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Conditions to be a Forest for Normalizer

M. Beşenk
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Abstract

In this paper, we examine some suborbital graphs for the normalizer
of Γ0(N) in PSL(2,R).
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1. Introduction

Let PSL(2,R) denote the group of all linear fractional transformations

T : z → az + b

cz + d
, where a, b, c and d are real and ad− bc = 1.

In terms of matrix representation, the elements of PSL(2,R) correspond to the
matrices

±
(

a b
c d

)
; a, b, c, d ∈ R and ad− bc = 1.

This is the automorphism group of the upper half plane H := {z ∈ C : Im(z) > 0} .
Γ, the modular group, is the subgroup of PSL(2,R) such that a, b, c and d are
integers. Γ0(N) is the subgroup of Γ with N |c.

In [1], the normalizer Nor(N) of Γ0(N) in PSL(2,R) consists exactly of
matrices (

ae b/h
cN/h de

)
,

where e ‖ N
h2 and h is the largest divisor of 24 for which h2|N with under-

standings

that the determinant e of the matrix is positive, and that r ‖ s means that r|s
and (r, s/r) = 1 (r is called an exact divisor of s). Nor(N) is a Fuchsian group
whose fundamental domain has finite area, so it has a signature consisting of
the geometric invariants

(g; m1, ..., mr, s)

where g is the genus of the compactified quotient space, m1, ..., mr are the
periods of the elliptic elements and s is the parabolic class number.

2 The Action of Nor(N) on Q̂

Every element of the extended set of rationals Q̂ = Q ∪ {∞} can be repre-

sented as a reduced fraction
x

y
, with x, y ∈ Z and (x, y) = 1. ∞ is represented

as 1
0

= −1
0

. The action of the matrix

(
a b
c d

)
∈ Γ on

x

y
is

(
a b
c d

)
:
x

y
→ ax + by

cx + dy
.
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Lemma 2.1 ([1]) Let N have the prime power decomposition as 2α1 · 3α2 ·
pα3

3 · · · pαr
r . Then Nor(N) acts transitively on Q̂ if and only if α1 ≤ 7, α2 ≤ 3

and αi ≤ 1 for i = 3, . . . , r.

In this study, N will be of the form 2αp2, where α ≥ 8 and p is prime > 3.
Clearly, Nor(2αp2) is not transitive on Q̂. Therefore, we will find a maximal
subset of Q̂ on which Nor(2αp2) acts transitively. For this, we give some well-
known facts as following lemmas about the orbits of the action of Γ0(N) on Q̂

without proofs.

Lemma 2.2 Let k/s be an arbitrary rational number with (k, s) = 1. Then
there exists some element A ∈ Γ0(N) such that A(k, s) = (k1, s1) with s1|N
transitive.

Lemma 2.3 Let d|N . Then the orbit

(
a
d

)
of a/d with (a, d) = 1 under Γ0(N)

is the set
{

x/y ∈ Q̂ : (N, y) = d, a ≡ xy
d
mod(d, N/d)

}
. Furthermore the num-

ber of orbits

(
a
d

)
with d|N under Γ0(N) is just ϕ(d, N/d) where ϕ is Euler’s

functions.

Corollary 2.4 Let d|N and let (a1, d) = (a2, d) = 1. Then

(
a1

d

)
and

(
a2

d

)

are conjugate under Γ0(N) iff a1 = a2 mod(d, N/d).

If one can just examine the actions of the elements of Nor(2αp2) on the

orbit

(
1
1

)
, the following result is easily obtained:

Theorem 2.5 The set Q̂(2αp2) :=
⋃ (

a
b

)
, where

(
a
b

)
is as in Lemma2.3;

b = 2ipj or 2α−ipj; i = 0, 1, 2, 3 and j = 0, 2, is an orbit of Nor(2αp2) on Q̂.

Therefore the set Q̂(2αp2) is one on which Nor(2αp2) acts transitively.
We now consider the imprimitivity of the action of Nor(2αp2) on Q̂(2αp2),
beginning with a general discussion of primitivity of permutation groups. Let
(G, Δ) be a transitive permutation group, consisting of a group G acting on
a set Δ transitively. An equivalence relation ≈ on Δ is called G-invariant
if, whenever α, β ∈ Δ satisfy α ≈ β, then g(α) ≈ g(β) for all g ∈ G. The
equivalence classes are called blocks, and the block containing α is denoted by
[α].

We call (G, Δ) imprimitive if Δ admits some G-invariant equivalence rela-
tion different from
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(i) the identity relation, α ≈ β if and only if α = β;
(ii) the universal relation, α ≈ β for all α, β ∈ Δ.

