Int. Journal of Math. Analysis, Vol. 4, 2010, no. 33, 1635-1643

Conditions to be a Forest for Normalizer

M. Beşenk
Karadeniz Technical University
Department of Mathematics 61080, Trabzon, Turkey
mbesenk@ktu.edu.tr
\section*{B. Ö. Güler}
Rize University, Department of Mathematics 53100, Rize, Turkey
bahadir.guler@rize.edu.tr, boguler@yahoo.com.tr
\section*{A. H. Değer}
Karadeniz Technical University
Department of Mathematics 61080, Trabzon, Turkey
mbesenk@ktu.edu.tr
ahdeger@ktu.edu.tr
S. Kader
Nigde University, Department of Mathematics
51240, Nigde, Turkey
skader@nigde.edu.tr

Abstract

In this paper, we examine some suborbital graphs for the normalizer of $\Gamma_{0}(N)$ in $\operatorname{PSL}(2, \mathbb{R})$.

Keywords: Normalizer, signature, imprimitive action, suborbital graph

Mathematics Subject Classification: 05C05, 05C20,11F06, 20H05

1. Introduction

Let $\operatorname{PSL}(2, \mathbb{R})$ denote the group of all linear fractional transformations

$$
T: z \rightarrow \frac{a z+b}{c z+d}, \text { where } a, b, c \text { and } d \text { are real and } a d-b c=1 .
$$

In terms of matrix representation, the elements of $\operatorname{PSL}(2, \mathbb{R})$ correspond to the matrices

$$
\pm\left(\begin{array}{cc}
a & b \\
c & d
\end{array}\right) ; \quad a, b, c, d \in \mathbb{R} \text { and } a d-b c=1
$$

This is the automorphism group of the upper half plane $\mathbb{H}:=\{z \in \mathbb{C}: \operatorname{Im}(\mathrm{z})>0\}$. Γ, the modular group, is the subgroup of $\operatorname{PSL}(2, \mathbb{R})$ such that a, b, c and d are integers. $\Gamma_{0}(N)$ is the subgroup of Γ with $N \mid c$.

In [1], the normalizer $\operatorname{Nor}(N)$ of $\Gamma_{0}(N)$ in $\operatorname{PSL}(2, \mathbb{R})$ consists exactly of matrices

$$
\left(\begin{array}{cc}
a e & b / h \\
c N / h & d e
\end{array}\right)
$$

where $e \| \frac{N}{h^{2}}$ and h is the largest divisor of 24 for which $h^{2} \mid N$ with understandings
that the determinant e of the matrix is positive, and that $r \| s$ means that $r \mid s$ and $(r, s / r)=1(r$ is called an exact divisor of $s) . \operatorname{Nor}(N)$ is a Fuchsian group whose fundamental domain has finite area, so it has a signature consisting of the geometric invariants

$$
\left(g ; m_{1}, \ldots, m_{r}, s\right)
$$

where g is the genus of the compactified quotient space, m_{1}, \ldots, m_{r} are the periods of the elliptic elements and s is the parabolic class number.

2 The Action of $\operatorname{Nor}(N)$ on $\hat{\mathbb{Q}}$

Every element of the extended set of rationals $\hat{\mathbb{Q}}=\mathbb{Q} \cup\{\infty\}$ can be represented as a reduced fraction $\frac{x}{y}$, with $x, y \in \mathbb{Z}$ and $(x, y)=1 . \infty$ is represented as $\frac{1}{0}=\frac{-1}{0}$. The action of the matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma$ on $\frac{x}{y}$ is

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right): \frac{x}{y} \rightarrow \frac{a x+b y}{c x+d y}
$$

Lemma 2.1 ([1]) Let N have the prime power decomposition as $2^{\alpha_{1}} \cdot 3^{\alpha_{2}}$. $p_{3}^{\alpha_{3}} \cdots p_{r}^{\alpha_{r}}$. Then $\operatorname{Nor}(N)$ acts transitively on $\hat{\mathbb{Q}}$ if and only if $\alpha_{1} \leq 7, \alpha_{2} \leq 3$ and $\alpha_{i} \leq 1$ for $i=3, \ldots, r$..

