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Abstract

In this paper, we examine some suborbital graphs for the normalizer
of To(N) in PSL(2,R).
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1. Introduction

Let PSL(2,R) denote the group of all linear fractional transformations

az+b
cz +

T:z— ,where a, b, c and d are real and ad — bc = 1.

In terms of matrix representation, the elements of PSL(2,R) correspond to the
matrices

i(i Z); a,b,c,d € R and ad — be = 1.

This is the automorphism group of the upper half plane H := {z € C : Im(z) > 0} .
', the modular group, is the subgroup of PSL(2,R) such that a, b, c and d are
integers. I'g(V) is the subgroup of I' with N|ec.

In [1], the normalizer Nor(N) of T'o(/N) in PSL(2,R) consists exactly of

matrices
ae  b/h
¢N/h de )’

where ¢ || & and h is the largest divisor of 24 for which h*|N with under-
standings

that the determinant e of the matrix is positive, and that r || s means that r|s
and (r,s/r) =1 (r is called an exact divisor of s). Nor(N) is a Fuchsian group
whose fundamental domain has finite area, so it has a signature consisting of
the geometric invariants

(g;m1,...,m;, s)

where g is the genus of the compactified quotient space, my, ..., m, are the
periods of the elliptic elements and s is the parabolic class number.

2 The Action of Nor(N) on Q

Every element of the extended set of rationals Q = Q U {co} can be repre-

x
sented as a reduced fraction —, with z,y € Z and (x,y) = 1. oo is represented

= _Tl. The action of the matrix ((CL 2) el on z is

Yy
a b x ax + by
P = — .
c d y  cr+dy
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Lemma 2.1 ([1]) Let N have the prime power decomposition as 2% - 3%2 -
ps® - -per. Then Nor(N) acts transitively on Q if and only if an <7, ag < 3
and o; <1 fort=3,...,7.a

In this study, N will be of the form 2%?, where a@ > 8 and p is prime > 3.
Clearly, Nor(2°p?) is not transitive on Q. Therefore, we will find a maximal
subset of Q on which N or(2°p?) acts transitively. For this, we give some well-
known facts as following lemmas about the orbits of the action of I'y(N) on Q
without proofs.

Lemma 2.2 Let k/s be an arbitrary rational number with (k,s) = 1. Then
there exists some element A € T'o(N) such that A(k,s) = (k1,s1) with si|N
transitive.

Lemma 2.3 Let d|N. Then the orbit (g) of a/d with (a,d) = 1 under I'y(N)
is the set {x/y eQ:(N,y)=da= r¥mod(d, N/d)}. Furthermore the num-

ber of orbits with d|N under T'o(N) is just o(d, N/d) where ¢ is Euler’s

a
d
functions.

Corollary 2.4 Let d|N and let (a1,d) = (ag,d) = 1. Then (i;) and (?)
are conjugate under I'o(N) iff a; = ay mod(d, N/d).

If one can just examine the actions of the elements of Nor(2%p?) on the

orbit G), the following result is easily obtained:

Theorem 2.5 The set (@(20‘]92) = U (Z), where ((Z) is as in Lemma2.3;
b=2ipi or207ipi: i =0,1,2,3 and j = 0,2, is an orbit of Nor(2°p?) on Q.

Therefore the set Q(2%p®) is one on which Nor(2°p?) acts transitively.
We now consider the imprimitivity of the action of Nor(2°p?) on Q(2*p?),
beginning with a general discussion of primitivity of permutation groups. Let
(G,A) be a transitive permutation group, consisting of a group G acting on
a set A transitively. An equivalence relation ~ on A is called G-invariant
if, whenever a, 8 € A satisfy a ~ (3, then g(a) ~ g(f) for all ¢ € G. The
equivalence classes are called blocks, and the block containing « is denoted by
[of.

We call (G, A) imprimitive if A admits some G-invariant equivalence rela-
tion different from
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(1) the identity relation, o &~ ( if and only if o = 3;
(ii) the universal relation, a ~ g for all «, § € A.
Otherwise (G, A) is called primitive. These two relations are supposed to
be trivial relations. Clearly, a primitive group must be transitive, for if not

the orbits would form a system of blocks. The converse is false, but we have
the following useful result.