Otherwise (G, Δ) is called primitive. These two relations are supposed to
be trivial relations. Clearly, a primitive group must be transitive, for if not
the orbits would form a system of blocks. The converse is false, but we have
the following useful result.

Lemma 2.6 ([3]). Let (G, Δ) be a transitive permutation group. (G, Δ) is
primitive if and only if Gα,the stabilizer of α ∈ Δ, is a maximal subgroup of
G for each α ∈ Δ.

From the above lemma we see that whenever, for some α, Gα � H � G,
then Ω admits some G-invariant equivalence relation other than the trivial
cases. Because of the transitivity, every element of Ω has the form g(α) for
some g ∈ G. Thus one of the non-trivial G-invariant equivalence relation on
Ω is given as follows:

g(α) ≈ g′(α) if and only if g′ ∈ gH.

The number of blocks ( equivalence classes ) is the index |G : H| and the
block containing α is just the orbit H(α).

We can apply these ideas to the case where G is the Nor(2αp2) and Δ is
Q̂(2αp2) which is the orbit in Theorem 1, Gα is the stabilizer of∞ in Q̂(2αp2);

that is, G∞ =

〈(
1 1/23

0 1

)〉
, and H is N0 =

〈
Γ0(2

αp2),

(
a b/23

2α−3p2c d

)
,

(
2α−6a b/23

2α−3p2c 2α−6d

)〉
.

Clearly G∞ < N0 < Nor(2αp2).

Lemma 2.7 ([1]) The index |Nor(N) : Γ0(N)| = 2ρh2τ ,
where ρ is the number of prime factors of N/h2, τ = (3

2
)ε1(4

3
)ε2,

ε1 =

{
1 if 22, 24, 26 ‖ N
0 otherwise

, ε2 =

{
1 if 9 ‖ N
0 otherwise

Using the Lemma 2.7, we get following easily:

Theorem 2.8 There are only two blocks which are [∞] and [0]. The first(or
second) is the subset of Q̂(2αp2) where j = 2(or j = 0) in Theorem 2.5.

3 Suborbital Graphs of Nor(2αp2) on Q̂(2αp2)

In[6], Sims introduced the idea of the suborbital graphs of a permutation group
G acting on a set Δ , these are graphs with vertex-set Δ, on which G induces
automorphisms. We summarise Sims’theory as follows: Let (G, Δ) be transi-
tive permutation group. Then G acts on Δ×Δ by g(α, β) = (g(α), g(β))(g ∈
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G, α, β ∈ Δ). The orbits of this action are called suborbitals of G. The orbit
containing (α, β) is denoted by O(α, β). From O(α, β) we can form a suborbital
graph G(α, β) : its vertices are the elements of Δ, and there is a directed edge
from γ to δ if (γ, δ) ∈ O(α, β). A directed edge from γ to δ is denoted by
(γ → δ). If (γ, δ) ∈ O(α, β), then we will say that there exists an edge (γ → δ)
in G(α, β).

If α = β, the corresponding suborbital graph G(α, α), called the trivial
suborbital graph, is self-paired : it consists of a loop based at each vertex
α ∈ Δ. By a circuit of length m (or an closed edge path), we mean a sequance
ν1 → ν2 → · · · → νm → ν1 such that νi �= νj for i �= j, where m ≥ 3. If m = 3
or 4 then the circuit is called a triangle or rectangle. We call a graph a forest
if it does not contain any circuits.

In this study, G and Δ will be Nor(N) and Q̂, respectively. All circuits in
suborbital graph for Nor(N) where N is a squre-free positive integer was stud-
ied in [4,5]. We now investigate the suborbital graphs for the action Nor(2αp2)
on Q̂(2αp2). Since the action Nor(2αp2) on Q̂(2αp2) is transitive, Nor(2αp2)
permutes the blocks transitively; so the subgraphs are all isomorphic. Hence
it is sufficent to study with only one block. On the other hand, it is clear
that each non-trivial suborbital graph contains a pair (∞, u/2αp2) for some
u/2αp2 ∈ Q̂(2p2). Therefore, we work on the following case: We denote by
F (∞, u/2αp2) the subgraph of G(∞, u/2αp2) such that its vertical are in the
block [∞].

Theorem 3.1 Let r/s and x/y be in the block [∞]. Then there is an edge
r/s→ x/y in F (∞, u/2αp2) iff

(i) If 2α−kp2 ‖ s, then x ≡ ±ur(mod2α−3p2), y ≡ ±us(mod2αp2), ry − sx =
±2αp2,

(ii) If 2kp2 ‖ s, then x ≡ ±23−kur(mod2kp2), y ≡ ±23−kus(mod2αp2), ry −
sx = ±22α−6p2, where 0 ≤ k ≤ 3 and k ∈ Z.

