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Abstract

It can readily be demonstrated that atomic and molecular orbitals must decay exponen-
tially at long-range. They should also possess cusps when two particles approach each
other. Therefore, Slater orbitals are the natural basis functions in quantum molecular
calculations. Their use was hindered over the last four decades by integration problems.
Consequently, Slater orbitals were replaced by Gaussian expansions in molecular calcu-
lations (in spite of their more rapid decay and absent cusps). From the 90s until today
considerable effort has been made by several groups to develop efficient algorithms
which have fructified in new computer programs for polyatomic molecules. The key
ideas of the different methods of integration: one-center expansion, Gauss transform,
Fourier transform, use of Sturmians and elliptical co-ordinate methods are reviewed
here, together with their advantages and disadvantages, and the latest developments
within the field. A recent approximation separating the variables of the Coulomb oper-
ator will be described, as well as its usefulness in molecular calculations. Recently, due
to the developments of the computer technology and the accuracy of the experiments,
there is a renewed interest in the use of Slater orbitals as basis functions for Config-
uration Interaction (CI) and Hylleraas-CI atomic and molecular calculations, and in
density functional and density matrix theories.

keywords: Slater orbitals, integrals, computer programs, Kato conditions, accurate

molecular wave-functions.
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1. Introduction

Slater-type orbitals (STO) [1] are the natural basis functions in quantum molecular cal-

culations. Nevertheless, their use has been rather restricted, mostly due to mathematical

integration difficulties. Even today there are no simple general algorithms to solve all the

integrals appearing in a Hartree-Fock (HF) or Configuration Interaction (CI) molecular cal-

culation, where integrals involving up to four atomic centers may appear. In spite of these

difficulties the research on Slater orbitals has always continued. The reason is the require-

ment for large basis sets of Gaussian orbitals (GTO) and large wave function expansions to

perform more accurate calculations of energy and properties of ever larger interesting sys-

tems. As a consequence those calculations need enormous computational times. In 1981, in a

Congress in Tallahassee about Slater orbitals Milan Randic described the situation: ”Gaus-

sian functions are not the first choice in theoretical chemistry. They are used (...) primarily

because molecular integrals can be evaluated, not because they posses desirable properties. To-

day this may be a valid reason for their use, but tomorrow they may be thought of as bastard

surrogates, which served their purpose in the transition period, have no longer viable merits

and will fail into oblivion” [2]. The use of an expansion of GTOs instead of an STO was

then a pragmatic solution and originally intended for solving the problems in the calculation

of the first molecules on early mainframe computers. The GTO expansion together with the

popular distribution of computer programs like GAUSSIAN have contributed that the use

of GTOs for accurate calculations of large systems has pushed back the limits with respect

size of the systems and dimension of the wave function, i.e. HF calculations of clusters of

hundreds of atoms, CI calculations including hundred of thousands of Slater determinants.

In spite of the rapid development of the computer technology and the availability of su-

percomputers, the computational times are unreasonably long, so that the computational

chemist is restricted i.e. to perform numerous test calculations. This motivates the search

for basis functions, where fewer would give a good CI, in particular. The possibility of using

Slater orbitals, where a minimal basis would consist in one function per atom would suppose

an impulse to forwards in theoretical and computational chemistry. Since the difficulties

are of pure mathematical nature, e.g. definite integrations, it would be worthwhile pursuing

investigations of Slater orbitals.

The purpose of this paper is to explain the key ideas about Slater orbitals for readers

outside the field. It is beyond our scope to review the whole work of the all authors in this

field, what would deserve a longer treatment. The history of Slater orbitals and the first

computer programs using them is exposed and the currently used computer programs are

listed. The STO and GTO are defined and compared. The methods used in the literature are

explained recalling in the key ideas in which these methods are based. The last developments

within the field are reported.
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2. Early History of the Slater Orbitals

The history of STOs is the history of theoretical chemistry. In 1928 Slater [1] simplified

the hydrogen-like orbitals (which are eigenfunctions of the Hamiltonian for a one-electron

atom) obtaining the orbitals which bear his name. Curiously Slater called these orbitals at

that time Hartree orbitals. Slater orbitals are a simplification of the hydrogen-like orbitals,

which are eigenfunctions of the atomic one-electron Schrödinger equation.

Brief time-line of events in molecular work over Slater type orbitals to date:

1928 Slater and London.

1929 Hylleraas: He atom.

1933 James and Coodlidge: Hylleraas calculations on H2.

1949 Roothaan LCAO paper.

1950 Boys: first Gaussian expansion of STO published.

1951 Two-center Coulomb Integrals. Roothaan formulae.

1954 Boys and Shavitt ’Automated calculations’.

1958 Tauber: Work on analytic two-center Exchange integrals: Poisson equation.

1962 Scrocco: first publishes STO work,(in Italian) but with a programme. This follows

early molecular work in 1951-53. [3, 4].

1963 Clementi produces tables of optimised single zeta basis sets for atoms. Shavitt

B-Functions described.

1970 The Journal of Chemical Physics published work on STO codes by E. Scrocco

and R. Stevens. Gaussian 70 prepared for QCPE by J. Pople and R. Ditchfield.

1973 E. J. Baerends: numerical integration over STO used for ADF DFT code.

1978 Filter and Steinborn: Fourier transform work. B-functions and plane-wave ex-

pansion of Coulomb operator.

1981 ETO conference in Tallahassee. Weatherford and Jones.

1994 First STOP (Slater Type Orbital Package, QCPE 667 1996) code. Bouferguene

and Hoggan.

2001 First SMILES (Slater Molecular Integrals for Large Electronic Systems) code.

Fernández Rico, López et al.

2008 Gill: Coulomb resolution.
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Very soon with Slater at MIT, researchers broached the problem of evaluating the two-

electron integrals in this basis. During the 1950s the Chicago group led by Mulliken took

on the task of evaluating all the molecular integrals. Roothaan treated the Coulomb and

Hybrid two-center integrals [5, 6], Rüdenberg the exchange integrals [7]1. Among the many

authors who were working around the world in the solution of the necessary integrals one

may mention Masao Kotani in Japan [8], who wrote the famous tables of integrals which bear

his name and that were widely used; Coulson in Oxford (England) proposed a method to

evaluate the three- and four-center integrals [9], Löwdin in Uppsala [10], and young American

scientist called Harris [11] were involved. Work in the early 50s mostly focused on integrals

over STO.

The interest was to make the first theoretical calculations of some molecules starting

with the diatomic systems H2, N2,. For three-center molecules the problem of integration

was encountered (orbital translation). Mulliken and Roothaan called this ”The bottleneck

of Quantum Chemistry” [12], Mulliken mentioning it in his Nobel Lecture in 1966, on the

molecular orbital method.