In this study, N will be of the form $2^{\alpha} p^{2}$, where $\alpha \geq 8$ and p is prime >3. Clearly, $\operatorname{Nor}\left(2^{\alpha} p^{2}\right)$ is not transitive on $\hat{\mathbb{Q}}$. Therefore, we will find a maximal subset of $\widehat{\mathbb{Q}}$ on which $\operatorname{Nor}\left(2^{\alpha} p^{2}\right)$ acts transitively. For this, we give some wellknown facts as following lemmas about the orbits of the action of $\Gamma_{0}(N)$ on $\widehat{\mathbb{Q}}$ without proofs.

Lemma 2.2 Let k / s be an arbitrary rational number with $(k, s)=1$. Then there exists some element $A \in \Gamma_{0}(N)$ such that $A(k, s)=\left(k_{1}, s_{1}\right)$ with $s_{1} \mid N$ transitive.

Lemma 2.3 Let $d \mid N$. Then the orbit $\binom{a}{d}$ of a / d with $(a, d)=1$ under $\Gamma_{0}(N)$ is the set $\left\{x / y \in \hat{\mathbb{Q}}:(N, y)=d, a \equiv x \frac{y}{d} \bmod (d, N / d)\right\}$. Furthermore the number of orbits $\binom{a}{d}$ with $d \mid N$ under $\Gamma_{0}(N)$ is just $\varphi(d, N / d)$ where φ is Euler's functions.

Corollary 2.4 Let $d \mid N$ and let $\left(a_{1}, d\right)=\left(a_{2}, d\right)=1$. Then $\binom{a_{1}}{d}$ and $\binom{a_{2}}{d}$ are conjugate under $\Gamma_{0}(N)$ iff $a_{1}=a_{2} \bmod (d, N / d)$.

If one can just examine the actions of the elements of $\operatorname{Nor}\left(2^{\alpha} p^{2}\right)$ on the orbit $\binom{1}{1}$, the following result is easily obtained:

Theorem 2.5 The set $\hat{\mathbb{Q}}\left(2^{\alpha} p^{2}\right):=\bigcup\binom{a}{b}$, where $\binom{a}{b}$ is as in Lemma2.3; $b=2^{i} p^{j}$ or $2^{\alpha-i} p^{j} ; i=0,1,2,3$ and $j=0,2$, is an orbit of $\operatorname{Nor}\left(2^{\alpha} p^{2}\right)$ on $\hat{\mathbb{Q}}$.

Therefore the set $\hat{\mathbb{Q}}\left(2^{\alpha} p^{2}\right)$ is one on which $\operatorname{Nor}\left(2^{\alpha} p^{2}\right)$ acts transitively. We now consider the imprimitivity of the action of $\operatorname{Nor}\left(2^{\alpha} p^{2}\right)$ on $\hat{\mathbb{Q}}\left(2^{\alpha} p^{2}\right)$, beginning with a general discussion of primitivity of permutation groups. Let (G, Δ) be a transitive permutation group, consisting of a group G acting on a set Δ transitively. An equivalence relation \approx on Δ is called G-invariant if, whenever $\alpha, \beta \in \Delta$ satisfy $\alpha \approx \beta$, then $g(\alpha) \approx g(\beta)$ for all $g \in G$. The equivalence classes are called blocks, and the block containing α is denoted by $[\alpha]$.

We call (G, Δ) imprimitive if Δ admits some G-invariant equivalence relation different from
(i) the identity relation, $\alpha \approx \beta$ if and only if $\alpha=\beta$;
(ii) the universal relation, $\alpha \approx \beta$ for all $\alpha, \beta \in \Delta$.

Otherwise (G, Δ) is called primitive. These two relations are supposed to be trivial relations. Clearly, a primitive group must be transitive, for if not the orbits would form a system of blocks. The converse is false, but we have the following useful result.