Proof. We prove first (i).Assume first that r/s→ x/y is an edge in F (∞, u/p2),
0 ≤ k ≤ 3 and k ∈ Z. It means that there exists some T in the normalizer
Nor(2αp2) such that T sends the pair (∞, u/2αp2) to the pair (r/s, x/y), that is
T (∞) = r/s and T (u/2αp2) = x/y. Since 2α−kp2 ‖ s, T must be of the form A1

where a and d are odd. T (∞) =
a

2α−3p2c
=

r

s
gives that r = a and s = 2α−3p2c.

T (u/2αp2) =
au + 2α−3bp2

2α−3p2cu + 2αdp2
=

r

s
gives that x ≡ ±ur(mod2α−3p2), y ≡

±us(mod2αp2). Furthermore, we get ry − sx = ±2αp2 from the equation

(
a b/23

2α−3p2c d

) (
1 u
0 2αp2

)
=

(
r s
x y

)
.
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Figure 1: Path of the action

For the opposite direction, we assume that 2α−kp2 ‖ s where 0 ≤ k ≤ 3 and
k ∈ Z, and x ≡ ±ur(mod2α−3p2), y ≡ ±us(mod2αp2), ry − sx = ±2αp2. In
this case, there exist b, d ∈ Z such that x = ur + 2α−3bp2 and y = us + 2αdp2.
If we put these equivalences in ry − sx = 2αp2, we obtain rd − (b/23)s = 1.

So the element T0 =

(
r b/23

s d

)
is clearly in N0. For (ii), taking the element

of the form

(
2α−6a b/23

2α−3p2c 2α−6d

)
where a = 2α−3a0, and a0, b, c are odd, similiar

calculations are done.
Now, let us represent the edges of F (∞, u/2αp2) as hyperbolic geodesics in

the upper half-plane H, that is, as euclidean semi-circles or half-lines perpen-
dicular to real line. Then we have

Theorem 3.2 F (∞, u/2αp2) is self-paired iff u2 ≡ −1 (mod2α−3p2).

Proof Because of the transitive action, the form of self-paired edge can be
taken as 1/0 → u/2αp2 → 1/0. The condition follows immediately from the
second edge by Theorem 3.1.

Now we can give our main theorem. Same problem for modular group was
solved in [2] by the same method.

Theorem 3.3 F (∞, u/2αp2) is a forest.

Proof. Let C be a circuit in F (∞, u/2αp2) of minimal length. Suppose first

that C is directed, ν1
<−→ ν2

<−→ ...
<−→ νk. We may choose the vertices of C

apart from ∞ in the interval [u/2αp2, (u + 2αp2)/2αp2] as νi < νi+1.
We can easily see that ν1 = r/2αp2 for u < r ≤ (u + 2αp2) is not possible.

Therefore, we take the circuit C as ∞ → u/2αp2 → ν2 → ... → νk → ∞.
Clearly, νk > (u + 1)/2αp2.

Let ν be the largest rational greater than ν1 for which ν1 → ν is an edge
in F (∞, u/2αp2). We see that ν2 must equal ν. Assume otherwise that ν2 <
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ν. If ν is a vertex in C, then we obtain a circuit which is a shorter length
than C. If ν is not a vertex in C then there are vertices νi, νi+1 in C such
that νi < ν < νi+1. In this case, the edges ν2 → ν and νi → νi+1 cross to
each other, it is a contradict the fact that no edges of F (∞, u/2αp2) cross
in H. Consequently, ν2 = ν. As ν1 < ν2, ν2 = (u + c/d)/2αp2 for some
positive integers c and d. Since ν1 → ν2 is an edge in F (∞, u/2αp2), then
2αp2ν1 → 2αp2ν2 is an edge F (∞, u/2αp2). Thus, c must be 1. From the edge
u/2αp2 → (ud + 1)/2αp2d, we obtain u2 + ud + 1 ≡ 0(mod2α−3p2) by Theorem
3.1. Therefore ν2 = (u+1/d)/2αp2, where d is the smallest positive integer for
which u2 + ud + 1 ≡ 0(mod2α−3p2). It is easy to verify that 1 < d < 2α−3p2.
We define the following transformation

ϕ :=

( −u (u2 + ud + 1)/2αp2

−2αp2 u + d

)

Then ϕ ∈ N0, ϕ(∞) = ν1, ϕ(ν1) = ν2 and, in general, ϕ((u + x/y)/2αp2) =
(u + (y/dy − x))/p2. ϕ is increasing on the interval (−∞, (u + d)/2αp2)), so
ϕ((u+x1/y1)/2αp2) < ϕ((u+x2/y2)/p