Boys in Cambridge published his landmark paper [13] containing the evaluation of three-

and four-center integrals using Gaussian functions, for which he derived the so-called product

theorem: the product of two Gaussian functions located on different centers is a new Gaussian

function located on a new center. Thus four-center electron distributions could be reduced

to a single-center distributions and evaluation was analytically facilitated. Boys regarded

his work as an existence theorem. It was to change the course of molecular computations.

Note that the product theorem for Slater orbitals leads to complicated infinite sums, making

evaluation awkward compared with the simple closed forms for Gaussians.

In 1954 Boys, Shavitt et al [14] expanded Slater orbitals into Gaussians to perform

quantum mechanical calculations. In 1963 Clementi presented the so-called basis set using

Slater orbitals [15]. Later Pople would base his programs on Boys’ pragmatism.

3. History of the STO computer programs

The first (and surely the last) manual calculation of a molecule, the N2 molecule, was done

by Scherr in 1956. It was necessary the work of 2 (sometimes it appears 3 ) men for 2 years.

Afterwards this calculation was reproduced by the first digital computer calculation [16, 17],

taking 35 minutes.

In 1962 Shull initiated the Quantum Chemistry Program Exchange (QCPE) at Indiana

University.

The first automatic computer program was POLYATOM [18] what used nevertheless

GTOs with SCF-LCAO. The program was developed at MIT in 1963 when Slater was there.

1The two-center two-electron integrals are classified according to the centers a, b. Writing them according
the charge distributions [Ω(1)|Ω(2)] the Coulomb integrals are [aa|bb], the hybrids [aa|ab] and the exchange
integrals [ab|ab]. The most difficult are the exchange integrals because the charge distribution of every
electron is located over two centers.
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In 1963 the program IBMOL [19] was developed by Clementi and others when he visited the

Chicago group.

In 1968 a STO code was developed by Scrocco and Tomasi from Pisa. Preliminary work

by Scrocco is reported in italian as early as 1962 [4].

This program was also used by Berthier in France. The program ALCHEMY in 1968 was

originally developed using Slater orbitals by Clementi and the staff of the IBM laboratory

in San Jose [20], afterwards, the new ALCHEMY 2 by Bader and others used GTOs. The

program DERIC [21] by Hagstrom in 1972 perform STO calculations of two-center molecules.

In the 80s, the advent of GAUSSIAN [22] saw development in STO field hibernate some-

what. By the 90s several groups around the world developed new STO computer programs

which are now distributed. The program STOP from Bouferguène and Hoggan [23] was

published first in 1996. It is based on the single center strategy and was first presented in

1994 at the 8th ICQC in Prague. New versions appeared, the latest for parallel platforms in

2009.

Then in 1998 a program was written using B-functions by Steinborn, Weniger, Homeier et

al, in Regensburg [24]. The program SMILES by Fernández Rico, López, Ema, and Ramı́rez

in Madrid appeared in 1998 and new versions have appeared, the latest in 2004 for the HF

and CI calculations of molecules [25].

The program CADPAC [26] in Cambridge uses techniques like density fitting, involving

auxiliary Slater type orbital basis sets to perform Hartree-Fock and Density Functiona The-

ory (DFT) calculations with a reduced number of indices in requisite integrals. They aimed

to obtain better Nuclear Magnetic Resonance (NMR) chemical shifts on the basis involving

nuclear cusps.

In the density functional theory field in 2001 the program ADF (Amsterdam Density

Functional) [27] begun in 1973 by Baerends et al uses Slater orbitals for their calculations.

This much-used package offers a very extensive series of atomic basis sets for input, including

most elements. It is a numerical grid strategy and this review will not detail it.

The program ATMOL of Bunge et al performs large highly accurate CI calculations on

atoms using Slater orbitals [28].

In the first century of the third millennium much interest is concentrated in generating

more efficient calculation algorithms, use of non-integer Slater orbitals, numerical solution of

integrals when using B-functions and in the electron correlation when using Hylleraas wave

functions.

4. Slater Orbitals & Gaussian Orbitals

It is well known that hydrogen-like orbitals are the solution of the Schödinger equation for

a one-electron atom. For helium and atoms with more electrons the Schödinger equation

has no analytical solution due to the potential term 1/rij which correlates the (otherwise)

independent electrons. It is assumed that for systems withN ≥ 2 this form of the exponential

e−αr will be the asymptote of the formal solution. The hydrogen-like orbitals have nodes,
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Figure 1: Comparison of the shape of a STO and GTO functions.
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i.e. the 2s orbital is of the form (1 − br) e−αr, and higher quantum number orbitals are

similar but STOs are node-less. A related problem appears for gaussians.

In 1928 Slater [1] regarded the hydrogen-like orbitals as polynomials in r which make

the calculations messy and proposed the use of single powers of r i.e. linear combinations of

hydrogen-like terms.

A picture which helps to visualize the differences between Slater and Gaussian orbitals

is the representation of the 1s orbital function of both types, see Figure 1.

STOs represent well the electron density near the nucleus (cusp) and far from the nucleus

(correct asymptotic decay). STOs thus resemble the true orbitals. Conversely, the GTOs

have erroneous shape near and far from the nucleus (no cusp). One can observe that far

from the nucleus the GTOs tend to zero much faster than STOs.

To reproduce a 1s STO using 3 GTOs (the so-called minimal GTO basis) an orbital is

obtained with the shape of a Gauss curve, no cusp, see Figure 2. To reproduce a single STO

many GTOs are necessary, but the electron cusp at the nucleus is missing. This is one of

the reasons of the slow convergence of the wave function solutions to the exact (HF or CI)

result. In general, if the basis function is not a formal solution of the Schrödinger equation

its convergence is slower. That means that more Slater determinants are required to obtain

the same result. Thus Slater orbitals show faster convergence when increasing their number.

Another advantage of Slater orbitals is the size of the basis, one orbital per electron is

of reasonable quality and multiple-zeta basis sets converge fast to the Hartree-Fock limit.
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Figure 2: Construction of a STO with 3 GTOs.
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therefore, the number of integrals to be evaluated is dramatically smaller. CI is spectacularly

more efficient. Finally, conceptually the Slater orbitals give a more intuitive description of

the atomic orbitals and of the molecular orbitals (MO) formed with them.

The disadvantages of Slater orbitals have been already mentioned: the three- and four-

center two-electron integrals are the bottleneck. There is no general analytical solution

for them, which would be the most effective and fastest way of calculation. Instead there

are a number of approximate methods of calculation, involving infinite series, or truncated

approximations to the Coulomb operator itself. They will be treated in the next Sections.