Lemma 2.6 ([3]). Let (G, Δ) be a transitive permutation group. (G, Δ) is primitive if and only if G_{α}, the stabilizer of $\alpha \in \Delta$, is a maximal subgroup of G for each $\alpha \in \Delta$.

From the above lemma we see that whenever, for some $\alpha, G_{\alpha} \lesseqgtr H \lesseqgtr G$, then Ω admits some G-invariant equivalence relation other than the trivial cases. Because of the transitivity, every element of Ω has the form $g(\alpha)$ for some $g \in G$. Thus one of the non-trivial G-invariant equivalence relation on Ω is given as follows:

$$
g(\alpha) \approx g^{\prime}(\alpha) \text { if and only if } g^{\prime} \in g H
$$

The number of blocks (equivalence classes) is the index $|G: H|$ and the block containing α is just the orbit $H(\alpha)$.

We can apply these ideas to the case where G is the $\operatorname{Nor}\left(2^{\alpha} p^{2}\right)$ and Δ is $\hat{\mathbb{Q}}\left(2^{\alpha} p^{2}\right)$ which is the orbit in Theorem $1, G_{\alpha}$ is the stabilizer of ∞ in $\hat{\mathbb{Q}}\left(2^{\alpha} p^{2}\right)$; that is, $G_{\infty}=\left\langle\left(\begin{array}{cc}1 & 1 / 2^{3} \\ 0 & 1\end{array}\right)\right\rangle$, and H is $N_{0}=\left\langle\Gamma_{0}\left(2^{\alpha} p^{2}\right),\left(\begin{array}{cc}a & b / 2^{3} \\ 2^{\alpha-3} p^{2} c & d\end{array}\right),\left(\begin{array}{cc}2^{\alpha-6} a & b / 2^{3} \\ 2^{\alpha-3} p^{2} c & 2^{\alpha-6} d\end{array}\right)\right\rangle$. Clearly $G_{\infty}<N_{0}<\operatorname{Nor}\left(2^{\alpha} p^{2}\right)$.

Lemma 2.7 ([1]) The index $\left|\operatorname{Nor}(N): \Gamma_{0}(N)\right|=2^{\rho} h^{2} \tau$, where ρ is the number of prime factors of $N / h^{2}, \tau=\left(\frac{3}{2}\right)^{\varepsilon_{1}}\left(\frac{4}{3}\right)^{\varepsilon_{2}}$,

$$
\varepsilon_{1}=\left\{\begin{array}{ll}
1 & \text { if } 2^{2}, 2^{4}, 2^{6} \| N \\
0 & \text { otherwise }
\end{array} \quad, \quad \varepsilon_{2}=\left\{\begin{array}{ll}
1 & \text { if } 9 \| N \\
0 & \text { otherwise }
\end{array} \quad .\right.\right.
$$

Using the Lemma 2.7, we get following easily:
Theorem 2.8 There are only two blocks which are [∞] and [0]. The first(or second) is the subset of $\hat{\mathbb{Q}}\left(2^{\alpha} p^{2}\right)$ where $j=2($ or $j=0)$ in Theorem 2.5.

3 Suborbital Graphs of $\operatorname{Nor}\left(2^{\alpha} p^{2}\right)$ on $\hat{\mathbb{Q}}\left(2^{\alpha} p^{2}\right)$

In [6], Sims introduced the idea of the suborbital graphs of a permutation group G acting on a set Δ, these are graphs with vertex-set Δ, on which G induces automorphisms. We summarise Sims'theory as follows: Let (G, Δ) be transitive permutation group. Then G acts on $\Delta \times \Delta$ by $g(\alpha, \beta)=(g(\alpha), g(\beta))(g \in$
$G, \alpha, \beta \in \Delta)$. The orbits of this action are called suborbitals of G. The orbit containing (α, β) is denoted by $O(\alpha, \beta)$. From $O(\alpha, \beta)$ we can form a suborbital graph $G(\alpha, \beta)$: its vertices are the elements of Δ, and there is a directed edge from γ to δ if $(\gamma, \delta) \in O(\alpha, \beta)$. A directed edge from γ to δ is denoted by $(\gamma \rightarrow \delta)$. If $(\gamma, \delta) \in O(\alpha, \beta)$, then we will say that there exists an edge $(\gamma \rightarrow \delta)$ in $G(\alpha, \beta)$.

