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In this paper an analytical procedure is given to study the free vibration and stability char-
acteristics of homogeneous and non-homogeneous orthotropic truncated and complete
conical shells with clamped edges under uniform external pressures. The non-homoge-
neous orthotropic material properties of conical shells vary continuously in the thickness
direction. The governing equations according to the Donnell’s theory are solved by Galer-
kin’s method and critical hydrostatic and lateral pressures and fundamental natural fre-
quencies have been found analytically. The appropriate formulas for homogeneous
orthotropic and isotropic conical shells and for cylindrical shells made of homogeneous
and non-homogeneous, orthotropic and isotropic materials are found as a special case. Sev-
eral examples are presented to show the accuracy and efficiency of the formulation. The
closed-form solutions are verified by accurate different solutions. Finally, the influences
of the non-homogeneity, orthotropy and the variations of conical shells characteristics
on the critical lateral and hydrostatic pressures and natural frequencies are investigated,
when Young’s moduli and density vary together and separately. The results obtained for
homogeneous cases are compared with their counterparts in the literature.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Conical shells represent one of the principal elements of aerospace and ship structures, pressure vessels and piping, for
example, as reducers in piping, end closures for pressure vessels and liquid storage tanks, and roofs for tanks. The use of such
shells as structural elements in various technological situations demands that the non-homogeneity of the materials should
be taken into account for the analysis of the shell stability and vibration. Certain parts in aircraft and rockets have to operate
under radiation and elevated temperatures and which cause non-homogeneity in the material, i.e., the elastic constants of
the material become functions of space variables. Furthermore, the non-homogeneity of the materials stems from the effects
of humidity, surface and thermal polishing processes and methods of production, which render the physical properties of
materials, vary from point to point (random, piecewise continuous or continuous functions of coordinates). When non-
homogeneous materials deform, they retain their shapes up to the point of rupture. Hence, in the computations of structural
members made of such materials, the fundamental relations and governing equations of deformable body mechanics are
applicable [1–3].
. All rights reserved.
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Nomenclature

CC complete cone
E0 Young’s modulus of the homogeneous isotropic material
E01 and E02 Young’s moduli of the homogeneous orthotropic material in S and h directions, respectively
h thickness of the conical shell
H homogenous
fTC cyclic natural frequency (Hz) of truncated conical shells
fCC cyclic natural frequency (Hz) of complete conical shells
G0 shear modulus of homogenous orthotropic material
L length of the truncated cone
L1 length of the cylindrical shell
Lij; i; j ¼ 1—4 differential operators
MS;Mh;MSh moment resultants
m longitudinal wave number
n circumferential wave number
nHTC;nLTC;nfTC circumferential wave numbers corresponding to PTC

Hcr, PTC
Lcr, fTC, respectively

nHCC;nLCC;nfCC circumferential wave numbers corresponding to PCC
Hcr, PCC

Lcr, fCC, respectively
NH non-homogenous
PTC

Hcr critical uniform hydrostatic pressure of the truncated conical shell

PCC
Hcr critical uniform hydrostatic pressure of the complete conical shell

PTC
Lcr critical uniform lateral pressure of the truncated conical shell

PCC
Lcr critical uniform lateral pressure of the complete conical shell

P1 ¼ P2 ¼ PH uniform hydrostatic pressure
P1 ¼ 0; P2 ¼ PL uniform lateral pressure
R radius of the cylindrical shell
R1 and R2 Radii of the small and large ends of the cone, respectively
S axis lies on the curvilinear middle surface of the cone
S1 and S2 distances from the vertex to the small and large bases, respectively
TC truncated cone
TS; Th; TSh force resultants
T0

s ; T
0
h ; T

0
Sh membrane forces for the condition with zero initial moments

w displacement of the middle surface in the normal direction
vS;vSh, vSh curvature components on the reference surface
eS; eh, eSh strain components
e0

S ; e
0
h , e0

Sh strain components on the reference surface
u1ð�fÞ;u2ð�fÞ non-homogeneity functions
c semi-vertex angle of the cone
k parameter
l coefficient of the non-homogeneity
m0 Poisson’s ratios of the isotropic material
m12, m21 Poisson’s ratios of the orthotropic material
h axis is in the direction perpendicular to the S� f plane
q0 and q1 density of the homogeneous and non-homogenous materials, respectively
rS;rh;rSh stress components
xTC natural frequency (rad/s) of the circular truncated conical shell
�xTC natural frequency (rad/s) of the elliptical truncated conical shell
x1TC dimensionless frequency parameter of the circular truncated conical shell
xCC natural frequency (rad/s) of the circular complete conical shell
x1CC dimensionless frequency parameter of the circular complete conical shell
�x1CC natural frequency (rad/s) of the elliptical complete conical shell
nðtÞ; f (t) time dependent amplitudes
W stress function
f thicknesses coordinate
x parameter
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In an up-to-date survey of literature, authors have come across various models to account for the material non-homoge-
neity proposed by researchers dealing with stability and vibration. Rao et al. [4] dealing with vibration of non-homogeneous
isotropic thin plates have assumed linear variations for Young’s modulus and density. Tomar et al. [5] have assumed expo-
nential variations in the study of vibrational behavior of non-homogeneous isotropic plates. Heyliger and Juliani [6] have
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taken it to be a function of the radial coordinate in some vibration problems of the non-homogeneous isotropic shells. Erdo-
gan and Wu [7] studied crack problems in FGM layers under thermal stresses which material properties obey the exponen-
tial distribution. Gutierrez et al. [8] gave solutions for the vibration frequencies of linear, parabolic and cubic variations of
density using four approximate methods: optimized Rayleigh–Ritz, differential quadrature, finite elements, and lower-
bound solution based on the stodola-vianello method. Zhang and Hasebe [9] have assumed the variation of the elasticity
modulus to be unbounded and have used exponential functions of the radial coordinate in the elasticity solution for a
non-homogeneous circular cylinder. Chakraverty and Petyt [10] have studied the vibration of non-homogeneous elliptic
plates with radial tapering in Young’s modulus and density with the constant Poisson ratio. The assumption of variation
in which the parameter l is same for Young’s modulus as well as density does not seem to have any justification. In two
significant contributions [11,12], Elishakoff has obtained unusual closed-form solutions for the axisymmetric vibrations of
isotropic inhomogeneous circular plates and for the stability of isotropic inhomogeneous columns of assuming that inertial
term/density and stiffness of the plate and columns are the polynomial functions of the radial and longitudinal coordinates,
respectively. Gupta et al. [13], a more general model has been proposed in which, the Young’s modulus and density are as-
sumed to vary exponentially in radial direction in distinct manner. In all those studies the materials of the structural ele-
ments is isotropic.