The radial Slater functions do not represent the bonding region adequately, it being then

necessary to add higher angular momentum functions.

It is nevertheless possible to use linear combinations restoring radial nodes. This approach

is advocated particularly for ADF, where the hydrogen-like basis is obtained by fixing the

coefficients for combining Slater functions.

Another disadvantage is that some of the two-center integrals since the times of Roothaan

and Ruedenberg have been solved for a co-axial conformation of the atomic coordinate

systems (the z-axis point to each other) that is not the molecular frame. Therefore rotations

and reflections are necessary. These problems have been solved, but it requires additional

calculations [29].

Nowadays, Slater orbitals are used in atomic calculations, especially in highly accurate

calculations of atoms using Hylleraas wave functions (with explicit r12 dependence, and also

in diatomics. They are used in DFT and in Density matrix theories. Traditionally they have

been used in semi-empirical calculations where of course the three- and four-center integrals

were neglected.

The Gaussian orbitals are generally used in standard quantum mechanical calculations.

As explained they are not shaped like analytical orbitals, with no cusp at the nucleus, for

that reason they are not good for the calculation of properties where the density at the

nucleus has to be well described. Also the radial dependence is not well represented and the

number of integrals increases with the dimension of the basis dramatically.

The major advantage of GTOs is the existence of a product theorem. Over many years,

workers have improved the calculation of the necessary integrals, having achieved a consid-

erable speed-up. For example the Coulomb operator with a Laplace transform enables to

calculate three- and four-center integrals like two center integrals.

Concluding, the main defect of GTO expansions is the absent cusp which slows the

convergence and the large number of integrals to be computed.

5. Types of exponentially decaying orbitals, based on

eigenfunctions for one-electron atoms

In general one calls Slater-type orbitals those with an exponential radial factor of the form

rne−αr, for n a positive integer (or 0). The atom-centered Slater orbitals are defined as:

8



ϕnlm(r) = rn−1e−αrY m
l (θ, φ), (1)

where n, l,m are the quantum numbers. Y m
l (θ, φ) are the spherical harmonics defined using

the Condon-Shortley phase:

Y m
l (θ, φ) = (−1)m

[
2l + 1

4π

(l −m)!

(l +m)!

]1/2

Pm
l (cos θ)eimφ, (2)

Pm
l (cos θ) are the associated Legendre functions. The spherical harmonics are eigenfunctions

of the angular momentum operator L̂2 and its z-projection L̂z.

The complex spherical harmonics are used mainly in atoms and in developing theories

because it is easier to work out general formulae and derivations with them. The real

spherical harmonics are linear combinations of the complex ones. These are used mainly in

molecules.

Note that they are written using polar coordinates. They can be also straightforwardly

converted into Cartesian Slater orbitals by the exchange:

x = r sin θ cosφ, (3)

y = r sin θ sinφ, (4)

z = r cos θ, (5)

obtaining in general:

χnlm(r) = xnxynyznzrn−1e−αr. (6)

Cartesian Slater type orbitals are very seldom used compared with Cartesian Gaussians,

that are an almost systematic choice.

When the principal quantum number n in Eq. (1) is a non-integer we have the NISTOs

(Non Integer Slater Orbitals). The main difficulty when working with these orbitals is

during the derivations a binomial has to be used with an non-integer power what leads to an

infinite expansion. These orbitals are widely investigated in the present [30]. The additional

flexibility of using non-integer quantum numbers brings a lowering in the energy results.

There is the possibility to transform also the polar coordinates to elliptical coordinates.

Traditionally the Elliptical Slater orbitals have been used as basis functions for two-center

molecules [31]-[33]. These orbitals are known to lead to lower energy results, see Ref. [34].

Using ξ = λ1 = ra + rb and η = µ1 = ra − rb:

ϕnlm(r) = ξnηl(ξ2 − 1)m/2(1− η2)m/2e−αξeimφ, (7)

where ξ, η, φ are the elliptical coordinates.

Now we go to orbitals which are linear combinations of Slater orbitals: B-functions [35],

hydrogen-like, Sturmians [36].
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The B-functions are Bessel functions. The orbitals have some helpful properties like a

compact Fourier transform. Written in the form

Bnlm(r) =
n∑

j=1

(2n− j − 1)!

22n+l−1(n+ l)!(n− j)!(j − 1)!
(ζr)l+j−1e−ζrY m

l (θ, φ), (8)

one can see that they are a linear combination of Slater orbitals. The angular parts are the

spherical harmonics.

The hydrogen-like orbitals which are solutions of the Schrödinger equation for the hy-

drogen atom have a radial part which is a Laguerre polynomial. The polynomial and the

exponent coefficient depend on the atomic number Z and the principal quantum number n:

χnlm(r) = NnlL
2l+2
n−l−1

(
2Zr

n

)
rle−

Zr
n Y m

l (θ, φ). (9)

Due to that fact, the hydrogen-like orbitals do not form a complete set (for finite n), they

need orbitals of the continuum to be complete. This would be important for the convergence

of the solutions.

Shull and Löwdin [37] realized that this was due to the dependence of Z with n that

dilates the orbitals and they proposed the following orbitals where these were substituted

by adjustable parameters, i.e. usual orbital exponents:

χnlm(r) = NnlL
2l+2
n−l−1 (2αr) rle−αrY m

l (θ, φ), (10)

so these orbitals form a complete set. These orbitals were subsequently called Coulomb

Sturmians because they fulfill the so-called Sturm-liouville theorem for eigenfunctions of

such differential equations, with central Coulomb attraction.

In the Section 7 methods of the literature we will see how these kinds of orbitals have

been used.

6. Types of Integrals over Slater orbitals

Due to the form of the Hamiltonian and of its expectation value we find the following kinds of

integrals. First the integrals which appear when using Hartree-Fock and CI wave functions,

in general ab initio methods. The integrals are classified according the number of electrons

and centers which are linked. We present them in order of difficulty.

6.1 One-electron integrals

These are the one- and two-center overlap integrals 〈a|b〉, kinetic energy integrals 〈a|b〉 and

two-center nuclear attraction ones 〈a|1/rb|b〉.
Other case of one-electron integral is the three-center nuclear attraction, originated from

the nuclear attraction operators in the Hamiltonian: 〈a|1/rc|b〉.
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6.2 Two-electron integrals

They can be up to four-centers because of the determinant giving the wave-function and

thus the four orbitals which form the integral. According to the number of centers:

The two-center integrals have been traditionally the most investigated, they have the

following nomenclature: The Coulomb integrals where the charge distribution of every elec-

tron is located at a center: [aa|bb]. Hybrid integrals, one charge distribution is located at

one center and the other over two centers [aa|ab] and their equivalents [bb|ab]. The exchange

integral is more difficult it leads in case of different exponents to an infinite sum. Every

electron is located in two centers: [ab|ab]. To solve these integrals a change to elliptical

co-ordinates is usdeful. The Coulomb operator in elliptical co-ordinates contains associated

Legendre functions of the first and second kind, for which integration is very difficult. In

the case of slightly different exponents there are some singularities.

