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Abstract
In this paper, we give necessary and sufficient conditions for the graph Hu,n to be
connected and a forest.
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1 Introduction
Let Q̂ =Q∪{∞} be the extended rationals and � = PSL(,Z) be the modular group acting
on Q̂ as with the upper half-planeH = {z ∈C : Im z > }:

g =

(
a b
c d

)
: z =

x
y

→ az + b
cz + d

=
ax + by
cx + dy

,

where a, b, c, and d are rational integers and ad – bc = .
Jones, Singerman, andWicks [] used the notion of the imprimitive action [–] for a �-

invariant equivalence relation induced on Q̂ by the congruence subgroup �(n) = {g ∈ � :
c ≡  (modn)} to obtain some suborbital graphs and examined their connectedness and
forest properties. They left the forest problem as a conjecture, which was settled down by
the second author in [].
In this paper we introduce a different �-invariant equivalence relation by using the con-

gruence subgroup�(n) instead of�(n) and obtain some results for the newly constructed
subgraphs Hu,n. In Section  we will prove our main theorems on Hu,n which give condi-
tions for Hu,n to be connected or to be a forest, and we work out some relations between
the lengths of circuits in Hu,n and the elliptic elements of the group �(n). As � only has
finite order elements of orders  and , the same is true for �(n).
Here, it is worth noting that these concepts are verymuch related to the binary quadratic

forms and modular forms in [] and [, ] respectively.

2 Preliminaries
Let �(n) = {g ∈ � : a ≡ d ≡  (modn), c ≡  (modn)}, which is one of the congruence
subgroups of�. Then�∞ < �(n) ≤ � for each n, where�∞ is the stabilizer of∞ generated
by the element

(  
 

)
, and second inclusion is strict if n > .

Since, by [], � acts transitively on Q̂, any reduced fraction r
s in Q̂ equals g(∞) for some

g ∈ �. Hence, we get the following imprimitive �-invariant equivalence relation on Q̂ by
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�(n):

r
s

∼ x
y

if and only if g–h ∈ �(n),

where g =
( r ∗
s ∗

)
and h is similar.

Here, as in [], the imprimitivity means that the above relation is different from the iden-
tity relation (a∼ b if and only if a = b) and the universal relation (a∼ b for all a,b ∈ Q̂).
From the above, we can easily verify that

r
s

∼ x
y

if and only if x≡ r (modn), y ≡ s (modn).

The equivalence classes are called blocks and the block containing x
y is denoted by [ xy ].

Here we must point out that the above equivalence relation is different from the one in
[]. This is because we take the group �(n) instead of �(n). The main reason of changing
the equivalence relation lies in the fact that in the case of �(n), as we will see below, the
elliptic elements do not necessarily correspond to circuits of the same order. It was the
case in [].

3 Subgraphs Hu,n

Themodular group � acts on Q̂× Q̂ through g : (α,β)→ (g(α), g(β)). The orbits are called
suborbitals. From the suborbital O(α,β) containing (α,β) we can form the suborbital
graphG(α,β) whose vertices are the elements of Q̂ and edges are the pairs (γ , δ) ∈O(α,β),
which we will denote by γ → δ and represent them as hyperbolic geodesics inH.
Since � acts transitively on Q̂, every suborbital O(α,β) contains a pair (∞, un ) for

u
n ∈ Q̂,

n≥ , (u,n) = . In this case, we denote the suborbital graph by Gu,n for short.
As� permutes the blocks transitively, all subgraphs corresponding to blocks are isomor-

phic. Therefore we will only consider the subgraph Hu,n of Gu,n whose vertices form the
block [∞] = [  ], which is the set { xy ∈ Q̂ | x ≡  (modn) and y ≡  (modn)}. The following
two results were proved in [].

Theorem  There is an edge r
s → x

y in Gu,n if and only if either
. x≡ ur (modn), y≡ us (modn) and ry – sx = n or
. x≡ –ur (modn), y≡ –us (modn) and ry – sx = –n.

Lemma  Gu,n =Gv,m if and only if n =m and u≡ v (modn).

The suborbital graph F := G, is the familiar Farey graph with a
b → c

d if and only if
ad – bc = ±.
As it is illustrated in Figure , the pattern is periodic of period . That is, if x → y is an

edge, then x +  → y +  is an edge as well.

Lemma  No edges of F cross inH.

Theorem  clearly gives the following.
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Figure 1 Farey graph.

Theorem  Let r
s and

x
y be in [∞]. Then there is an edge r

s → x
y in Hu,n if and only if

. x≡ ur (modn), ry – sx = n, or
. x≡ –ur (modn), ry – sx = –n.

Theorem  Let r
s and

x
y be in [∞]. Then there is an edge r

s → x
y in Hu,n if and only if

. u =  and ry – sx =  or
. u =  and ry – sx = n or
. u = n –  and ry – sx = –n.