Published literatures on analysis of composite orthotropic structures with variable material properties are limited in
number. The rotation problem of a non-homogeneous orthotropic composite cylinder was considered by El-Naggar et al.
[14]. A theoretical solution of a non-homogeneous orthotropic cylindrical shell is developed for the axisymmetric plane
strain dynamic thermo-elastic problem and is usually solved using Laplace transform technique by Ding et al. [15]. Iesan
and Quintanilla [16] have solved the Saint–Venant problem for inhomogeneous and orthotropic elastic cylinders where
the constitutive coefficients are independent of the axial coordinate. Goldfeld [17] studied the influence of the variation
of the stiffness coefficients on the buckling behavior and on the imperfection sensitivity of laminated conical shells.

The non-homogeneity of material properties across the thickness of plates and shells introduces additional difficulties
and thus draws additional attention. Massalas et al. [18] have studied the dynamic instability of truncated conical shells un-
der periodic compressive forces with the elasticity modulus as a linear function of thickness coordinate. Lee and Yu [19] de-
rived a system of two-dimensional equations for vibrations of piezoelectric plates with thickness-graded material properties.
Recently, Sofiyev and co-workers [20–23] a more general model has been proposed in which, the Young’s moduli and density
of the orthotropic materials of the shells are assumed to vary continuously and piecewise continuously in the thickness coor-
dinate and have solved the static and dynamic stability problems of single-layer and laminated orthotropic cylindrical and
conical shells with simple or freely supported edges.

Vibration and buckling of a general conical shell depend on boundary conditions as well as the geometric, material prop-
erties and loading conditions. Some closed-form solutions for the vibration and buckling of shells are available for a few
types of boundary conditions. The literature on shells analysis particularly is full of the exact solutions for a shell simply sup-
ported at both ends. Approximate solutions are sought for other sets of boundary conditions like clamped–clamped,
clamped-free, etc., by using numerical methods [24–35].

Publications about the closed-form solutions the stability and vibration of conical shells with clamped edges are limited
in the literature, comparatively to the other types of edge restraints. Most of these works have been done for the vibration
analyses of clamped cylindrical shells [36–45].

Furthermore, the excellent monographs on the vibration and stability of homogeneous shells by Volmir [46] and Leissa
[47] contain one chapter devoted to conical shells and the references listed therein deal mostly with the study of isotropic
conical shells.

Since, the free vibration and the stability of non-homogeneous orthotropic truncated and complete conical shells with
clamped edges under various pressures have not been studied yet. In the present work, an attempt is made to address this
problem. The conical shells are analyzed using the modified Donnell type stability and compatibility equations. Applying
Galerkin methods to the foregoing equations, the buckling pressures and fundamental natural frequencies of homogeneous
and non-homogeneous orthotropic conical shells with clamped edges are obtained. The Young’s moduli and density of con-
ical shells are defined as continuous functions of the thickness coordinate. Finally, the influences of the non-homogeneity,
orthotropy and the variations of conical shells characteristics on critical lateral and hydrostatic pressures and fundamental
natural frequencies are investigated, when Young’s moduli and density vary together and separately.
2. Mathematical formulation of the problem

2.1. Kinematics

Consider a circular non-homogeneous orthotropic truncated conical shell as shown in Fig. 1, R1 and R2 indicate the radii of
the cone at its small and large ends, c denotes a semi-vertex angle of the cone, L is the cone length along its generator, h is the
thickness. The reference surface of the conical shell is taken as the middle surface where an orthogonal coordinate system
(S, h, f) is fixed. The S-axis lies on the curvilinear middle surface of the cone, S1 and S2 being the coordinates of the points
where this axis intersects the small and large bases, respectively. Furthermore, the f-axis is always normal to the moving
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Fig. 1. Geometry of the conical shell.
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S-axis, lying in the plane generated by the S-axis and the axis of the cone, and points inwards. The h-axis is in the direction
perpendicular to the S� f plane.

The axes of orthotropy are parallel to the curvilinear coordinates S and h.
Based on the hypothesis of Kirchhoff–Love’s first approximation which states that the strain components, eS; eh and eSh, at

any point of a conical shell can be expressed by a linear function of the normal coordinate f in terms of the reference strains
and curvatures, each of these components may be expressed as [46]
eS ¼ e0
S þ fvS; eh ¼ e0

h þ fvh; eSh ¼ e0
Sh þ fvSh; ð1Þ
where e0
S ; e0

h , e0
Sh and vS;vSh, vSh are, respectively, the strain and curvature components on the reference surface. They are de-

fined by:
vS ¼ �
@2w

@S2 ; vh ¼ �
1
S2

@2w

@h2
1

� 1
S
@w
@S

; vSh ¼ �
1
S
@2w
@S@h1

þ 1
S2

@w
@h1

ð2Þ
in which h1 ¼ hsinc, w is the displacement of the middle surface in the normal direction, positive towards the axis of the cone
and assumed to be much smaller than the thickness.

