two t-norms on L. If Ty
is Ty-distributive, then the Ty-partial order implies the T,-partial order.

Proof Let a <r, b for any a,b € L. If a = b, then it would be a <7, b since T,(b,1) =b=a
for the element 1 € L. Now, suppose that @ <7, b but a # b. Then there exists an element
¢ € L such that T1(b,£) = a. Since a # b, it must be £ # 1. Then T1(b, T5(¢,1)) = T1(b,£) = a.
Since T; is T»-distributive, it is obtained that

a= Tl(b, Tg(g,l)) = Tz(Tl(b; e): Tl(brl))

= Ty(a,b).
for elements b, ¢,1 € L with £ #1, whence a <7, b. So, we obtain that <7, C<r,. O

Remark 4 For any ¢t-norms T and Ty, if 77 is T,-distributive, then we show that 7; is
weaker than 75 in Proposition 1 and the T;-partial order implies the T5-partial order in
Proposition 2. Although T; is weaker than T5, that does not require the 7;-partial order to
imply the T,-partial order. Let us investigate the following example illustrating this case.


http://www.fixedpointtheoryandapplications.com/content/2013/1/32

Kesicioglu Fixed Point Theory and Applications 2013, 2013:32 Page 8 of 13
http://www.fixedpointtheoryandapplications.com/content/2013/1/32

Example 4 Consider the drastic product Tp and the function defined as follows:

. xy, if (x,9) € [0, 3]%,
T'ey)=q o
min(x,y), otherwise.

It is clear that the function 7" is a -norm such that 7p < T", but =7 Q =<r. Indeed.

First, let us show that % Ao % Suppose that 3 < % Then, for some £ € [0,1],

o, 1) 3
(e =) ==
(42)5

For £ € [0,1], either £ < % or £ > % Let £ < % Since % =T (¢, %) = %E, it is obtained that
L= %, which contradicts £ < % Then it must be £ > % Since % =T(e, %) = min(¢, %) = %,
which is a contradiction. Thus, it is obtained that % ﬁT* % On the other hand, since x <7, ¥
means that there exists an element £ of L such that T,(¢,y) = £y = x and Tp(%, %) =2 we

8
have that % =15 % So, it is obtained that <7, <.

Now, let us construct a family of £-norms which are not distributive over each other with

the help of incomparable elements in a bounded lattice.

Theorem 3 Let L be a complete lattice and {S,|o € I} be a nonempty family of nonempty
sets consisting of the elements in L which are all incomparable to each other with respect to
the order on L. If for any element u € Sy, inf{u A p;|; € So} is comparable to every element
in L, then the family (T,)es, defined by

inf{u A wilpi € Sod, if (x,9) € [inf{u A il € So ), ul?,
Tu(xy) =
xXAY, otherwise

is a family of t-norms which are not distributive over each other. Namely, for any ,q € S,,

neither Ty is T,-distributive nor T, is T,-distributive.

Proof Firstly, let us show that for every u € S, each function T, is a -norm.

(i) Since x <1, for every element x € L, 1 ¢ S,,. Then it follows T}, (x,1) =x A1 = x from
(x,1) ¢ [inf{u A w;|u; € Sy}, u)?, that is, the boundary condition is satisfied.

(ii) It can be easily shown that the commutativity holds.

(iii) Considering the monotonicity, suppose that x < y for x,y € L. Let z € L be arbitrary.
Then there are the following possible conditions for the couples (x,z), (¥,z).

- Let (x,2), (y,2) € [inf{u A ;| iu; € Sy}, u]*. Then we get clearly the equality

T,(x,z) = inf{u A w;lpn; € So} = T,(y, 2).

- Let (x,2) € [inf{u A p;lu; € Se),u]? and (y,2) ¢ [inf{u A wilp; € S}, u)?. Then y ¢
[inf{ze A pilp; € So},u]. Clearly, T,(x,2) = inf{u A w;|u; € S} and T, (y,2) = y A z. Since
x € [inf{u A pi|p; € Sy}, u] and x <y, we obtain inf{u A p;|p; € Se} <y. By inf{u A pi|u; €
So} <z, wegetinf{u A u;|u; € Su} <y Az, whence T,(x,z) < T,(y,2).
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- Let (x,2) ¢ [inf{u A ;| € Sy}, u)? and (y,2) € [inf{u A il € Se}, u)?. Then it is clear
that x ¢ [inf{z A w;|; € S}, u]. In this case,