If $\alpha=\beta$, the corresponding suborbital graph $G(\alpha, \alpha)$, called the trivial suborbital graph, is self-paired: it consists of a loop based at each vertex $\alpha \in \Delta$. By a circuit of length m (or an closed edge path), we mean a sequance $\nu_{1} \rightarrow \nu_{2} \rightarrow \cdots \rightarrow \nu_{m} \rightarrow \nu_{1}$ such that $\nu_{i} \neq \nu_{j}$ for $i \neq j$, where $m \geq 3$. If $m=3$ or 4 then the circuit is called a triangle or rectangle. We call a graph a forest if it does not contain any circuits.

In this study, G and Δ will be $\operatorname{Nor}(N)$ and $\hat{\mathbb{Q}}$, respectively. All circuits in suborbital graph for $\operatorname{Nor}(N)$ where N is a squre-free positive integer was studied in $[4,5]$. We now investigate the suborbital graphs for the action $\operatorname{Nor}\left(2^{\alpha} p^{2}\right)$ on $\hat{\mathbb{Q}}\left(2^{\alpha} p^{2}\right)$. Since the action $\operatorname{Nor}\left(2^{\alpha} p^{2}\right)$ on $\hat{\mathbb{Q}}\left(2^{\alpha} p^{2}\right)$ is transitive, $\operatorname{Nor}\left(2^{\alpha} p^{2}\right)$ permutes the blocks transitively; so the subgraphs are all isomorphic. Hence it is sufficent to study with only one block. On the other hand, it is clear that each non-trivial suborbital graph contains a pair $\left(\infty, u / 2^{\alpha} p^{2}\right)$ for some $u / 2^{\alpha} p^{2} \in \hat{\mathbb{Q}}\left(2 p^{2}\right)$. Therefore, we work on the following case: We denote by $F\left(\infty, u / 2^{\alpha} p^{2}\right)$ the subgraph of $G\left(\infty, u / 2^{\alpha} p^{2}\right)$ such that its vertical are in the block [∞].

Theorem 3.1 Let r / s and x / y be in the block $[\infty]$. Then there is an edge $r / s \rightarrow x / y$ in $F\left(\infty, u / 2^{\alpha} p^{2}\right)$ iff
(i) If $2^{\alpha-k} p^{2} \| s$, then $x \equiv \pm u r\left(\bmod 2^{\alpha-3} p^{2}\right), y \equiv \pm u s\left(\bmod 2^{\alpha} p^{2}\right), r y-s x=$ $\pm 2^{\alpha} p^{2}$,
(ii) If $2^{k} p^{2} \| s$, then $x \equiv \pm 2^{3-k} \operatorname{ur}\left(\bmod 2^{k} p^{2}\right), y \equiv \pm 2^{3-k} u s\left(\bmod 2^{\alpha} p^{2}\right)$, ry$s x= \pm 2^{2 \alpha-6} p^{2}$, where $0 \leq k \leq 3$ and $k \in \mathbb{Z}$.