2.2. Mathematical model of non-homogeneous orthotropic materials

The material of the conical shell is assumed to be orthotropic and non-homogeneous, such as Young’s moduli E1ð�fÞ; E2ð�fÞ
and density qð�fÞ must be described across the shell thickness [1–8,13,20–23]:
b½E1ð�fÞ; E2ð�fÞ;Gð�fÞc� ¼ �u1ð�fÞ E01; E02;G0½ �; qð�fÞ ¼ q0 �u2ð�fÞ; �f ¼ f=h; ð3Þ
where f is the thickness coordinate �h=2 6 f 6 h=2, E01 and E02 are the Young’s moduli in the S and h directions, respectively,
G0 is the shear modulus on the plane, and q0 is the density of the homogeneous orthotropic material. Additionally,
�ujð�fÞ ¼ 1þ lujð�fÞ; j ¼ 1;2; ð4Þ
where u1ð�fÞ and u2ð�fÞ are continuous functions of non-homogeneity defining the variations of the Young’s moduli and den-
sity, respectively, satisfying the condition jujð�fÞj 6 1, and l is a non-homogeneity coefficient, satisfying 0 6 l < 1. m12 and
m21 are the Poisson’s ratios, assumed to be constant and satisfying m21E01 ¼ m12E02 [48].

2.3. Constitutive equations

The stress–strain relation for thin non-homogeneous orthotropic truncated conical shells is:
rS

rh

rSh

0
B@

1
CA ¼

Q 11ð�fÞ Q 12ð�fÞ 0
Q 21ð�fÞ Q 22ð�fÞ 0

0 0 Q 66ð�fÞ

2
64

3
75

eS

eh

eSh

2
64

3
75; ð5Þ
where
Q 11ð�fÞ ¼
E1ð�fÞ

1� m12m21
; Q22ð�fÞ ¼

E2ð�fÞ
1� m12m21

; Q 12ð�fÞ ¼ m21Q 11ð�fÞ;

Q 21ð�fÞ ¼ m12Q 22ð�fÞ; Q66ð�fÞ ¼ 2Gð�fÞ
ð6Þ
Moment resultants and in-surface force are defined as [46]:
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ðTS; Th; TShÞ; ðMS;Mh;MShÞ½ � ¼
Z h=2

�h=2
ð1; fÞ rS;rh;rShð Þdf: ð7Þ
The relations between the forces TS; Th and TSh and the stress function W are given by
TS; Th; TShð Þ ¼ 1
S2

@2W

@h2
1

þ 1
S
@W
@S

;
@2W

@S2 ; �
1
S
@2W
@S@h1

þ 1
S2

@W
@h1

 !
: ð8Þ
3. Stability and vibration equations

The orthotropic truncated conical shell subjected to uniform external pressures [22–27]:
T0
S ¼ �0:5P1S tan c; T0

h ¼ �P2S tan c; T0
Sh ¼ 0; ð9Þ
where T0
s ; T

0
h and T0

Sh are the membrane forces for the condition with zero initial moments.
When P1 ¼ P2 ¼ PH , the external pressure turns into the uniform hydrostatic pressure. When P1 ¼ 0; P2 ¼ PL, the external

pressure turns into the uniform lateral pressure.
Substituting the Eq. (5) into the Eq. (7) then substituting the resulting expressions into the modified Donnell type stability

and compatibility equations of truncated conical shells [46] together with relations (8) and (9), then considering new var-
iable S ¼ S2ex, the governing equations in terms of w and W are derived. They are a set of partial differential equations and
their simplified expressions are given as follows:
L11 L12

L21 L22

� �
W

w

� �
¼ 0; ð10Þ
where Lij; ði; j ¼ 1—4Þ are the differential operators and the following definitions apply:
L11 ¼ d1e�4x @
4

@x4 þ d2e�4x @
3

@x3 þ d3e�4x @
2

@x2 þ d4e�4x @

@x
� S2e�3x cot c

@

@x
þ S2e�3x cot c

@2

@x2 þ d5e�4x @
4

@h4
1

þ d6e�4x @4

@x2@h2
1

þ d7e�4x @3

@x@h2
1

þ d8e�4x @
2

@h2
1

; ð11:1Þ

L12 ¼ �d9e�4x @
4

@h4
1

� d10e�4x @4

@x2@h2
1

þ d11e�4x @3

@x@h2
1

� d12e�4x @
2

@h2
1

� d13e�4x @
4

@x4 þ d14e�4x @
3

@x3 þ d15e�4x @
2

@x2

þ d16e�4x @

@x
þ S3

2e�xð0:5P1 � P2Þ tan c
@

@x
� 0:5P1S3

2e�x tan c
@2

@x2 � P2S3
2e�x tan c

@2

@h2
1

� q1hS4
2
@2

@t2 ; ð11:2Þ

L21 ¼ D1e�4x @
4

@h4
1

þ D2e�4x @4

@x2@h2
1

� D3e�4x @3

@x@h2
1

þ D4e�4x @
2

@h2
1

þ D5e�4x @
4

@x4

þ D6e�4x @
3

@x3 þ D7e�4x @
2

@x2 þ D8e�4x @

@x
; ð11:3Þ

L22 ¼ �D9e�4x @
4

@h4
1

þ D10e�4x @4

@x2@h2
1

þ D11e�4x @3

@x@h2
1

þ D12e�4x @
2

@h2
1

� D13e�4x @
4

@x4 þ D14e�4x @
3

@x3 þ D15e�4x @
2

@x2

þ D16e�4x @

@x
þ S2e�3x @2

@x2 �
@

@x

 !
cot c; ð11:4Þ
where t is time and the expressions d�k;D�kð�k ¼ 1—16Þ and q1 are given in Appendix A.
Eq. (10) are the basic equations for the free vibration (as the P1 ¼ P2 ¼ 0) and stability (neglecting the inertial term) of

non-homogeneous orthotropic conical shells subjected to uniform external pressures.
Let us introduce functions w and W defined by the relations [37]
w ¼ ekxw1ðx; tÞ cosðb2h1Þ; W ¼ S2eðkþ1ÞxW1ðx; tÞ cos b2h1ð Þ; ð12Þ
where k is a parameter which is found from minimum conditions of critical stresses and frequencies and the following def-
initions apply:
b2 ¼
n

sin c
; x0 ¼ ln

S1

S2
: ð13Þ
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Multiplying the first equation of the system (10) by wS2
2e2xdh1 dx and the second equation of the system (10) by