2) for x1/y1 < x2/y2 < d. Notice that if
x and y are positive integers and x/y < 1 then (y/dy − x) < 1. In fact, since
d ≥ 2 and y > x then dy − x > y and therefore (y/dy− x) < 1. Therefore, we
can easily see that ϕi(ν1) < (u + 1)/2αp2 for positive integers i. We now that
νi+1 = ϕi(ν1) = ϕi+1(∞) for 0 ≤ i ≤ k − 1. We already know that ϕ(ν1) = ν2.
Now assume that νi = ϕi−1(ν1) for all 1 ≤ i ≤ s. Then let us show that
νs+1 = ϕs(ν1). If not, then first assume that νs+1 < ϕs(ν1). Then by transitive
action, νs = ϕs−1(ν1) → ϕs−1(ν2) = ϕs(ν1) is an edge in F (∞, u/2αp2). If
ϕs(ν1) is not a vertex in C, as ϕs(ν1) < νk, there exist vertices νt and νt+1 such
that νt < ϕs(ν1) < νt+1 and therefore the edges νt → νt+1 and νs → ϕs(ν1)
cross, a contradiction. If ϕs(ν1) is a vertex in C, as νs+1 < ϕs(ν1), ϕ

s(ν1) = νm

for some m ≥ s + 2. However, in this case, we would have a circuit∞→ ν1 →
ν2 → · · · → νs → νk →∞ which is of a shorter length, again a contradiction.
Now suppose finally that νs+1 > ϕs(ν1). Then from above νs+1 > ϕs(ν1) >
ϕs−2(ν1) and, as ϕ−(s−1)(ϕs−2(ν1)) =∞, ϕ−(s−1)(νs+1) > ϕ−(s−1)(ϕs(ν1)) = ν2.
Hence by transitive action, ν1 = ϕ−(s−1)(νs) → ϕ−(s−1)(νs+1) is an edge in
F (∞, u/2αp2), which is contradiction to the choice of ν2. Consequently νi+1 =
ϕi(ν1) for 1 ≤ i ≤ k − 1. Thus, νk < (u + 1)/2αp2, a contradiction.

Finally, assume that there is an anti-directed circuit C as minimal length,
of the form ∞ → ν1 = u/2αp2 → · · · → νt ← νt+1 → νk → ∞ for some
t ≥ 1. We know from the above that νi = ϕi(∞) for i ≥ t. Let ν be the
largest rational greater than u/2αp2 such that ν1 ← ν is an edge F (∞, u/2αp2).
Then (u + 1/d)/2αp2 for some integer d. By theorem 3.1, 2α−3p2 divides d.
Since ν is the largest we have 2α−3p2 = d. Thus ν2 ≤ ν = (u + 1/d)/2αp2.
As d < 2α−3p2 then u < (u + 1/d)/2αp2. Hence t must be greater than 1,
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Figure 2: Path of the action

otherwise νs = (u + 1/d)/2αp2 for some s ≥ 3 and then we would circuit
∞ → ν1 → νs · · · → νk → ∞ of a shorter length, a contradiction. Hence we
must have ν1 → ν2 = (u + 1/d)/2αp2 Let ω = ϕt+1(∞). Since, by transitive
action, νt = ϕt−1(ν1) → ϕt−1(ν2 = ω) is an edge F (∞, u/2αp2) we see that
νt+1 �= ω, otherwise, by Theorem 3.1, νt ← νt+1 and νt → νt+1 imply that
u2 ≡ −1(mod2α−3p2) which, as d < 2α−3p2, is a contradiction to u2 + ud +
1 ≡ 0(mod2α−3p2). Therefore, the inequality νt+1 < ω must be true. For if
νt+1 > ω, then, as ϕ−(t−1)(ϕt−2(ν1)) = ∞ and ϕt−2(ν1) < ϕt(ν1) = ω < νt+1,
ϕ−(t−1)(ω) = ν2 and ϕ−(t−1)(νt) = ν1 ← ϕ−(t−1)(νt+1) > ν2 is an edge in
F (∞, u/2αp2), which contradicts the choice of ν2. However, if νt+1 < ω then
we would have ω = νs for some s ≥ t + 2 and therefore we would have the
circuit ∞→ ν1 → · · · → νt → νs → · · · → νk →∞ of a shorter length, which
again gives a contradiction. This shows that C must be directed. Hence the
proof of the theorem is completed.

At this point, situation seems to be as following;

Conjecture. Let N have the prime power decomposition as 2α · 3β ·
pγ3

3 · · · pγr
r . Among others than the case of the transitive action, also for β ≥ 4,

the suborbital graphs of normalizer would be a forest.
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