Proof. We prove first (i).Assume first that $r / s \rightarrow x / y$ is an edge in $F\left(\infty, u / p^{2}\right)$, $0 \leq k \leq 3$ and $k \in \mathbb{Z}$. It means that there exists some T in the normalizer $\operatorname{Nor}\left(2^{\alpha} p^{2}\right)$ such that T sends the pair $\left(\infty, u / 2^{\alpha} p^{2}\right)$ to the pair $(r / s, x / y)$, that is $T(\infty)=r / s$ and $T\left(u / 2^{\alpha} p^{2}\right)=x / y$. Since $2^{\alpha-k} p^{2} \| s, T$ must be of the form A_{1} where a and d are odd. $T(\infty)=\frac{a}{2^{\alpha-3} p^{2} c}=\frac{r}{s}$ gives that $r=a$ and $s=2^{\alpha-3} p^{2} c$. $T\left(u / 2^{\alpha} p^{2}\right)=\frac{a u+2^{\alpha-3} b p^{2}}{2^{\alpha-3} p^{2} c u+2^{\alpha} d p^{2}}=\frac{r}{s}$ gives that $x \equiv \pm u r\left(\bmod 2^{\alpha-3} p^{2}\right), y \equiv$ $\pm u s\left(\bmod 2^{\alpha} p^{2}\right)$. Furthermore, we get $r y-s x= \pm 2^{\alpha} p^{2}$ from the equation

$$
\left(\begin{array}{cc}
a & b / 2^{3} \\
2^{\alpha-3} p^{2} c & d
\end{array}\right)\left(\begin{array}{cc}
1 & u \\
0 & 2^{\alpha} p^{2}
\end{array}\right)=\left(\begin{array}{ll}
r & s \\
x & y
\end{array}\right) .
$$

Figure 1: Path of the action
For the opposite direction, we assume that $2^{\alpha-k} p^{2} \| s$ where $0 \leq k \leq 3$ and $k \in \mathbb{Z}$, and $x \equiv \pm u r\left(\bmod 2^{\alpha-3} p^{2}\right), y \equiv \pm u s\left(\bmod 2^{\alpha} p^{2}\right), r y-s x= \pm 2^{\alpha} p^{2}$. In this case, there exist $b, d \in \mathbb{Z}$ such that $x=u r+2^{\alpha-3} b p^{2}$ and $y=u s+2^{\alpha} d p^{2}$. If we put these equivalences in $r y-s x=2^{\alpha} p^{2}$, we obtain $r d-\left(b / 2^{3}\right) s=1$. So the element $T_{0}=\left(\begin{array}{cc}r & b / 2^{3} \\ s & d\end{array}\right)$ is clearly in N_{0}. For (ii), taking the element of the form $\left(\begin{array}{cc}2^{\alpha-6} a & b / 2^{3} \\ 2^{\alpha-3} p^{2} c & 2^{\alpha-6} d\end{array}\right)$ where $a=2^{\alpha-3} a_{0}$, and a_{0}, b, c are odd, similiar calculations are done.

Now, let us represent the edges of $F\left(\infty, u / 2^{\alpha} p^{2}\right)$ as hyperbolic geodesics in the upper half-plane \mathbb{H}, that is, as euclidean semi-circles or half-lines perpendicular to real line. Then we have

Theorem 3.2 $F\left(\infty, u / 2^{\alpha} p^{2}\right)$ is self-paired iff $u^{2} \equiv-1\left(\bmod 2^{\alpha-3} p^{2}\right)$.
Proof Because of the transitive action, the form of self-paired edge can be taken as $1 / 0 \rightarrow u / 2^{\alpha} p^{2} \rightarrow 1 / 0$. The condition follows immediately from the second edge by Theorem 3.1.

Now we can give our main theorem. Same problem for modular group was solved in [2] by the same method.

Theorem 3.3 $F\left(\infty, u / 2^{\alpha} p^{2}\right)$ is a forest.
Proof. Let C be a circuit in $F\left(\infty, u / 2^{\alpha} p^{2}\right)$ of minimal length. Suppose first that C is directed, $\nu_{1} \xrightarrow{<} \nu_{2} \xrightarrow{<} \ldots \xrightarrow{<} \nu_{k}$. We may choose the vertices of C apart from ∞ in the interval $\left[u / 2^{\alpha} p^{2},\left(u+2^{\alpha} p^{2}\right) / 2^{\alpha} p^{2}\right]$ as $\nu_{i}<\nu_{i+1}$.