WS2
2e2xdh1dx, for �x0 6 x 6 0 and 0 6 h1 6 2psinc, then considering Eq. (12) and applying Galerkin’s method to Eq. (10), after

integrating with coordinate h1, the following differential equations depending on the parameter x are obtained:
Z 0

�x0

d1 eðkþ1ÞxW1
� �

;xxxx þ d2 eðkþ1ÞxW1
� �

;xxx

� �
S2eðk�2Þxw1

þ d3 � d6b
2
2

� 	
S2eðk�2Þxw1 eðkþ1ÞxW1

� �
;xx þ d4 � d7b

2
2

� 	
S2eðk�2Þxw1 eðkþ1ÞxW1

� �
;x

þS2
2eðk�1Þxw1 ½eðkþ1ÞxW1�;xx � ½eðkþ1ÞxW1�;x

� �
cot c

þ d5b
2
2 � d8

� 	
b2

2S2eð2k�1Þxw1W1 þ d12 � d9b
2
2e4x

� �
eð2k�2Þxb2

2w2
1

þ d10ðekxw1Þ;xx � d11ðekxw1Þ;x½ �b2
2eðk�2Þxw1

þ d14ðekxw1Þ;xxx � d13ðekxw1Þ;xxxx þ d15ðekxw1Þ;xx þ d16ðekxw1Þ;x½ �eðk�2Þxw1

þ 0:5P1 � P2ð ÞS3
2eðkþ1Þxw1ðekxw1Þ;x tan c� 0:5P1S3

2eðkþ1Þxw1ðekxw1Þ;xx tan c
þP2S3

2b
2
2eð2kþ1Þxw2

1 tan c� q1hS4
2eð2kþ2Þxw1w1;tt

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

dx ¼ 0; ð14Þ

Z 0

�x0

D1b
2
2 � D4

� 	
b2

2S2e2kxW2
1 þ D7 � D2b

2
2

� 	
S2eðk�1ÞxW1 eðkþ1ÞxW1

� �
;xx

þ D8 � D3b
2
2

� 	
S2eðk�1ÞxW1 eðkþ1ÞxW1

� �
;x

þ D5 eðkþ1ÞxW1
� �

;xxxx þ D6 eðkþ1ÞxW1
� �

;xxx

� �
S2eðk�1ÞxW1

� D9b
2
2 þ D12

� 	
b2

2eð2k�1ÞxW1w1 þ D15 � D10b
2
2

� 	
eðk�1ÞxW1 ekxw1ð Þ;xx

þ D16 � D11b
2
2

� 	
eðk�1ÞxW1 ekxw1ð Þ;x

þ D14ðekxw1Þ;xxx � D13ðekxw1Þ;xxxx½ �eðk�1ÞxW1

þ ekxw1ð Þ;xx � ekxw1ð Þ;x½ �S2ekxW1 cot c

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

dx ¼ 0; ð15Þ
where ð�Þ;x... denote differentiations with respect to the parameter x.
Eqs. (14) and (15) can be integrated for different boundary conditions.

4. The solution of the eigenvalue problem

For the present truncated, circular, non-homogenous orthotropic conical shell, the clamped boundary conditions at both
ends are considered and expressed as [25,37,46]
w ¼ @w
@S
¼ 0; TS ¼ 0; TSh ¼ 0 at S ¼ S1 and S ¼ S2: ð16Þ
The approximate functions field may be taken as [37]
w1 ¼ nðtÞ sin2ðb1xÞ; W1 ¼ fðtÞ sin2ðb1xÞ; ð17Þ
where nðtÞ and fðtÞ are time dependent amplitudes and b1 ¼ mpx0.
When P1 = P2 = 0, substituting Eq. (17) into Eqs. (14) and (15), after integration according to x and some manipulations, for

the natural frequency xTC (rad/s) of free vibration of the non-homogeneous orthotropic truncated conical shells with
clamped edges, the following expression is obtained:
xTC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðQ 1g�1 þ Q8ÞðQ 6g�1 þ Q 8Þ

Q 5Q 7g2
þ Q 2g�2

Q 7g2

s
; ð18Þ
where the following definitions apply:
Q 1 ¼ 8d1½16b4
1 þ ð16k2 � 16k� 50Þb2

1 þ 24k4 � 48k3 � 72k2 þ 96kþ 96�
� 36d2ð4b2

1 þ k2 � k� 2Þ þ 4ðd6b
2
2 � d3Þð2k2 � 2k� 13þ 8b2

1Þ
þ 36d4 þ 24d5b

4
2 � 12ð3d7 þ 2d8Þb2

2;

Q 2 ¼ 8 3d9b
4
2 þ 3ðd11 � d12Þb2

2 þ ðd15 þ d10b
2
2Þðk

2 � 2k� 2þ 4b2
1Þ

�
þ d13½16b4

1 þ 8ð2k2 � 4k� 1Þb2
1 þ 3k4 � 12k3 þ 12k2�

þ3d14ð4b2
1 þ k2 � 2kÞ � 3d16

�
;

Q 3 ¼ 4ðk2 þ k� 2þ 4b2
1ÞS

3
2 tan c; Q 4 ¼ 12ð2b2

2 þ 1ÞS3
2 tan c;

Q 5 ¼ 8 D5½16b4
1 þ 8ð2k2 � 3Þb2

1 þ 3k4 � 6k2 þ 3� þ 3D8 þ 3D1b
4
2

�
þ 3ðD3 � D4Þb2

2 � 3D6ð4b2
1 þ k2 � 1Þ þ ðD2b

2
2 � D7Þðk2 þ 4b� 3Þ

�
;