In actual calculations, the Coulomb and Hybrid integrals are calculated exactly, numerous

methods exist. The exchange integrals are calculated with great accuracy.

The three-center integrals are of several types [aa|bc], [ab|ac]. For different exponents

there is no general solution.

The four-electron integrals are of the type [ab|cd].

6.3 Three- and four-electron integrals

They appear in the Hylleraas-CI method [38] when using one inter-electronic distance rij per

configuration. For the two-center case they have been solved generally by Budzinski [39].

Three- and higher number of centers have not been solved yet.

These can be many-center integrals, as every electron from right and left in the ex-

pectation value operator may be in a different center. These integrals are of the type,

i.e. the easier [aa|r12r13|ab|bb], to the most difficult [ab|r12r13|ab|ab]. Four-electron ones

[aa|r12r13/r14|bb|ab|bb], and so on.

For three- and higher number of centers one would find three- and four electron integrals

with as many centers as the molecule has up to 8. These integrals are still not solved.

Interest nowadays focusses on the solution of two and three center molecules using explicitly

correlated methods.

7. Methods in the literature

In this section the main methods of evaluation of the three- and four-center integrals over

Slater orbitals from the literature will be explained. The methods are approximate because

they consist in transformations, expansions or include numerical integrations. Therefore they

are not as effective as analytical integration would be. Nevertheless, using these methods the

evaluation of these integrals is possible and the programs are even as competitive as those

using Gaussians.
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7.1 Single-center expansion

The single-center expansion method requires expanding the Slater orbitals located at dif-

ferent centers at only one of them and then as for atoms to perform the integrations. The

translation method consists in selecting an atom as origin then the translation of other or-

bitals from their atom to the origin. Therefore both methods are essentially the same. To

expand one function centered in A at another point B the following expansion:

ϕAi =
∞∑

j=1

(∫
ϕAiχBjdτ

)
χBj. (11)

This formula is due to Smeyers [40]. In brackets, the requisite coefficients. The different

methods of single-center expansion differ in the way to calculate these coefficients.

This method was first proposed by Barnett and Coulson [9] in 1956 using radial orbitals

(s-orbitals) and was called the zeta function method because of expansions in terms of

successive derivatives with respect to exponents.

The method has similarities with the alpha function method of Löwdin [10]. Harris and

Michels [41] extended the method to angular general orbitals in 1965. This method has been

used by Smeyers, Jones, Guseinov, Fernández Rico et al, and others.

The idea is the translation of an orbital from one point to the other. The translation of

an spherical harmonic is a limited expansion, the translation of the radial part is nevertheless

an infinite expansion. This situation can be best explained with formula of Guseinov [42]:

χn,l,m(ζ, rA) =
∞∑

n′=1

n′−1∑
l′=0

l′∑
m′=−l′

Vnlm,n′l′m′ (ζ, RAB)χn′,l′,m′(ζ, rB), (12)

where V are the coefficients of the expansion. The method is very stable but it requires

computation of a lot of terms to obtain sufficient correct decimal digits, therefore this method

needs very long computational times.

7.2 Gaussian expansion

This is the Boys-Shavitt method [43], which consist on solving some integrals over Slater

orbitals expanding them into a finite series of Gaussians:

e−αr =

NG∑
i=1

cie
−αir

2

, (13)

ci and αi are obtained by minimizing the least squares. This method and some improvements

of this method are used at present in the program SMILES [25]. As NG is usually larger than

the number of the primitives when using only Gaussian basis sets, the number of integrals to

calculate is large. The method is very stable and robust. It requires lengthy computational

times to get accurate integral values.
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7.3 Gaussian transform method

The Gaussian transform method by Shavitt and Karplus 1965 [44] has been probably the

most used method. It consists in the Laplace transform of the exponential function, here

exemplified by the simplest one i.e. a 1s orbital:

e−αr =
α

2
√
π

∫ ∞

0

(
s−3/2e−α2/(4s)ds

)
e−sr2

. (14)

Every Slater exponential within the integral is transformed into a Gaussian one, for that one

has to solve the integrals over s which have a special form. This integral has to be solved

numerically. This is the disadvantage of the method.

7.4 Fourier-transform method

The B-functions Eq. (8) proposed by Filter and Steinborn in 1978 [35] have a highly compact

Fourier transform. The group of Steinborn has developed this method [24]. The evaluation

of integrals using B-functions leads to some integrals including a Bessel function of first kind

which is oscillatory: ∫ ∞

0

rne−αrJl+1/2(rx)dr. (15)

To evaluate these Safouhi [45, 46] used the SD-transform, due to Sidi [47], which consists in

substituting this integral by a sine integral which has the same behavior. It needs numerical

integration.

7.5 Use of Sturmians

The Sturmians were proposed by Shull and Löwdin in 1956 [37]. Smeyers used the Sturmians

to evaluate three-center nuclear attraction integrals using the one-center expansion [40].

Guseinov 2001 used also them [48]. The Sturmians Eq. (10) fulfil the Sturm-Liouville

theorem:

∇2Sm
n,l =

[
α2 − 2αn

r

]
Sm

n,l. (16)

The so-called Coulomb Sturmians orthogonalise the Coulomb potential in their argument.

This generally applies to the attraction term, at least for one-electron functions. Geminals

useful for explicit correlation have also been used.

A seminal text by Avery gives more details to the interested reader on this subject [36].

7.6 Elliptic coordinate method

The elliptic coordinate method is the transformation of the polar orbital coordinates into

elliptical ones λ, µ according to Figure 3. The two coordinate systems pointed to each other

so that the elliptical angle φ coincides with polar angle φ. This transformation is:
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Figure 3: Transformation from polar to elliptical coordinates.
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cos θ1a =
1 + λ1µ1

λ1 + µ1

, cos θ1b =
1− λ1µ1

λ1 − µ1

, (18)

sin θ1a =
[(λ2

1 − 1)(1− µ2
1)]

1/2

λ1 + µ1

, sin θ1a =
[(λ2

1 − 1)(1− µ2
1)]

1/2

λ1 − µ1

, (19)

The volume element and the domain change are:∫ ∞

0

r2dr

∫ π

0

sin θdθ

∫ 2π

0

dφ→ R3

8

∫ ∞

1

dλ1

∫ +1

−1

dµ1(λ
2
1 − µ2

1)

∫ 2π

0

dφ1. (20)

The method has been used by numerous authors: Mulliken, Rieke, Orloff, Rüdenberg,

Roothaan, Eyring, Randic, Saika, Yoshimine, Maslen and Trefry, Guseinov, Bosanac, Randic,

Harris, Fernandez Rico, Lopez, Özdogan and many others. Some types of three-electron in-

tegrals have been recently solved by Özdogan and Ruiz using this method [49].