We can easily see that $\nu_{1}=r / 2^{\alpha} p^{2}$ for $u<r \leq\left(u+2^{\alpha} p^{2}\right)$ is not possible. Therefore, we take the circuit C as $\infty \rightarrow u / 2^{\alpha} p^{2} \rightarrow \nu_{2} \rightarrow \ldots \rightarrow \nu_{k} \rightarrow \infty$. Clearly, $\nu_{k}>(u+1) / 2^{\alpha} p^{2}$.

Let ν be the largest rational greater than ν_{1} for which $\nu_{1} \rightarrow \nu$ is an edge in $F\left(\infty, u / 2^{\alpha} p^{2}\right)$. We see that ν_{2} must equal ν. Assume otherwise that $\nu_{2}<$
ν. If ν is a vertex in C, then we obtain a circuit which is a shorter length than C. If ν is not a vertex in C then there are vertices ν_{i}, ν_{i+1} in C such that $\nu_{i}<\nu<\nu_{i+1}$. In this case, the edges $\nu_{2} \rightarrow \nu$ and $\nu_{i} \rightarrow \nu_{i+1}$ cross to each other, it is a contradict the fact that no edges of $F\left(\infty, u / 2^{\alpha} p^{2}\right)$ cross in \mathbb{H}. Consequently, $\nu_{2}=\nu$. As $\nu_{1}<\nu_{2}, \nu_{2}=(u+c / d) / 2^{\alpha} p^{2}$ for some positive integers c and d. Since $\nu_{1} \rightarrow \nu_{2}$ is an edge in $F\left(\infty, u / 2^{\alpha} p^{2}\right)$, then $2^{\alpha} p^{2} \nu_{1} \rightarrow 2^{\alpha} p^{2} \nu_{2}$ is an edge $F\left(\infty, u / 2^{\alpha} p^{2}\right)$. Thus, c must be 1 . From the edge $u / 2^{\alpha} p^{2} \rightarrow(u d+1) / 2^{\alpha} p^{2} d$, we obtain $u^{2}+u d+1 \equiv 0\left(\bmod 2^{\alpha-3} p^{2}\right)$ by Theorem 3.1. Therefore $\nu_{2}=(u+1 / d) / 2^{\alpha} p^{2}$, where d is the smallest positive integer for which $u^{2}+u d+1 \equiv 0\left(\bmod 2^{\alpha-3} p^{2}\right)$. It is easy to verify that $1<d<2^{\alpha-3} p^{2}$. We define the following transformation

$$
\varphi:=\left(\begin{array}{cc}
-u & \left(u^{2}+u d+1\right) / 2^{\alpha} p^{2} \\
-2^{\alpha} p^{2} & u+d
\end{array}\right)
$$