Lemma 2.6 ([3]). Let (G,A) be a transitive permutation group. (G,A) is
primitive if and only if G,the stabilizer of o € A, is a maximal subgroup of

G for each a € A.

From the above lemma we see that whenever, for some o, G, < H < G,
then 2 admits some G-invariant equivalence relation other than the trivial
cases. Because of the transitivity, every element of (2 has the form g(«) for
some g € G. Thus one of the non-trivial G-invariant equivalence relation on
() is given as follows:

g(a) = ¢'(a) if and only if ¢’ € gH.

The number of blocks ( equivalence classes ) is the index |G : H| and the

block containing « is just the orbit H(«).

~ We can apply these ideas to the case where G is the Nor(2%p?) and A is
Q(2%p?) which is the orbit in Theorem 1, G4, is the stabilizer of oo in Q(2%p?);

. /(112 o - a b2\ [ 205 b/
that is, Goo = < (0 1 )> ,and H is Ny = <F0(2 p?), (2a3p20 d ) \ges20 ga6q) )
Clearly G, < Ny < Nor(2°p?).

Lemma 2.7 ([1]) The index |[Nor(N) : To(N)| = 2°h*r,
where p is the number of prime factors of N/h?, 7 = (3)71(3)%2,

[N 19N
Y7 0 otherwise %27 ) 0 otherwise T

Using the Lemma 2.7, we get following easily:

Theorem 2.8 There are only two blocks which are [oo] and [0]. The first(or
second) is the subset of Q(2%p?) where j = 2(or j =0) in Theorem 2.5.

3 Suborbital Graphs of Nor(2°p%) on Q(2°p?)

In[6], Sims introduced the idea of the suborbital graphs of a permutation group
G acting on a set A | these are graphs with vertex-set A, on which G induces
automorphisms. We summarise Sims’theory as follows: Let (G, A) be transi-
tive permutation group. Then G acts on A x A by g(«, 3) = (g9(), 9(3))(g €
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G,a,3 € A). The orbits of this action are called suborbitals of G. The orbit
containing («, ) is denoted by O(a, 3). From O(«, 3) we can form a suborbital
graph G(«, 3) : its vertices are the elements of A, and there is a directed edge
from v to § if (v,0) € O(a, ). A directed edge from + to 0 is denoted by
(v = 0). If (7,6) € O(«, B), then we will say that there exists an edge (y — )
in G(a, 7).

If a = f, the corresponding suborbital graph G(«, «), called the trivial
suborbital graph, is self-paired: it consists of a loop based at each vertex
a € A. By a circuit of length m (or an closed edge path), we mean a sequance
Vg — Vg — -+ — Uy, — vy such that v; # v, for ¢ # j, where m > 3. If m =3
or 4 then the circuit is called a triangle or rectangle. We call a graph a forest
if it does not contain any circuits.

In this study, G and A will be Nor(N) and Q, respectively. All circuits in
suborbital graph for Nor(N) where N is a squre-free positive integer was stud-
ied in [4,5]. We now investigate the suborbital graphs for the action Nor(2%p?)
on Q(2°p?). Since the action Nor(2°p?) on Q(2%p?) is transitive, Nor(2°p?)
permutes the blocks transitively; so the subgraphs are all isomorphic. Hence
it is sufficent to study with only one block. On the other hand, it is clear
that each non-trivial suborbital graph contains a pair (co,u/2%p?) for some
u/2°p? € Q(2p2). Therefore, we work on the following case: We denote by
F(0o,u/2%p?) the subgraph of G(co,u/2%p?) such that its vertical are in the
block [o0].

Theorem 3.1 Let r/s and z/y be in the block [0c]. Then there is an edge
r/s — x/y in F(oo,u/2°p*) iff

(i) If 207%p? || s, then x = ur(mod2°—3p?),y = fus(mod2p?),ry — sz =
+29p2,

(i) If 2%p? || s, then x = £25Fur(mod2*p?), y = +23"*us(mod2°p?), ry —
st = £22076p2 where 0 < k <3 and k € Z.