Proof Let r
s → x

y be an edge in Hu,n. Since r
s and

x
y are in [∞], x, r ≡  (modn). Therefore,

according to Theorem , we have ≡ u (modn), ry– sx = n or  ≡ –u (modn), ry– sx = –n.
The first implies that u =  and u = , which proves (). The second assures that u = ,
n =  or u = , n =  or u = n – , which gives ().
For the converse, it is enough to verify () only. For this, let u = n –  and ry – sx = –n.

Then x ≡ –r(n – ) ≡  (modn). This, by Theorem , completes the proof. �

Theorem  �(n) permutes the vertices and the edges of Hu,n transitively.

Proof
. Let v and w be vertices in Hu,n. Then w = g(v) for some g ∈ �. Since v∼ ∞,

g(v) ∼ g(∞), that is, w∼ g(∞). Therefore, g(∞) lies in the block [∞] and so g is in
�(n).

. The proof for edges is similar. �

Definition  LetHu,n andHv,m be two suborbital graphs. If the map φ is an injective func-
tion from the vertex set of Hu,n to that of Hv,m and sends the edges of Hu,n to the edges of
Hv,m, then φ is called a suborbital graph homomorphism (homomorphism for short) and
it will be denoted by φ :Hu,n →Hv,m.

Theorem 
. If m | n, then φ(v) = nv

m is a homomorphism from Hu,n to Hu,m.
. Let m | n andm �= n; then the homomorphism in () is not an isomorphism.
. Let φ :H,n →Hn–,n, given by φ(a) = a for all vertices and φ(a→ b) = b → a, be an

isomorphism.
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Proof
. Let r

sn → x
yn be in Hu,n. To see r

sm → x
ym is in Hu,m is an easy consequence of

Theorem .
. Conversely, suppose that h :Hu,n → Hu,m, h(v) = nv

m is an isomorphism. Then there
exists a vertex v in Hu,n such that h(v) = m+

m . Therefore, v = m+
n . But, since m | n and

m �= n,m +  �≡  (modn). That is, m+
n is not a vertex in Hu,n. This gives the proof.

. Since the subgraphs H,n and Hn–,n have same set of vertices, φ is well defined. Now
suppose r

sn → x
yn is an edge in H,n. Then, by Theorem (), ry – sx = n. So,

sx – ry = –n. That is, using Theorem (), x
yn → r

sn is an edge in Hn–,n. �

Corollary  If m | n, then Hu,n →Hu,m, v → nv
m is an isomorphism if and only if m = n.

Corollary  φ :Hu,n → F , given by v→ nv, is a homomorphism.

Proof Since Hu, = F , Theorem () gives the result. �

Corollary  No edges of Hu,n cross inH.

Proof By Corollary  there is an isomorphism from Hu,n to a subgraph of F . Also, by
Lemma , no edges of F cross inH. Therefore the result follows. �

4 Main calculations
In this final section, we state all conditions for Hu,n to be connected and a forest.

Definition  For m ∈ N, m ≥ , let v, v, . . . , vm be vertices of Hu,n. The configuration
v → v → ·· · → vm → v (some arrows, not all, may be reversed) is called a circuit of
lengthm.
Ifm = , the circuit is said to be a triangle. Ifm = , we call the self paired edge a -gon.
A graph is called a forest if it contains no circuits other than -gons.

As in examples ∞ → 
 → ∞ is a -gon in H, and ∞ →  →  → ∞ is a triangle in

H, and furthermore we will see below that ∞ → v → v → ·· · never becomes a circuit
in H,n for n≥ .
We now prove the connectedness of H,n separately as follows.

Theorem  H, is connected.

Proof Since the situation, only for this case, coincides with the situation in [], it is not
necessary to give a proof. �

To understand subsequent proofs better, we start by giving the following example.

Example  The subgraph H, is not connected.

Solution  Since ∞ → 
 is an edge in H, and H, is periodic with period , we just

need consider the strip 
 ≤ Re z ≤ 

 . It is clear that ∞ is adjacent to 
 and 

 in H,, but
to no intermediate vertices. We will show that no vertices of H, in the interval [  , ] are
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Figure 2 H1,3.

Figure 3 H1,n .

adjacent to vertices of H, outside this interval. Of course, there is some vertex of H,,
such as 

 , in [  , ].
As in Figure , suppose that the edge a

b → c
d inH, crosses Re z = 

 . Then Corollary 
implies that a

b → c
d is an edge in F and furthermore a

b <  < c
d . This proves that the edges

a
b → c

d and ∞ →  cross in F , a contradiction. A similar argument shows that no edges of
H, cross Re z = . These conclude that H, is not connected.

Note  The graphs H, and H, have at least two connected components.

Proof Example  and Theorem () give the result. �

We now give the following.

Theorem  H,n is not connected if n ≥ .