Then $\varphi \in N_{0}, \varphi(\infty)=\nu_{1}, \varphi\left(\nu_{1}\right)=\nu_{2}$ and, in general, $\varphi\left((u+x / y) / 2^{\alpha} p^{2}\right)=$ $(u+(y / d y-x)) / p^{2} . \varphi$ is increasing on the interval $\left.\left(-\infty,(u+d) / 2^{\alpha} p^{2}\right)\right)$, so $\varphi\left(\left(u+x_{1} / y_{1}\right) / 2^{\alpha} p^{2}\right)<\varphi\left(\left(u+x_{2} / y_{2}\right) / p^{2}\right)$ for $x_{1} / y_{1}<x_{2} / y_{2}<d$. Notice that if x and y are positive integers and $x / y<1$ then $(y / d y-x)<1$. In fact, since $d \geq 2$ and $y>x$ then $d y-x>y$ and therefore $(y / d y-x)<1$. Therefore, we can easily see that $\varphi^{i}\left(\nu_{1}\right)<(u+1) / 2^{\alpha} p^{2}$ for positive integers i. We now that $\nu_{i+1}=\varphi^{i}\left(\nu_{1}\right)=\varphi^{i+1}(\infty)$ for $0 \leq i \leq k-1$. We already know that $\varphi\left(\nu_{1}\right)=\nu_{2}$. Now assume that $\nu_{i}=\varphi^{i-1}\left(\nu_{1}\right)$ for all $1 \leq i \leq s$. Then let us show that $\nu_{s+1}=\varphi^{s}\left(\nu_{1}\right)$. If not, then first assume that $\nu_{s+1}<\varphi^{s}\left(\nu_{1}\right)$. Then by transitive action, $\nu_{s}=\varphi^{s-1}\left(\nu_{1}\right) \rightarrow \varphi^{s-1}\left(\nu_{2}\right)=\varphi^{s}\left(\nu_{1}\right)$ is an edge in $F\left(\infty, u / 2^{\alpha} p^{2}\right)$. If $\varphi^{s}\left(\nu_{1}\right)$ is not a vertex in C, as $\varphi^{s}\left(\nu_{1}\right)<\nu_{k}$, there exist vertices ν_{t} and ν_{t+1} such that $\nu_{t}<\varphi^{s}\left(\nu_{1}\right)<\nu_{t+1}$ and therefore the edges $\nu_{t} \rightarrow \nu_{t+1}$ and $\nu_{s} \rightarrow \varphi^{s}\left(\nu_{1}\right)$ cross, a contradiction. If $\varphi^{s}\left(\nu_{1}\right)$ is a vertex in C, as $\nu_{s+1}<\varphi^{s}\left(\nu_{1}\right), \varphi^{s}\left(\nu_{1}\right)=\nu_{m}$ for some $m \geq s+2$. However, in this case, we would have a circuit $\infty \rightarrow \nu_{1} \rightarrow$ $\nu_{2} \rightarrow \cdots \rightarrow \nu_{s} \rightarrow \nu_{k} \rightarrow \infty$ which is of a shorter length, again a contradiction. Now suppose finally that $\nu_{s+1}>\varphi^{s}\left(\nu_{1}\right)$. Then from above $\nu_{s+1}>\varphi^{s}\left(\nu_{1}\right)>$ $\varphi^{s-2}\left(\nu_{1}\right)$ and, as $\varphi^{-(s-1)}\left(\varphi^{s-2}\left(\nu_{1}\right)\right)=\infty, \varphi^{-(s-1)}\left(\nu_{s+1}\right)>\varphi^{-(s-1)}\left(\varphi^{s}\left(\nu_{1}\right)\right)=\nu_{2}$. Hence by transitive action, $\nu_{1}=\varphi^{-(s-1)}\left(\nu_{s}\right) \rightarrow \varphi^{-(s-1)}\left(\nu_{s+1}\right)$ is an edge in $F\left(\infty, u / 2^{\alpha} p^{2}\right)$, which is contradiction to the choice of ν_{2}. Consequently $\nu_{i+1}=$ $\varphi^{i}\left(\nu_{1}\right)$ for $1 \leq i \leq k-1$. Thus, $\nu_{k}<(u+1) / 2^{\alpha} p^{2}$, a contradiction.

Finally, assume that there is an anti-directed circuit C as minimal length, of the form $\infty \rightarrow \nu_{1}=u / 2^{\alpha} p^{2} \rightarrow \cdots \rightarrow \nu_{t} \leftarrow \nu_{t+1} \rightarrow \nu_{k} \rightarrow \infty$ for some $t \geq 1$. We know from the above that $\nu_{i}=\varphi^{i}(\infty)$ for $i \geq t$. Let ν be the largest rational greater than $u / 2^{\alpha} p^{2}$ such that $\nu_{1} \leftarrow \nu$ is an edge $F\left(\infty, u / 2^{\alpha} p^{2}\right)$. Then $(u+1 / d) / 2^{\alpha} p^{2}$ for some integer d. By theorem 3.1, $2^{\alpha-3} p^{2}$ divides d. Since ν is the largest we have $2^{\alpha-3} p^{2}=d$. Thus $\nu_{2} \leq \nu=(u+1 / d) / 2^{\alpha} p^{2}$. As $d<2^{\alpha-3} p^{2}$ then $u<(u+1 / d) / 2^{\alpha} p^{2}$. Hence t must be greater than 1 ,