A.H. Sofiyev et al. / Applied Mathematical Modelling 34 (2010) 1807–1822 1813
Q 6 ¼ �24D9b
4
2 � 12ðD11 þ 2D12Þb2

2 þ 12D16 þ 8D10b
2
2ðk

2 þ 4b2
1 � 3Þ þ 8D14½16b4

1 þ 2ð8k2 � 8k� 1Þb2
1 þ 3k4 � 6k3

þ 3k2� þ 4D13ð2k2 � 2k� 1þ 8b2
1Þ � 12D15ð4b2

1 þ k2 � kÞ;

Q 7 ¼ 24q1hS4
2; Q 8 ¼ �ð8k2 þ 32b2

1ÞS2 cot c;

gi ¼
1� e�ð2kþiÞx0

1� e�2kx0

k k2 þ b2
1

� 	� �
k2 þ 4b2

1

� 	� �
ðkþ 0:5iÞ ðkþ 0:5iÞ2 þ b2

1

h i
ðkþ 0:5iÞ2 þ 4b2

1

h i ; i ¼ �2;�1;1;2 ð19Þ
The cyclic natural frequency fTC ðHzÞ for the non-homogeneous orthotropic truncated conical shells with clamped edges is
defined as
fTC ¼ xTC=2p: ð20Þ
The dimensionless frequency parameter x1TC for the non-homogeneous orthotropic truncated conical shells with clamped
edges is defined as
x1TC ¼ xTCR2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� m12m21Þq0=ðE01E02Þ0:5

q
: ð21Þ
At statically case, substituting Eq. (17) into the Eqs. (14) and (15), after integration according to x and some manipula-
tions, for the critical uniform hydrostatic pressure (P1 ¼ P2 ¼ PH) of the non-homogeneous orthotropic truncated conical
shells with clamped edges, the following expression is obtained:
PTC
Hcr ¼

ðQ1g�1 þ Q 8ÞðQ 6g�1 þ Q8Þ þ Q 5Q2g�2

Q 5ðQ 3 þ Q 4Þg1
: ð22Þ
For the critical uniform lateral pressure (P1 ¼ 0; P2 ¼ PL) of the non-homogeneous orthotropic truncated conical shells with
clamped edges, the following expression is obtained:
PTC
Lcr ¼

ðQ1g�1 þ Q 8ÞðQ6g�1 þ Q 8Þ þ Q 5Q2g�2

Q 5Q 4g1
: ð23Þ
The minimum values of critical parameters of the non-homogeneous orthotropic truncated conical shells are obtained by
minimizing Eqs. (18), (20)–(23) with respect to m, n and k.

The present Eqs. (18), (20)–(23) can be used also for the study of non-homogeneous orthotropic complete circular conical
shells with clamped edges:

(a) The truncated conical shell is transformed into the complete conical shell when R1 ! 0: In this case,
PTC

Hcr; PTC
Lcr;xTC; fTC;x1TC in Eqs (18)–(23) are transformed into PCC

Hcr; PCC
Lcr;xCC; fCC;x1CC, respectively.

(b) The truncated conical shell is transformed into the cylindrical shell when c! 0: If c ¼ p=180000! 0 are substituted
in Eqs. (18)–(23) corresponding formulas for clamped cylindrical shells are obtained. In this case,
PTC

Hcr; PTC
Lcr;xTC; fTC;x1TC in Eqs. (18), (20)–(23) are transformed into Pcyl

Hcr; Pcyl
Lcr;xcyl; fcyl;x1cyl, respectively.

After the various numerical computations and analyses for critical parameters of conical and cylindrical shells, the follow-
ing generalized values are obtained for the parameter k (see, also Ref. [37]):

(a) The minimum values of hydrostatic and lateral buckling pressures of the clamped truncated conical shell are
obtained approximately at k = 4.

(b) The values of the fundamental cyclic frequency and dimensionless fundamental frequency parameter of the clamped
truncated conical shell are obtained approximately,
k ¼ 2:4 for x0 < 1:6;

k ¼ 2:8 for 1:6 6 x0 6 2:5;

k ¼ 3:2 for x0 > 2:5:
(c) The minimum values of hydrostatic and lateral buckling pressures for the clamped complete conical shell are getting
approximately at k = 5.7.

(d) The values of fundamental cyclic frequency and dimensionless fundamental frequency parameter for the clamped
complete conical shell are getting approximately at k = 3.68.

(e) The values of critical parameters for clamped cylindrical shells are getting at k = 0.

Furthermore the longitudinal wave number m is equal to one for the cylindrical and conical shells subjected to uniform
external pressures. In numerical computations part, by taking into account these values for the parameter k and for the lon-
gitudinal wave number m = 1, critical parameters are minimized only according to n.
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5. Numerical results and discussion

5.1. Comparative studies

In order to validate the proficiency of the present study, several numerical examples are carried out for comparisons. The
fundamental frequency parameters of homogeneous isotropic cylindrical shells with clamped edges are presented in Table 1
and Table 2. By taking c! 0; R2 ¼ R1 ¼ R; L ¼ L1; l ¼ 0; E01 ¼ E02 ¼ E0; m12 ¼ m21 ¼ m0 into the present formulations; and
then the non-homogeneous orthotropic conical shell becomes a homogeneous isotropic cylindrical shell. Here R and L1

are the radius and length of cylindrical shells, respectively.
The comparisons of the fundamental frequency parameter x�1cyl and the fundamental mode number n* of the same homo-

geneous isotropic cylindrical shells to those in [36,40,45] are presented in Table 1. Present results are little higher than re-
sults of [36,40] and lower than results of [45]. This may be due to El-Mously [45] used Flugge theory. Furthermore, present
results are changing between results of [36,40] and [45]. This shows our results are reliable.