Proof Since H,n is periodic with period , we can, again, work in the strip 
n ≤ Re z ≤ n+

n .
Note that ∞ is adjacent to 

n and n+
n inH,n, but to no intermediate vertices. We will show

that no vertices in H,n, between 
n and , are adjacent to vertices outside this interval. We

note that there are vertices ofH,n in ( n , ) for n ∈N. Indeed as in Figure , if n is odd, take
the vertex n+

n in ( n , ) and if n is even, take the vertex n+
n in ( n , ).

Suppose that an edge crosses Re z = 
n , whence that it joins v =

a
nb to w = c

nd . By Corol-
lary , nv and nwmust be adjacent in F . As in Example , this is a contradiction. A similar

http://www.journalofinequalitiesandapplications.com/content/2013/1/117
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argument shows that no edge crosses Re z = , and since vertices between 
n and  are not

adjacent to ∞, it follows that H,n is not connected.
Consequently, since there is no circuit like ∞ → 

n ← v ← ·· · ← n+
n ← ∞ inH,n,H,n

is not connected for n≥ . �

Theorem  Hu,n is connected if and only if n ≤ .

Proof If n = , , it follows from []; otherwise, it follows from Theorem . �

Theorem  Hu,n contains a triangle if and only if n = .

Proof LetD be a triangle inHu,n. FromTheorem , u =  or u = n–. Using Theorem (),
we may only work inH,n. By Theorem , we may suppose thatD has the form ∞ → v →
v → ∞ or∞ → v ← v → ∞. Let us do calculations only for the first triangle.We easily
see that v = x

n and v = y
n for some x, y ∈ Z. If x

n < y
n , then x – y = –. Since x

n and y
n ∈ [∞],

x – y≡  (modn). So, n = . If x
n > y

n , then x – y = . Therefore, again, n = .
Conversely, if n = , then u =  or . But since H, =H,, we have the triangle 

 → 
 →


 → 

 . �

Theorem  Hu,n contains a -gon if and only if n =  or .

Proof Suppose x
kn → y

ln → x
kn is a -gon in Hu,n. Then, by Theorem , it is easily seen that

n =  or .
Conversely, if n =  or , it is clear that 

 → 
n → 

 is a -gon. �

We now give one of our main theorems.

Theorem  If n≥ , then H,n and Hn–,n are forests.

Proof Let n = . Assume that H, is not a forest. Therefore we suppose that there exists
a circuit D, other than -gon, in H,. By Theorem  and Theorem , we may assume that
D has the form ∞ → v → ·· · → vk → ∞, where the vertices v, v, . . . , vk are all different.
Here, since the pattern for the subgraphHu,n is periodic with period , we may choose the
vertices ofD, apart from∞, in the interval [  ,


 ]. By Theorem , v = 

 or

 . If v =


 , then

vk = a+
 ∈ [  ,


 ] and v �= vk give that vk = 

 . Since  is not a vertex in H,, Corollary 
implies that such a circuit D does not occur. Similarly, we can show that there is not a
circuit D in the case where v = 

 . That is, H, is a forest.
Now let n ≥ . If H,n is not a forest, then, as we will see now by Theorem , D must be

of the form ∞ → v ← ·· · ← vk ← ∞ or ∞ → v → ·· · → vk ← ∞. As above, we choose
the vertices in the finite interval [ n ,

n+
n ]. By Theorem , v = 

n or n+
n . If v = 

n , then, as
above, vk must be n+

n . In this case D has the form ∞ → 
n ← ·· · ← n+

n ← ∞. As  is not
a vertex in H,n, Corollary  implies that such a circuit D does not occur. Similarly, we can
show that if v = n+

n , then there does not exist a circuit D like ∞ → n+
n → ·· · → 

n ← ∞.
Therefore H,n is a forest. Using Theorem (), we see that the subgraph Hn–,n is a forest
as well. Therefore the proof is completed. �

Theorem  If Hu,n contains a triangle, then �(n) contains an elliptic element of order .

http://www.journalofinequalitiesandapplications.com/content/2013/1/117
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Proof IfHu,n contains a triangle, then by Theorem , n = . So, �() = � and
(  –
 –

) ∈ �()
is an elliptic element of order . �

Remark  In general, the converse of Theorem  is not true. For example, the element(  –
 –

) ∈ �() is an elliptic element of order , but H, does not contain a triangle. And
also, by Theorem (), H, does not contain a triangle either.

Remark  In [], it is shown that the elliptic elements in �(n) correspond to circuits
in the subgraph Fu,n of the same order and vice versa. Here, in the case of �(n), owing
to Theorem  triangles in the subgraph Hu,n correspond to elliptic elements in �(n) of
order . But the converse is not true as shown in Remark .

Theorem  Hu,n contains a -gon if and only if �(n) contains an elliptic element of or-
der .

Proof If Hu,n contains a -gon, then by Theorem , n =  or . So,
(  –
 –

)
is an elliptic

element of order  in both �() and �().
Conversely, assume that �(n) contains an elliptic element of order . Then there is an

element of �(n) of the form
( +an b

cn +dn

)
such that  + (a + d)n = . From this we get n = 

or . Hence, the proof now follows from Theorem . �
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