Proof. We prove first (i).Assume first that r/s — x/y is an edge in F'(co, u/p?),
0 < k<3and k € Z. It means that there exists some 7" in the normalizer
Nor(2%p?) such that T sends the pair (oo, u/2%?) to the pair (r/s, z/y), that is
T(c0) =r/s and T(u/2%p?) = x/y. Since 2°7*p? || s, T must be of the form A,

where a and d are odd. T'(c0) = " givesthat r = a and s = 2°~3p2c.
s

- 2@—3p2c

2a73b 2
QQC—Lgpjcu—i—Qfdp? = g gives that © = Fur(mod2°3p?),y =
+us(mod2®p?). Furthermore, we get ry — sz = £2%p? from the equation

a b/2°\ (1 w \ _ [r s
2973p2c  d 0 2%%)  \z v/

T(u/2%p?) =
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0 © 0
A\ 4 A v

u u+ 2% p?
207 1 A oot v, = 7

Figure 1: Path of the action

For the opposite direction, we assume that 2¢7%p? || s where 0 < k < 3 and
k € Z, and x = tur(mod2°3p?),y = tus(mod2°p?),ry — sz = £2°p*. In
this case, there exist b,d € Z such that x = ur + 247 3bp? and y = us + 2%dp>.
If we put these equivalences in ry — sz = 2%p?, we obtain rd — (b/2%)s = 1.

r o b/23
d

So the element T = is clearly in Ny. For (ii), taking the element

20=6q  p/23
297 3p2c 2076¢
calculations are done. a
Now, let us represent the edges of F'(co,u/2%p?) as hyperbolic geodesics in
the upper half-plane H, that is, as euclidean semi-circles or half-lines perpen-
dicular to real line. Then we have

of the form ) where a = 2% 3q, and ag, b, ¢ are odd, similiar

Theorem 3.2 F(oo,u/2%?) is self-paired iff u*> = —1 (mod2*3p?).

Proof Because of the transitive action, the form of self-paired edge can be
taken as 1/0 — u/2°p*> — 1/0. The condition follows immediately from the
second edge by Theorem 3.1.

Now we can give our main theorem. Same problem for modular group was
solved in [2] by the same method.

Theorem 3.3 F(oo,u/2%?) is a forest.

Proof. Let C be a circuit in F(oo,u/2%?) of minimal length. Suppose first

that C' is directed, 14 Sy s We may choose the vertices of C
apart from oo in the interval [u/2%p?, (u 4 29p?)/2°p?| as v; < Viy1.

We can easily see that vy = r/2%p? for u < r < (u + 2%p?) is not possible.
Therefore, we take the circuit C' as co — u/2%? — vy — ... — 1 — 00.
Clearly, v, > (u + 1)/2%?.

Let v be the largest rational greater than 14 for which 14, — v is an edge
in F'(oco,u/2%?). We see that v, must equal v. Assume otherwise that vy <
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v. If v is a vertex in C, then we obtain a circuit which is a shorter length
than C'. If v is not a vertex in C' then there are vertices v;, ;41 in C such
that v; < v < v441. In this case, the edges 1, — v and v; — v;41 cross to
each other, it is a contradict the fact that no edges of F(co,u/2%?) cross
in H. Consequently, vo = v. As vy < o, 1y = (u + ¢/d)/2%p* for some
positive integers ¢ and d. Since v; — 1y is an edge in F(oo,u/2%p?), then
2°p?y; — 29Dy is an edge F(oco, u/2%p?). Thus, ¢ must be 1. From the edge
u/2%* — (ud+1)/2%p*d, we obtain u? + ud + 1 = 0(mod2*~3p?) by Theorem
3.1. Therefore vo = (u+1/d)/2%p?, where d is the smallest positive integer for
which u? + ud + 1 = 0(mod2*3p?). Tt is easy to verify that 1 < d < 2°73p2.
We define the following transformation