8. General Two-electron Exponential type orbital in-

tegrals in poly-atomics without orbital translations

8.1 Introduction

Now, the Coulomb resolution will be presented. This is a readily controlled approximation

to separating the variables in the 1/r12 which, in recent work by Gill and by Hoggan is shown

to spell the end of exponential orbital translations and ensuing integral bottlenecks.

This section advocates the use of atomic orbitals which have direct physical interpreta-

tion, i.e. hydrogen-like orbitals. They are Exponential Type Orbitals (ETOs).
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Until 2008, such orbital products on different atoms were difficult to manipulate for the

evaluation of two-electron integrals. The difficulty was mostly due to cumbersome orbital

translations involving slowly convergent infinite sums. These are completely eliminated

using Coulomb resolutions. They provide an excellent approximation that reduces these

integrals to a sum of one-electron overlap-like integral products that each involve orbitals

on at most two centers. Such two-center integrals are separable in prolate spheroidal co-

ordinates. They are thus readily evaluated. Only these integrals need to be re-evaluated to

change basis functions.

The above is still valid or three- center integrals. In four- center integrals, the resolu-

tions require translating one potential term per product. This is outlined here and detailed

elsewhere.

Numerical results are reported for the H2 dimer and CH3F molecule.

The choice between gaussian and exponential basis sets for molecules is usually made for

reasons of convenience at present. In fact, it appears to be constructive to regard them as

being complementary, depending on the specific physical property required from molecular

electronic structure calculations.

As regards exponential type orbitals (ETOs) such as Slater functions, it seems to be

difficult to evaluate two-electron integrals because the general three- and four- center inte-

grals evaluated by the usual methods require orbital translations. Some workers avoid the

problem using large Gaussian expansions, as in SMILES [50, 51].

It would be helpful to devise a separation of the variables of integration. This would

eliminate orbital translations, although some other translations remain involving a simple

analytic potential.

The present work describes a breakthrough in two-electron integral calculations, as a

result of Coulomb operator resolutions. This separates the independent variables of the

operator and gives rise to simple analytic potentials. The two-center integrals are replaced

by sums of overlap-like one-electron integral products. One potential term in these products

requires translation in four-center terms, which is significantly simpler to carry out than

that of the orbitals. This implies a speed-up for all basis sets, including gaussians. The

improvement is most spectacular for exponential type orbitals. A change of basis set is

also facilitated as only these one-electron integrals need to be changed. The gaussian and

exponential type orbital basis sets are, therefore interchangeable in a given program. The

timings of exponential type orbital calculations are no longer significantly greater than for

a gaussian basis, when a given accuracy is sought for molecular electronic properties.

Numerical values for all two-electron integrals evaluated using Coulomb resolutions as

well as total energies will be tabulated for the H2 dimer and CH3F molecule.

8.2 Basis sets

Although the majority of electronic quantum chemistry uses Gaussian expansions of atomic

orbitals [13, 43], the present work uses exponential type orbital (ETO) basis sets which

satisfy Kato’s conditions for atomic orbitals: they possess a cusp at the nucleus and decay
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exponentially at long distances from it [52]-[54]. It updates a ‘real chemistry’ interest be-

ginning around 1970 and detailed elsewhere [3, 4, 15, 27, 44, 55, 56]. Slater type orbitals

(STOs) [57, 58] are considered here.

STOs allow us to use routines from the STOP package [23, 59] directly. The integrals

may be evaluated after gaussian expansion or expressed as overlaps to obtain speed up [60].

Exponents may be optimized solving a secular determinant as in [61].

8.3 Programming strategy

Firstly, the ideal ab initio code would rapidly switch from one type of basis function to

another.

Secondly, the chemistry of molecular electronic structure must be used to the very fullest

extent. This implies using atoms in molecules (AIM) and diatomics in molecules (DIM)

from the outset, following Bader (in an implementation due to Rico et al [50] and Tully [62]

implemented in our previous work [59, 63], respectively. The natural choice of atomic or-

bitals, i.e. the Sturmians or hydrogen-like orbitals lend themselves to the AIM approach.

To a good approximation, core eigenfunctions for the atomic hamiltonian remain unchanged

in the molecule. Otherwise, atom pairs are the natural choice, particularly if the Coulomb

resolution recently advocated by Gill is used. This leads us to products of auxiliary overlaps

which are either literally one- or two- centered, or have one factor of the product where a

simple potential function is translated to one atomic center.

The Slater basis set nightmare of the Gegenbauer addition theorem is completely avoided.

Naturally, the series of products required for, say a four-center two-electron integral may

require 10 or even 20 terms to converge to chemical accuracy, when at least one atom pair

is bound but the auxiliaries are easy to evaluate recursively and re-use. Unbound pairs may

be treated using approximate methods.

Now, the proposed switch in basis set may also be accomplished just by re-evaluating

the auxiliary overlaps. Furthermore, the exchange integrals are greatly simplified in that the

products of overlaps just involve a two-orbital product instead of a homogeneous density. The

resulting cpu-time growth of the calculation is n2 for SCF, rather than n4. Further gains may

be obtained by extending the procedure to post-Hartree-Fock techniques involving explicit

correlation, since the r12
−1 integrals involving more than two electrons, that previously soon

led to bottlenecks, are also just products of overlaps. This Coulomb resolution is diagonal

in Fourier space in some cases.

8.4 Avoiding ETO translations for two-electron integrals

over three and four centers

Previous work on separation of integration variables is difficult to apply, in contrast to the

case for gaussians [64, 65]. Recent work by Gill et al [66] proposes a resolution of the

Coulomb operator, in terms of potential functions φi, which are characterized by examining

Poisson’s equation. In addition, they must ensure rapid convergence of the implied sum in

16



the resulting expression for Coulomb integrals J12 as products of ”auxiliaries” i.e. overlap

integrals, as detailed in [66]:

J12 = 〈ρ(r1) φi(r1)〉 〈φi(r2) ρ(r2)〉, with implied sumation over i. (21)

This technique can be readily generalized to exchange and multi-center two-electron inte-

grals. For two-center terms it is helpful to define structure harmonics by Fourier transforms,

limiting evaluation to non-zero terms [67].