T,x,z)=xAz and T,(y,z) =inf{u A p;|pu; € Sq}.
By x <yand y <u, it is clear that x < u. Since inf{u A p;|it; € So} is comparable to every
element in L, either x < inf{u A w;|u; € So} or inf{u A |, € S} < x. If inf{u A wi|u; €
Se} < x, it would be x € [inf{u A w;|u; € Sy}, u] from x < u, a contradiction. Thus, it must
be x < inf{u A pi|p; € Sy}. Since z € [inf{u A w;lp; € So}, u], x A z = x. Thus, the inequality

Ty(x,z) =x Az =x <influ A pilp; € So} = Ty(y, 2)

holds.
- Let (x,2), (y,2) & [inf{u A ;| ;i € S}, u)*. By x < y, we have that

T,x,2)=xnz<yAz=T,2).
So, the monotonicity holds.

(iv) Now let us show that for every x,y,z € L, the equality T,,(x, T,(y,2)) = T,,(T,,(x,¥),2)
holds.

- Let (x,), (9,2) € [inf{u A i € S}, ul*. Then

Tu(x: Tu(y» Z)) =inf{u A pwilpu; € So}
and

Tu(Tu(xry)’z) = inf{u A pi|pu; € So}
whence the equality holds.

- If (x,y) € [inf{u A il € S}, u]? and (y,2) ¢ [inf{u A w;|w; € Sy}, u]?, then it must be
z & [inf{u A w;|; € Si}, u]. Here, there are two choices for z: eitherz € S, orz ¢ S,.

Let z € Sy. Then inf{u A pi|p; € So} < z. By the inequality inf{u A p;|n; € Se} <, it
is clear that inf{u A u;|; € Sy} < u A z. Since inf{lu A w;|p; € Sp} <y < u, the following
inequalities:

inf{u A il € Se} =influ A il € Syt ANz<ynz<y=<u
hold, that is, y A z € [inf{u A w;|u; € Su}, u]. Thus, we have that
Ty(%, Tu(9,2)) = Tulx,y A 2) = inf{u A il € So}

and

Tu(Tu(xry)’Z) = Tu(lnf{u A /‘Li“‘Li € Sot}lz)

=inf{u A pilp; € Se} A z=1inf{u A pilp; € Sq}.

So, the equality holds again.

Page9of 13
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Let z ¢ S,. Then there exists at least an element v in S, such that v is comparable to
the element z; i.e., either z < v or v < z. Let v < z. Since u,v € S, it is clear that inf{u A
Wil € S¢} <uAv <u Az <u.Also, from the inequalities inf{u A u;|; € Sp} <y and
inf{u A il € Sy} <v <z itfollowsinf{u A p;|; € S¢} <y Az <y <u,i.e.,itisobtained
that y A z € [inf{u A p|p; € Sy}, u]. Thus,

Ty(%, Tu(9,2)) = Tulx,y A 2) = inf{u A il € So}
and

Tu(Tu(xyy)x Z) = Tu(lnf{u N Mi|ﬂi € Sa},Z)
=inf{u A w;|lp; € Se} Az
= inf{u A pilp; € S}
Thus, the equality is satisfied.
Now, suppose that z < v.If u < z, it would be & < v, which is a contradiction. Thus, either
z < u or z and u are not comparable. If z < u, then it must be z < inf{u A u;|u; € Sy} since
inf{u A p;lp; € S} is comparable to every element in L and z ¢ [inf{u A pu;|u; € So}, ul.
Thus, we have that
Tu(Tu(xry): Z) =T, (lnf{u A [Lillki € SD(},Z)
=inf{lu A wilp; € S} A z

=z
and
Tu(% Tu(y,2)) = Tulx,y A 2)

= Tu (xr Z)

=XNZ=2%

whence the equality holds.