o —u  (u*+ud+1)/2p?
Y= _2ap2 u+ d

Then ¢ € Ny, p(00) = vy, p(v1) = 1o and, in general, o((u + z/y)/2°p?) =
(u+ (y/dy — z))/p*. ¢ is increasing on the interval (—oo, (u + d)/2%p?)), so
o((u+z1/11)/2°p?) < o((u+ x2/y2)/p?) for x1/y1 < x3/ys < d. Notice that if
x and y are positive integers and z/y < 1 then (y/dy — x) < 1. In fact, since
d > 2 and y > z then dy — x > y and therefore (y/dy — z) < 1. Therefore, we
can easily see that (1) < (u+ 1)/2%? for positive integers i. We now that
Vir1 = @' (1) = ¢ (00) for 0 < i < k — 1. We already know that ¢(v1) = vs.
Now assume that v; = ¢ *(;) for all 1 < ¢ < s. Then let us show that
Vsr1 = ¢°(11). If not, then first assume that vs11 < ¢*(rq). Then by transitive
action, v, = ©* " Hvy) — (1) = p*(r1) is an edge in F(oo,u/2%?). If
©*(11) is not a vertex in C, as ¢*(1v1) < vy, there exist vertices v; and v;41 such
that v, < ¢*(v1) < 41 and therefore the edges vy — vy and vy — (1)
cross, a contradiction. If ¢°(14) is a vertex in C, as vs11 < ¢*(11), ©°(11) = U,
for some m > s 4+ 2. However, in this case, we would have a circuit co — v, —
vy — -+ — Vg — 1, — 00 which is of a shorter length, again a contradiction.
Now suppose finally that vg; > ¢*(v1). Then from above vsiq > ¢*(1vq) >
¢* (1) and, as ¢~ (P2 (1)) = 00, o~ TV (1) > 97TV (% (1)) = 1.
Hence by transitive action, v; = ¢~ C"D(y,) — = (y,) is an edge in
F (0o, u/2%p?), which is contradiction to the choice of 1. Consequently v;,; =
¢©'(vy) for 1 <i <k —1. Thus, v, < (u+1)/2%?, a contradiction.

Finally, assume that there is an anti-directed circuit C' as minimal length,
of the form co — vy = u/2%* — -+ — v « V1 — v, — oo for some
t > 1. We know from the above that v; = ¢'(c0) for @ > t. Let v be the
largest rational greater than u/2%p? such that v, < v is an edge F' (0o, u/2%p?).
Then (u + 1/d)/2°p* for some integer d. By theorem 3.1, 2°73p? divides d.
Since v is the largest we have 2073p? = d. Thus v, < v = (u + 1/d)/2%p>.
As d < 2°73p? then v < (u+ 1/d)/2%p?. Hence t must be greater than 1,
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0 0 o0
v 4 v
u a 2
= +
M v, PP Vi-1 Vi 1 ut2 P
P 2

Figure 2: Path of the action

otherwise vy = (u + 1/d)/2°p* for some s > 3 and then we would circuit
00 — V] — Vg — 1, — 00 of a shorter length, a contradiction. Hence we
must have v; — 1o = (u + 1/d)/2°p* Let w = ¢! (c0). Since, by transitive
action, vy = (1)) — "y = w) is an edge F(oo,u/2%?*) we see that
Vi1 # w, otherwise, by Theorem 3.1, vy «+— 14,1 and v, — vy imply that
u? = —1(mod2°3p?) which, as d < 2°73p?, is a contradiction to u? + ud +
1 = 0(mod2°3p?). Therefore, the inequality ;41 < w must be true. For if
Vi1 > w, then, as o~V (p'2(1y)) = oo and ¢ (1)) < ¢! (1)) = w < V41,
e (W) = vy and V(1) = v — V() > vy is an edge in
F(0o,u/2%p?), which contradicts the choice of vy. However, if 1411 < w then
we would have w = v, for some s > t 4 2 and therefore we would have the
circuit co - vy — -+ = 1 — Vg — -+ — 1, — o0 of a shorter length, which
again gives a contradiction. This shows that C' must be directed. Hence the
proof of the theorem is completed.

At this point, situation seems to be as following;

Conjecture. Let N have the prime power decomposition as 2% - 37 -
pa® -+ - prr. Among others than the case of the transitive action, also for § > 4,
the suborbital graphs of normalizer would be a forest.
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