Note, however, that in four-center integrals, the origin of one of the potential functions

only may be chosen to coincide with an atomic (nuclear) position.

Define the potential functions [67]:

φi = 23/2 φn l(r)Y
m
l (θ, φ)

.

Omitting the spherical harmonic term gives radial factors:

φn l(r) =

∫ +∞

0

hn(x)jl(rx)dx, with jl(x) denoting the spherical Bessel function. (22)

Here, hn(x) is the nth member of any set of functions that are complete and orthonormal on

the interval [0,+∞), such as the nth order polynomial function (i.e. polynomial factor of an

exponential). The choice made in [66] is to use parabolic cylinder functions (see also another

application [51]), i.e. functions with the even order Hermite polynomials as a factor. This is

not the only possibility and a more natural and convenient choice is based on the Laguerre

polynomials Ln(x): Define:

hn(x) =
√

2 Ln(2 x)e−x. (23)

These polynomial functions are easy to use and lead to the following analytical expressions

for the first two terms in the potential defined in (22):

V00(r) =
√

2
tan−1(r)

r
, (24)

V10(r) =
√

2 [
tan−1(r)

r
− 2

(1 + r2)
], (25)

Furthermore, higher n expressions of Vn0(r) all resemble (25) (see [67] eq (23)):

Vn0(r) =
√

2
1

r
(tan−1(r) +

n∑
1

(−1)k sin(2 k tan−1(r))

k
), (26)

and analytical expressions of Vnl(r) with non-zero l are also readily obtained by recurrence.

These radial potentials can generally be expressed in terms of hypergeometric functions,

whether the choice of polynomial is the present one, i.e. Laguerre, or Hermite polynomials, as

in [66]. This structure has been used to confirm the results of [67] using a rapid code in C [68].
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Spherical harmonics are translated using Talman’s approach [69]. The displaced potential

in one factor of the product of ’auxiliaries’, from four-center integrals is readily expanded in

two-center overlaps, after applying Euler’s hypergeometric transformation. [70, 71].

The auxiliary overlap integrals 〈ρ(r1) φi(r1)〉 and 〈φi(r2) ρ(r2)〉 will involve densities

obtained from atomic orbitals centered on two different atoms in exchange multi-center two-

electron integrals. The overlap integrals required in an ETO basis are thus of the type:

〈ψa(r1) ψb(r1) φi(r1)〉 =

µmax∑
µ=0

Nµ(n1, n2, ni, li, |mi|αβ) s(n1, l1,m, n2, l2, αβ), (27)

with: α = ζ1R and β = ζ2R. Slater exponents. In three-center overlaps, Nµ is a normalised

Racah coefficient [71]. In two-center cases the sum reduces to a single normalisation term,

N0. A Fourier transform approach is also being investigated, extending [67].

The real space core overlaps then take the form:

s(n1, l1,m, n2, l2, α, β) = Dl1,l2,m

λ∑
ij

Y λ
ijAi

{
1

2
(α+ β)

}
Bj

{
1

2
(α− β)

}
, (28)

Y λ
ij is a matrix with integer elements uniquely determined from n, l and m.

Dl1,l2,m is a coefficient that is independent of the principal quantum number. It is

obtained upon expanding the product of two Legendre functions in this co-ordinate system.

Symmetry conditions imply that only m1 = m2 = m lead to non-zero coefficients:

Ai

{
1

2
(α+ β)

}
=

∫ ∞

1

exp

{
−1

2
(α+ β)µ

}
µidµ, (29)

Bj

{
1

2
(α− β)

}
=

∫ 1

−1

exp

{
−1

2
(α− β)ν

}
νjdν. (30)

Here, recurrence relations on the auxiliary integrals A and B lead to those for the requisite

core integrals [72, 73]. These integrals may be pre-calculated and stored.

Such integrals appear for two-center exchange integrals and three- and four- center in-

tegrals (although just in one factor for three-center Coulomb terms). Note that exchange

integrals require distinct orbitals ψa and ψb. In the atomic case, they must have different

values for at least one of n, l,m or ζ. In the two-center case, the functions centered at a

and b may be the same. The product does not correspond to a single-center density: it is

two-centered. Equation (27) then illustrates the relationship to the one-electron two-center

overlap integral, although it clearly includes the extra potential term from the Coulomb

operator resolution.

This assumes tacitly that the potential obtained from the Coulomb operator resolution

be centered on one of the atoms. Whilst this choice can be made for one pair in a four-center

product, it cannot for the second. There remains a single translation for this potential in

one auxiliary of the two in a product representing a four-center integral and none otherwise.

This method obviates the need to evaluate infinite series that arise from the orbital trans-

lations efficiently. They have been eliminated in the Coulomb operator resolution approach,
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Table 1: Atomic exchange integrals (6 distinct single center values between pairs of different AOs).
AOs (zeta) Label [a(1)b(2)a′(2)b′ (1)] Value

1sa1 1.042 999 1 1 2 1 2 0.720 716
1sa2 1.599 999 2 1 3 1 3 0.585 172
2sa1 1.615 000 3 1 4 1 4 0.610 192
2sa2 1.784 059 4 2 3 2 3 0.557 878
1sb1 1.042 999 5 2 4 2 4 0.607 927
1sb2 1.599 999 6 3 4 3 4 0.602 141
2sb1 1.615 000 7 2 1 2 1 0.720 716
2sb2 1.784 059 8 3 2 3 2 0.557 878

since only orbitals on two centers remain in the one-electron overlap-like auxiliaries. These

can be evaluated with no orbital translation, in prolate spheroidal co-ordinates, or by Fourier

transformation [67, 71].

8.5 Numerical results of Coulomb resolutions: efficiency

First a test system is studied, built up of four hydrogen atoms. The second example is the

full RHF calculation of CH3F using the Coulomb resolutions.

Consider the H2 molecule and its dimer/agregates. In an s-orbital basis, all two-center

integrals are known analytically, because they can be integrated by separating the variables

in prolate spheroidal co-ordinates. A modest s-orbital basis is therefore chosen, simply for

accuracy demonstration on a rapid calculation, for which some experimental data could be

corroborated.

The purpose of this section is to compare evaluations using the Coulomb resolution to

the exact values, obtained analytically. The IBM Fortran compiler used is assumed to be

reliable to 14 decimals in double precision. The worst values in the Coulomb resolution

approximation have 10 correct decimals for two-center integrals with a 25-term sum.