Let z and u be not comparable. Since inf{u A ;|; € Sy} is comparable to every element
in L, either inf{u A p;lp; € So} <z or inf{u A p;lp; € Se} > z. If inf{ze A p;|p; € Sy} > z, it
would be z < u, a contradiction. Then it must be inf{z A u;|p; € So} < z. By inf{u A p;lp; €
So} =inf{luAp;|p; € Sy} Ay <yAz<y<u,itisobtained that y Az € [inf{u A p;|p; € Sy}, ul.
Then the equalities

Ty(%, Tu(9,2)) = Tu(x,y A 2) = inf{u A il € So}
and

Ty(Tu(x,9),2) = Ty(inf{u A pilp; € S}, 2)

=inf{u A pilp; € Se} Az =1inf{u A wilpu; € Sq}.

In this case, the equality is satisfied.

Page 10 0f 13
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Similarly, one can show that the equality T,(x, T,(y,2)) = T,(T,(x,),z) holds when
(x,y) ¢ [inf{u A wilpwi € o}, u)* and (y,2) € [inf{u A wilp; € So}, ul*.

- Now, let us investigate the last condition. If (x,7), (¥, z) ¢ [inf{u A ;| i; € So}, u]?, then
it is obvious that

Ty(% Tu(3,2) = T,y A2) =x A (y A 2)
and
Ty(Tu(x,9),2) = Tu(x A y,2) = (x AY) Az,

whence the equality holds.

Consequently, we prove that (T},) es, is a family of -norms on L. Now, we will show that
for every m,n € Sy, T,, and T, are not distributive £-norms over each other.

Suppose that T, is T,-distributive. By Proposition 1, it must be T}, < T}, that is, for
every x,y € L, T, (x,y) < T,(x,). Since m and n are not comparable, it is clear that n £ m
and m £ n. Then n must not be in [inf{m A p;|u; € Sy}, m]. Thus,

T.(m,n)=nAn=n.
On the other hand, since # € [inf{n A w;|u; € Se}, 1],

Ty(n,n) = inf{n A pilp; € So k-
Then we have that T),(n,n) # T,,(n, n). Otherwise, we obtain that n < m, which is a con-
tradiction. So, we have that T,(n,n) < T,,(n,n) contradicts T,, < T,. Thus, T,, is not

T,-distributive. Similarly, it can be shown that T, is not T),-distributive. So, the family

given above is a family of £-norms which are not distributive over each other. O

To explain how the family (S, )47 in Theorem 3 can be determined, let us investigate the

following example.

Example 5 Let (L ={0,a,b,¢,d,e,1},<,0,1) be a bounded lattice as shown in Figure 3.
For the family of (S¢)wer, there are two choices: one of them must be Sy, = {c,d, e} and the
other mustbe S,,, = {b,e}. Then, by Theorem 3, for every u € S,, and v € S, , the following

Figure3 (L=1{0,a,b,c,d, e 1},<,0,1). 1
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Figure4 (L={0,a,b,c,d,e,f,g,h,j,1},<,0,1).

functions:
a, if (x,y) € la,ul?,
Tu(x,9) =
x Ay, otherwise
and
a, if (x,y) € la,v]%,
T,(x,y) =

x Ay, otherwise

are two families of ¢-norms.

Remark 5 In Theorem 3, if the condition that inf{u A u;|1t; € Sy} is comparable to every
element in L is canceled, then for any element u € Sy, T, is not a t-norm. The following
is an example showing that 7, is not a £-norm when the condition that for any element
u €Sy, inf{u A pi|p; € Sy} is comparable to every element in L is canceled.

Example 6 Let (L ={0,a,b,c,d,e,f,g,h,j,1},<,0,1) be a bounded lattice as displayed in
Figure 4.

From Figure 4, it is clear that inf{j,e,f} = a is not comparable to b. However, for the set
S ={j,e,f}, the function defined by

a, if (x,) € [a,e]?,
Te(x’y) = .
x Ay, otherwise

does not satisfy the associativity since T,(T.(c,d),b) = 0 and T(c, T.(d, b)) = b. So, T, is

not a £-norm.

4 Conclusions

In this paper, we introduced the notion of T-distributivity for any -norm on a bounded
lattice and discussed some properties of T-distributivity. We determined a necessary and
sufficient condition for Tp to be T-distributive and for T to be T, -distributive. We ob-
tained that T-distributivity is preserved under the isomorphism. We proved that the di-
visibility of t-norm T; requires the divisibility of £-norm T, for any two ¢-norms 77 and
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T, where T is T,-distributive. Also, we constructed a family of t-norms which are not

distributive over each other with the help of incomparable elements in a bounded lattice.
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