Figure 2: Path of the action
otherwise $\nu_{s}=(u+1 / d) / 2^{\alpha} p^{2}$ for some $s \geq 3$ and then we would circuit $\infty \rightarrow \nu_{1} \rightarrow \nu_{s} \cdots \rightarrow \nu_{k} \rightarrow \infty$ of a shorter length, a contradiction. Hence we must have $\nu_{1} \rightarrow \nu_{2}=(u+1 / d) / 2^{\alpha} p^{2}$ Let $\omega=\varphi^{t+1}(\infty)$. Since, by transitive action, $\nu_{t}=\varphi^{t-1}\left(\nu_{1}\right) \rightarrow \varphi^{t-1}\left(\nu_{2}=\omega\right)$ is an edge $F\left(\infty, u / 2^{\alpha} p^{2}\right)$ we see that $\nu_{t+1} \neq \omega$, otherwise, by Theorem 3.1, $\nu_{t} \leftarrow \nu_{t+1}$ and $\nu_{t} \rightarrow \nu_{t+1}$ imply that $u^{2} \equiv-1\left(\bmod 2^{\alpha-3} p^{2}\right)$ which, as $d<2^{\alpha-3} p^{2}$, is a contradiction to $u^{2}+u d+$ $1 \equiv 0\left(\bmod 2^{\alpha-3} p^{2}\right)$. Therefore, the inequality $\nu_{t+1}<\omega$ must be true. For if $\nu_{t+1}>\omega$, then, as $\varphi^{-(t-1)}\left(\varphi^{t-2}\left(\nu_{1}\right)\right)=\infty$ and $\varphi^{t-2}\left(\nu_{1}\right)<\varphi^{t}\left(\nu_{1}\right)=\omega<\nu_{t+1}$, $\varphi^{-(t-1)}(\omega)=\nu_{2}$ and $\varphi^{-(t-1)}\left(\nu_{t}\right)=\nu_{1} \leftarrow \varphi^{-(t-1)}\left(\nu_{t+1}\right)>\nu_{2}$ is an edge in $F\left(\infty, u / 2^{\alpha} p^{2}\right)$, which contradicts the choice of ν_{2}. However, if $\nu_{t+1}<\omega$ then we would have $\omega=\nu_{s}$ for some $s \geq t+2$ and therefore we would have the circuit $\infty \rightarrow \nu_{1} \rightarrow \cdots \rightarrow \nu_{t} \rightarrow \nu_{s} \rightarrow \cdots \rightarrow \nu_{k} \rightarrow \infty$ of a shorter length, which again gives a contradiction. This shows that C must be directed. Hence the proof of the theorem is completed.

At this point, situation seems to be as following;
Conjecture. Let N have the prime power decomposition as $2^{\alpha} \cdot 3^{\beta}$. $p_{3}^{\gamma_{3}} \cdots p_{r}^{\gamma_{r}}$. Among others than the case of the transitive action, also for $\beta \geq 4$, the suborbital graphs of normalizer would be a forest.

References

[1] M. Akbass , D. Singerman, The Signature of the normalizer of $\Gamma_{0}(N)$, London Math. Soc. Lectures Note Series 165, (1992), 77-86.
[2] M. Akbaş, On suborbital graphs for the modular group, Bull. London Math. Soc. 33, (2001), 647-652.
[3] N.L. Bigg and A.T. White, Permutation groups and combinatorial structures, London Mathematical Society Lecture Note Series 33, CUP, Cambridge, 1979.

CUP, Cambridge, (1991), 316-338.
[4] R. Keskin, Suborbital graphs for the normalizer of $\Gamma_{0}(m)$, European J. Combin. 27 , no. 2, (2006), 193-206.
[5] R. Keskin and B. Demirtürk, On suborbital graphs for the normalizer of $\Gamma_{0}(N)$, Electronic J. Combin. 27 (2009), R116.
[6] C.C. Sims, Graphs and finite permutation groups, Math. Z. 95, (1967), 76-86.

Received: March, 2010