Timings are then compared for translation of a Slater type orbital basis to a single center

(STOP) [59] with the Poisson equation solution using a DIM (Diatomics in molecules or

atom pair) strategy and finally to show that the overlap auxiliary method is by far the

fastest approach, for a given accuracy (the choice adopted is a sufficient six decimals, for

convenient, reliable output).

H2 molecule with interatomic distance of 1.402 atomic units (a.u.). One and two-center

Coulomb integrals may be obtained analytically and Coulomb resolution values compare well

with them [66].

The two-center exchange integrals are dominated by an exponential of the interatomic

distance and thus all have values close to 0.3. The table is not the full set. All index ‘15‘

terms, involving 1sa1(1) 1sb1(2) are given, to illustrate symmetry relations.

Note that this is by no means the best possible basis set for H2, since it is limited to

l = 0 functions (simply to ensure that even the two-center exchange integral has an analytic

closed form).
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Table 2: Two-center exchange integrals. All pair permutations possible. Some are identical by symmetry.
Labels Value
1515 0.319 902
1516 0.285 009
1517 0.325 644
1518 0.324 917
1527 0.291 743
1528 0.293 736
1538 0.329 543
2525 0.260 034
2516 0.254 814
2517 0.290 533
2518 0.290 149

The total energy obtained for the isolated H2 molecule is -1.1284436 a.u. as compared

to a Hartree-Fock limit estimate of -1.1336296 a.u. Nevertheless, the Van der Waals well,

observed at 6.4 au with a depth of 0.057 kcal/mol (from Raman studies) is quite reasonably

reproduced [74].

Dimer geometry: rectangular and planar. Distance between two hydrogen atoms of

neighboring molecules: 6 a.u. Note that this alone justifies the expression dimer-the geometry

corresponds to two almost completely separate molecules, however, the method is applicable

in any geometry (for 3 a.u. all three- and four- center integrals evaluated by Coulomb

resolution agree with those of STOP to at least 6 decimals).

Timings on an IBM RS6000 Power 6 workstation, for the dimer (all four-center integrals

in msec): STOP: 12 POISSON: 10 OVERLAP: 2. Total dimer energy: -2.256998 a.u. This

corresponds to a well-depth of 0.069 Kcal/mol, which may be considered reasonable in view

of the basis set.

8.6 Selected exchange integrals for the CH3F molecule (evaluated

using the Coulomb resolution)

Geometry and exponents are those of previous work [75]: Tetrahedral angles, with C-H 2.067

and C-F 2.618 a.u.

No symmetry is assumed but geometric relationships are observed, as well as those due

to m values, at least to the nano-Hartree accuracy chosen.

For illustrative purposes, three-center exchange integrals are tabulated in a real basis.

Timings on IBM RS6000 Power 6 workstation for all two-electron integrals: STOP: 1.21 s,

OVERLAP: 0.17 s.

All the two-electron integrals are identical to better than six significant figures with those

obtained using the STOP software package [59].

The factor limiting precision in this study is the accuracy of input. The values of Slater

exponents and geometric parameters are required to at least the accuracy demanded of the

integrals and the fundamental constants are needed to greater precision.
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Table 3a: Orbital exponents.
AO No. n l m zeta

01 1 0 0 5.6727
02 2 0 0 1.6083
3-5 2 1 m 1.5679
06 1 0 0 8.5600
07 2 0 0 2.5600

8-10 2 1 m 2.5200
H 1 0 0 1.2400

Table 3b: Selected examples of three-center exchange integrals.
Integral Value Integral Value

〈2sC2sF |2sC1sHa〉 0.4970 48510 ×10−1 〈2sF 1sHa|1sF 2sC〉 0.1014 05594 ×10−2

〈2sC2sF |2sC1sHa〉 0.8420 56635 ×10−2 〈2sF 1sHa|2sF 2sC〉 0.9341 35949 ×10−2

〈2sC1sF |1sC1sHa〉 0.5737 90540 ×10−3 〈2sF 1sHa|2pzF 2sC〉 -0.8442 95091 ×10−2

〈2sC1sF |2sC1sHa〉 0.3789 18525 ×10−2 〈2sF 1sHa|1sF 2pzC〉 0.1813 23479 ×10−2

〈1sC2pzF |2pzC1sHa〉 0.1587 58344 ×10−2 〈2sF 1sHa|2sF 2pzC〉 0.1379 64387 ×10−1

〈2sC2pzF |2pzC1sHa〉 0.5258 34208 ×10−2 〈2sF 1sHa|2pzF 2pzC〉 -0.1135 01125 ×10−1

〈2pzC1sF |1sC1sHa〉 0.1025 32536 ×10−2 〈1sHa2sF |1sHa2sC〉 0.1252 319411 ×10−1

〈2pzC1sF |2sC1sHa〉 0.6772 76818 ×10−2 〈1sHa2sF |1sHa2pzC〉 -0.1591 49899 ×10−2

〈1sC1sF |1sC1sHa〉 0.1099 00118 ×10−6 〈1sHa2pzF |1sHa2pzC〉 0.1772 90873 ×10−2

〈1sC1sF |2sC1sHa〉 0.6794 54131 ×10−6 〈1sF 1sHb|2sF 1sC〉 0.2287 77210 ×10−4

〈1sC2sF |1sC1sHa〉 0.1446 31297 ×10−2 〈1sHb2sF |1sHb1sC〉 0.1939 63837 ×10−2

〈1sC2sF |2sC1sHa〉 0.4235 59085 ×10−2 〈2sC1sHa|1sC1sHb〉 0.2034 841982 ×10−1

〈2pzC2sF |1sC1sHa〉 0.1112 10955 ×10−1 〈1sC1sHa|1sC1sHb〉 0.7154 932331 ×10−2

〈2pzC2sF |1sC1sHa〉 0.6738 14908 ×10−1 〈2sC1sHa|2sC1sHb〉 0.1137 390852
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8.7 Conclusions

A remarkable gain in simplicity is provided by Coulomb operator resolutions [66], that

now enables the exponential type orbital translations to be completely avoided in ab initio

molecular electronic structure calculations.

This breakthrough that Coulomb resolutions represent (in particular with the convenient

choice of Laguerre polynomials) in the ETO algorithm strategy stems from a well-controlled

approximation, analogous to the resolution of the identity. The convergence has been shown

to be rapid in all cases [67].

The applications to H2 dimer Van der Waals complexes and CH3F uses a general code

within the STOP package [59]. They show the Coulomb resolution can be used to give

fast and accurate results for basis sets of s and p Slater type orbitals. Generalisation is in

progress.

Numerical vales for the H2 dimer geometry and interaction energy agree well with com-

plete ab initio potential energy surfaces obtained using very large gaussian basis sets and

data from vibrational spectroscopy [74].