Secondly, in Table 2, the fundamental frequency parameter x1cyl of a homogeneous isotropic cylindrical shell are calcu-
lated and compared to those obtained by Loy et al. [42] and Zhang et al. [44]. Close agreements between the results of this
paper and those reported in Refs. [42,44] is observed from Table 2.

The third and fourth comparisons, as shown in Tables 3 and 4, are for the conical shells. By taking l ¼ 0, E01 ¼ E02 ¼ E0,
m12 ¼ m21 ¼ m0 into the present formulations; and then the laminated non-homogeneous orthotropic conical shell becomes a
homogeneous isotropic conical shell.

The values of the dimensionless critical hydrostatic pressure of homogeneous isotropic truncated conical shells are
formed for RF1 (or RF3) clamped boundary conditions, i.e. for w ¼ @w

@S ¼ 0; TS ¼ 0; TSh ¼ 0 or v ¼ @w
@S ¼ 0; TS ¼ 0; TSh ¼ 0

� 	
at

S ¼ S1 and S ¼ S2 of Table 3 of Singer et al. [25] and compared with present results (see Table 3). The values of the
Table 1
Comparison of values of the fundamental frequency parameter x�1cyl ¼ xcylðR2=hÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� m2

0Þq0=E0

q
and the fundamental mode number n� (given in parentheses)

for clamped cylindrical shells.

Comparative studies L1/R x�1cyl; (n*)

R/h = 100 R/h = 200

Weingarten [36] 1 23.2003(7) 35.6664(9)
Koga [40] 22.5008(7) 34.8558(9)
El-Mously [45]-Flugge theory 29.1461(7) 42.6632(9)
Present study 26.9334(7) 38.1112(10)
Weingarten [36] 2 13.0893(6) 19.6931(7)
Koga [40] 12.8748(6) 19.7827(7)
El-Mously [45]-Flugge theory 15.3271(6) 22.4040(7)
Present study 13.7215(5) 19.3016(7)

Table 2
Comparison of the fundamental frequency parameter value x1cyl for a homogeneous isotropic cylindrical shell with clamped edges (L1/R = 20, h/R = 0.01).

x1cyl ¼ xcylR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m2

0

� 	
q0=E0

q
Loy et al. [42] Zhang et al. [44] Present study

0.01393(2) 0.01405(2) 0.01401(2)

Table 3
Dimensionless critical hydrostatic pressures of homogeneous isotropic truncated conical shells with clamped edges compared to those given by Singer et al.
[25] for the different semi-vertex angle c and L/R1 ratio (R1/h = 100).

PTC
Hcr

� .
E0

�
� 106

Singer et al. [25] Present study Singer et al. [25] Present study Singer et al. [25] Present study

c L/R1 = 0.5 L/R1 = 1 L/R1 = 2

10� 24.61(12) 25.351(12) 9.645(9) 10.202(9) 4.122(7) 4.2980(7)
30� 18.97(12) 19.441(12) 6.695(10) 6.9532(10) 2.436(8) 2.5213(8)
50� 12.24(12) 12.502(12) 3.869(10) 3.9711(10) 1.270(8) 1.2701(9)
70� 5.648(10) 5.7645(10) 1.528(8) 1.557(8) 0.4432(8) 0.4440(8)

*Numbers in brackets indicate the number of circumferential waves.



Table 4
Comparison of dimensionless frequency parameters for homogeneous isotropic circular truncated and complete conical shells with clamped edges
(E0 = 1.93 � 1011 Pa; m0 = 0.3; q0 = 8000 kg/m3; h = 0.001 m; R1 = 0.1 m and R1 = 10�50 m; R2 = 0.175 m; L = 0.6 m).

n x1TC ¼ xTCR2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� m2

0Þq0=E0

q
(k = 2.4) x1CC ¼ xCCR2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� m2

0Þq0=E0

q
(k = 3.68)

Present study Ref. [37] Present study Ref. [37]

1 0.4199155633 0.4199155629 0.3692448620 0.3692448624
2 0.1736865575 0.1736865573 0.1463205658 0.1463205660
3 0.0892420257 0.0892420256 0.0913505680 0.0913505688
4 0.0672561201 0.0672561200 0.1141245329 0.1141245329
5 0.0769219418 0.0769219418 0.1688925636 0.1688925635
6 0.1022555996 0.1022555996 0.2407318617 0.2407318617
7 0.1361029256 0.1361029257 0.3267351685 0.3267351685
8 0.1763352747 0.1763352749 0.4262799402 0.4262799402
9 0.2223353759 0.2223353761 0.5392017764 0.5392017764
10 0.2739033361 0.2739033363 0.6654489578 0.6654489574

A.H. Sofiyev et al. / Applied Mathematical Modelling 34 (2010) 1807–1822 1815
dimensionless critical hydrostatic pressure of homogeneous isotropic truncated conical shells with RF1 and RF3 clamped
edges are nearly same. It can be seen that the present results are in good agreement with results of Singer et al. [25].

Comparisons of fundamental frequency parameters x1TC and x1CC of homogeneous isotropic circular truncated and com-
plete conical shells, respectively, with results presented in Ref. [37] are given in Table 4. The expression of the natural fre-
quency �xTC for the homogeneous isotropic elliptical truncated conical shell with clamed edges that obtained in Ref. [37] is
given in Appendix B. When e ¼ 0, fundamental frequency parameters �x1TC and �x1CC for elliptical truncated and complete
conical shells are transformed into fundamental frequency parameters x1TC and x1CC of circular truncated and complete con-
ical shells, respectively (see Appendix B). An excellent agreement between the present and the reference results is observed.

5.2. Vibration and buckling analyses

Numerical computations, for homogeneous and non-homogeneous orthotropic truncated and complete conical shells
with clamped edges have been carried out using expressions (18), (20)–(23). The results are presented in Figs. 2–8 and Tables
5 and 6.

Homogeneous and non-homogeneous orthotropic conical shells with different types of geometry are considered and their
critical dimensionless lateral and hydrostatic pressures and fundamental cyclic natural frequencies computed. The non-
homogeneity functions of the materials of conical shells are assumed to be power and exponential functions [1,3,8,20–
24] which ujð�fÞ ¼ �f; �f2; e�0:1j�fj cosð0:5�fÞ; j ¼ 1;2.

Composite material properties are given below [48]:
E01 ¼ 1:724� 1011 N=m2; E02 ¼ 7:79� 109 N=m2; m21 ¼ 0:35; q0 ¼ 1530 kg=m3:
In tables and figures, PTC
Hcr ðMPaÞ; PTC

Lcr ðMPaÞ, fTC ðHzÞ and nHTC;nLTC;nfTC are hydrostatic buckling pressure, lateral buckling
pressure, fundamental cyclic frequency and corresponding circumferential wave numbers, respectively, for a truncated con-
ical shell. PCC

Hcr ðMPaÞ, PCC
Lcr ðMPaÞ, fCC ðHzÞ and nHCC; nLCC;nfCC are hydrostatic buckling pressure, lateral buckling pressure, fun-

damental cyclic frequency and corresponding circumferential wave numbers, respectively, for the complete conical shell.
The values of buckling hydrostatic and lateral pressures, fundamental cyclic frequencies and corresponding wave num-

bers for homogeneous and non-homogeneous orthotropic truncated and complete conical shells are listed in Table 5 with
respect to the semi-vertex angle c. Furthermore, Figs. 2–4 are formed, by using values of critical hydrostatic and lateral pres-
sures, and fundamental cyclic frequencies for homogeneous and non-homogeneous orthotropic truncated and complete con-
ical shells versus semi-vertex angle, c, that are given in Table 5. In Figs. 2–4 and Table 5, truncated and complete conical
shells have geometrical parameters as R1 = 1 m, R2 = 2 m, h = 0.01 m and R1 = 10�50 � 0, R2 = 2 m, h = 0.01 m, respectively.

The values of PTC
Hcr ðMPaÞ and PTC

Lcr ðMPaÞ increase as 10� 6 c 6 50� and decrease as 50� < c 6 70� and the values of
PCC

Hcr ðMPaÞ and PCC
Lcr ðMPaÞ increase as 10� 6 c 6 45� and decrease as 45� < c 6 70�, whereas, corresponding wave numbers

increase for homogeneous and non-homogeneous orthotropic truncated and complete conical shells, as the semi-vertex an-
gle c is increased. As the semi-vertex angle, c, is increased, the minimum values of fTC ðHzÞ continuously increase, whereas,
corresponding wave numbers increase as 10� 6 c 6 30� and decrease as 30� < c 6 70� for homogeneous and non-homoge-
neous orthotropic truncated conical shells. The values of fCC ðHzÞ increase as 10� 6 c 6 45� and decrease as 45� < c 6 70�,
whereas, corresponding wave numbers increase as 10� 6 c 6 40� and decrease as 40� < c 6 70� for homogeneous and
non-homogeneous orthotropic complete conical shells.

Fig. 2 shows variations of the values of (a) fTC ðHzÞ and (b) fCC ðHzÞ for H and NH orthotropic conical shells versus the
semi-vertex angle, c, for different non-homogeneity functions. It is observed that the values of the fundamental cyclic fre-
quencies of complete conical shells are lower than truncated conical shells.

Fig. 3 shows variations of the values of hydrostatic buckling pressures for the homogeneous and non-homogeneous,
orthotropic truncated and complete conical shells versus the semi-vertex angle, c, for the parabolic non-homogeneity



Fig. 2. Variations of the values of (a) fTCðHzÞ and (b) fCCðHzÞ for H and NH orthotropic conical shells versus the semi-vertex angle c (R1 = 1 m; R2 = 2 m;
h = 0.01 m; l = 0.9; j = 1, 2).

Fig. 3. Variations of the values of the hydrostatic buckling pressure for H and NH, orthotropic conical shells versus the semi-vertex angle, c.

Fig. 4. Variations of the values of PTC
Hcr ðMPaÞ and PTC

Lcr ðMPaÞ for H and NH, orthotropic truncated conical shells versus the semi-vertex angle, c.
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function. It is observed that the values of the hydrostatic buckling pressure of a complete conical shell are lower than the
truncated conical shell and the effect of the parabolic variation of the Young’ moduli on the hydrostatic buckling pressure
are important (see, also Table 5).

Fig. 4 shows variations of the values of hydrostatic and lateral buckling pressures for homogeneous and non-homoge-
neous, orthotropic truncated conical shells versus the semi-vertex angle, c, for the parabolic non-homogeneity function.
The values of the hydrostatic buckling pressure are lower than the values of the lateral buckling pressure for a truncated
conical shell. Furthermore, the effect of the parabolic variation of the Young’ moduli on the buckling pressures is
considerable.
Fig. 5. Variations of the values of PTC
Hcr ðMPaÞ for H and NH orthotropic truncated conical shells versus the ratio E0S=E0h (L/R1 = 2; c = 30�; R2/h = 200; k = 4).

Fig. 6. Variations of the values of fTC ðHzÞ for H and NH orthotropic truncated conical shells versus the ratio E0S=E0h (L/R1 = 2; c =30�; R2/h = 200; k = 4).

Fig. 7. Variations of the values of PTC
Hcr ðMPaÞ for H and NH orthotropic conical shells versus the ratio R2/R1 for various non-homogeneity functions

(h = 0.01 m; c = 30�; l = 0.9).
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In Table 6 variations of the values of PTC
Hcr ðMPaÞ, PTC

Lcr ðMPaÞ, fTC ðHzÞ and corresponding circumferential wave numbers
nHTC, nLTC, nfTC, respectively for the homogeneous and non-homogeneous orthotropic truncated conical shells with different
non-homogeneity cases, versus the ratio L/R1 are presented. As expected, as the dimensionless length parameter L/R1 in-
creases, the values of the dimensionless hydrostatic and lateral buckling pressures and corresponding wave numbers de-
crease for the homogeneous and non-homogeneous orthotropic truncated conical shells with all the non-homogeneity
cases. Also, as the dimensionless length parameter L/R1 increases, the values of fundamental cyclic frequencies decreases,
whereas, corresponding wave numbers increase. It is observed that the effect of the non-homogeneity on the values of
fTC ðHzÞ is little, in the all cases. As the ratio L/R1 increases, the percentage effects of the non-homogeneity on the values
Fig. 8. Variations of the values of fTC ðHzÞ for H and NH orthotropic conical shells versus the ratio R2/R1 for various non-homogeneity functions (h = 0.01 m;
c = 30o; l = 0.9; j = 1, 2).