9. Explicitly Correlated Methods for Molecules

The application and development of such methods to determine accurately the ground and

excited states, and properties of diatomic and triatomic molecules is very promising and

more interesting for the Computational Chemist than the atomic case. There is nowadays

a growing interest in this field. Subroutines and programs which perform these calculations

are often requested in the community.

The investigation of these integrals should be approached within the Molecular Orbital

method (MO) [76], because the MO wave function is the simplest wave function for a molecu-

lar system. As Coulson [77] discussed, the MO method permits the visualization of electrons

and nuclei and interpretation of individual electrons and their orbital exponents better than

the wave functions written in elliptical coordinates.

The wave functions constructed with elliptical orbitals are of two types, the so-called

James-Coodlige [78] wave functions (one-alpha exponent), recently extended to the two-

alpha case [33], and Kolos-Wolniewick [79, 80] wave functions (with both orbital exponents

alpha, and beta ). Both have been applied to the H2 molecule.

The elliptical wave functions are the natural representation of a two-center problem but

for three-center and larger molecules the use of the MO method becomes necessary. Frost

[81] used the MO method and the Correlated Molecular Method (CMO) in H2 calculations.

About the extension of the method he wrote: ”The extension of CMO-type wave functions

to more complex molecules does not seem feasible at the present time. The new integrals

which will be introduced would involve more than two centers if more nuclei were involved

and higher atomic orbitals than 1s if more electrons were considered, and their evaluation
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would be extremely difficult”.

Recently, impressive calculations using Hylleraas wave functions have been done for H2,

see Table 4. Hylleraas [33], the Iterative Complement Iteration method (ICI) [82], and

Explictily correlated Gaussian (ECG) [83] calculations of the hydrogen molecule, Hylleraas

calculations on HeH+ and some species [84] leading to −2.9710784698 a.u. using 9576

configurations and calculations of He2 using 4800 optimized ECG configurations with energy

−5.80748359014 a.u. [83] achieved the the highest known accuracy in molecules (picohartree

accuracy is more than that of chemical measurements, e.g. a micro cm−1, a nano eV or

micro cal/mol. Although one must recall that in the calculation of properties according to

Drake [85], only half of the digits of the energy are kept).

Note also that input exponents, distances and some fundamental constants may limit

accuracy of calculations compared with measurements and that molecules may not be rigid.

Eventually, dynamics and the effect of the Born-Oppenheimer approximation should be

included.

Hy-CI was applied in 1976 to LiH molecule by Clary [32] using elliptical STOs. For

two-center molecules the three-electron and four-electron integrals occurring in the Hy-CI

have been developed by Budzinski [39].

Another type of explicitly correlated wave functions are the ones that use Gaussian

orbitals. Clementi et al extended the Hy-CI to molecules using Gaussian orbitals [86], and

applied it to the calculation of H3 . The ECG wave function is appropriate also for molecules

[83, 87], as the interelectronic distance r12 is a Gaussian exponent. This leads to results,

which are comparable with Hylleraas calculations [83].

The R12-wave function proposed by Kutzelnigg and Klopper [88, 89] has the merits to

fulfill the cusp condition, to use Gaussian functions avoiding the three- and four-center

integration problems, and to include precisely r12, involving electrons 1 and 2, close to the

nucleus, where the probability that r12 = 0 is larger, also these electrons are present at

any system starting from helium atom. The r12 variation influences energy. The R12 wave

function, developed for molecular calculations is nowadays widely used and combined with

all kinds of methods. The occurring three- and four-electron integrals are calculated in

terms of two-electron ones. Due to the use of a single r12 value, the accuracy achieved

for atomic calculations is lower than the accuracy of Hy and Hy-CI calculations. Recent

improvements of the method [90]-[92] can achieve microhartree accurate energy results for

chemically interesting systems.

Short wave function expansions lead to very good results. When a large number of

configurations are used (up to 10000) the energy results are beyond pico-hartree accuracy,

while the CI wave function would need in the order of millions of configurations.

10. Highly accurate calculations using STOs

Another problem appearing in these calculations is the digital erosion. For many operations

and subtraction numbers of similar value some digits can be lost leading to erroneous results.
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Table 4: Highly accurate calculations on the H2 molecule with different types of wave functions at
R=1.4011 a.u.

Authors type w. f. Confs. Energy (a.u.)
1933 James and Coolidge JC 5 -1.1735
1960 Kolos and Roothaan KR -1.17214
1968 Kolos and Wolniewicz KW -1.174475
1995 Wolniewicz KW 833 -1.17447467
2006 Sims and Hagstrom JC 7034 -1.17447593139984
2007 Nakatsuji ICI 6776 -1.17447571400027
2008 Cencek and Szalewicz ECG,opt 4800 -1.17447571400135

Quadruple precision avoids this, about 30 decimal digits are correct on our computer. Other

possibility is high precision arithmetic software. Some programs are available like Bailey’s

MPFUN [93], the Brent and Miller program packages [94, 95].

One example of the use of Slater orbitals in the present are the highly accurate cal-

culations of small molecules using explicitly correlated wave functions i.e. wave functions

where the inter-electronic coordinate rij is included explicitly in the wave function. These

are the Hylleraas and Hylleraas-CI wave functions, ICI method, compared with the explicit

correlated Gaussians ECG and the R12 method.

11. Closing remarks

We conclude with the words of G. Berthier: GTOs are like medicine, you have to use them

as long as they are healing, but once they don’t work any more, you much change them,

Gaston Berthier, Interview, Paris, 2nd June 1997.

Recently, a whole book ”Recent Advances in Computational Chemistry: Molecular Inte-

grals over Slater Orbitals ” was dedicated to a mathematical review of methods of integration

over Slater orbitals and Hylleraas wave functions [96].
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Slater Orbitals, Özdogan T. and Ruiz M.B. Eds., Transworld Research Network: Kerala,

India, 2008 pp. 100-144.

[35] Filter E. and Steinborn E.O. Extremely compact formulas for molecular two-cenetr one-

electron integrals and Coulomb integrals over Slater-type atomic orbitals. Phys. Rev. A

1978 18 1-11.

[36] J. Avery, Hyperspherical Harmonics and Generalized Sturmians, Kluwer: Boston, 2000;

Avery J. Many-center Coulomb Sturmians and Shibuya-Wulfman integrals. Int. J.

Quantum Chem. 2004 100, 121-130; Red E. and Weatherford C.A. Derivation of a

general formula for the Shibuya-Wulfman matrix. Int. J. Quantum Chem. 2004 100,

208-213.
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