Table 5
Variations of the values of fundamental cyclic frequencies, buckling pressures and corresponding circumferential wave numbers for H and NH, orthotropic
conical shells versus the semi-vertex angle c for different non-homogeneity functions (R2/h = 200; l = 0.9; j = 1, 2).

c ujð�fÞ;
j = 1, 2

PTC
Hcr ðMPaÞ;

(ncr, k = 4)
PTC

Lcr ðMPaÞ;
(ncr, k = 4)

PCC
Hcr ðMPaÞ;

(ncr, k = 5.7)
PCC

Lcr ðMPaÞ;
(ncr, k = 5.7)

fTC ðHzÞ;
(ncr, k = 2.4)

fCC ðHzÞ;
(ncr, k = 3.68)

10� Hom. 0.0169(8) 0.0170(8) 0.0148(6) 0.0149(6) 30.884(6) 21.108(4)
Lin. 0.0160(8) 0.0161(8) 0.0140(6) 0.0141(6) 30.482(6) 20.634(4)
Quad. 0.0189(8) 0.0190(8) 0.0166(6) 0.0167(6) 31.216(6) 21.491(4)
Exp. 0.0313(8) 0.0315(8) 0.0275(6) 0.0276(6) 30.828(6) 21.040(4)

20� Hom. 0.0336(11) 0.0342(11) 0.0277(8) 0.0280(8) 58.500(8) 38.725(5)
Lin. 0.0317(11) 0.0323(11) 0.0262(8) 0.0265(8) 57.607(8) 38.049(5)
Quad. 0.0378(10) 0.0385(11) 0.0311(8) 0.0314(8) 59.228(8) 39.275(5)
Exp. 0.0624(11) 0.0634(11) 0.0513(8) 0.0519(8) 58.373(8) 38.629(5)

30� Hom. 0.0477(12) 0.0491(12) 0.0369(9) 0.0376(9) 81.463(9) 53.729(6)
Lin. 0.0451(12) 0.0464(12) 0.0349(9) 0.0356(9) 80.020(9) 52.646(6)
Quad. 0.0536(12) 0.0551(12) 0.0415(9) 0.0422(9) 82.637(9) 54.326(5)
Exp. 0.0884(12) 0.0910(12) 0.0685(9) 0.0697(9) 81.258(9) 53.575(6)

40� Hom. 0.0577(13) 0.0600(13) 0.0420(10) 0.0430(10) 97.528(8) 61.953(6)
Lin. 0.0543(13) 0.0564(14) 0.0396(10) 0.0405(10) 95.919(8) 60.864(6)
Quad. 0.0650(13) 0.0676(13) 0.0471(9) 0.0484(10) 98.838(8) 62.839(6)
Exp. 0.107(13) 0.111(13) 0.0778(10) 0.0797(10) 97.299(8) 61.798(6)

45o Hom. 0.0605(14) 0.0631(14) 0.0423(10) 0.0435(10) 102.515(7) 63.871(5)
Lin. 0.0568(14) 0.0592(14) 0.0398(10) 0.0410(10) 100.821(7) 63.105(6)
Quad. 0.0684(14) 0.0713(14) 0.0476(10) 0.0490(10) 103.894(7) 64.435(5)
Exp. 0.112(14) 0.117(14) 0.0783(10) 0.0807(10) 102.274(7) 63.773(5)

50� Hom. 0.0615(14) 0.0645(14) 0.0414(10) 0.0429(10) 105.213(5) 63.741(5)
Lin. 0.0577(14) 0.0605(14) 0.0390(10) 0.0404(10) 103.500(5) 62.959(5)
Quad. 0.0695(14) 0.0729(14) 0.0467(10) 0.0483(10) 106.598(4) 64.381(5)
Exp. 0.1138(14) 0.119(14) 0.0768(10) 0.0795(10) 104.969(5) 63.630(5)

60� Hom. 0.0575(15) 0.0607(15) 0.0363(10) 0.0380(10) 106.0399(1) 59.127(4)
Lin. 0.0538(15) 0.0567(15) 0.0341(10) 0.0356(10) 103.771(1) 58.386(4)
Quad. 0.0651(15) 0.0687(15) 0.0410(10) 0.0429(10) 107.880(1) 59.645(3)
Exp. 0.106(15) 0.112(15) 0.0673(10) 0.0703(10) 105.718(1) 59.021(4)

70� Hom. 0.0448(15) 0.0475(16) 0.0270(10) 0.0285(10) 108.306(1) 48.882(1)
Lin. 0.0418(15) 0.0444(16) 0.0253(10) 0.0266(10) 105.218(1) 48.155(1)
Quad. 0.0508(16) 0.0539(16) 0.0306(10) 0.0322(10) 110.794(1) 49.476(1)
Exp. 0.0829(15) 0.0880(16) 0.0501(10) 0.0527(10) 107.869(1) 48.779(1)



Table 6
Variations of the values of PTC

Hcr ðMPaÞ, PTC
Lcr ðMPaÞ, fTC ðHzÞ and nHTC;nLTC;nfTC for H and NH orthotropic truncated conical shells with the ratio L/R1 (c = 30�,

R1/h = 100, l = 0.9).

ujð�fÞ Hom. �f �f2 e�0:1j�fj cosð0:5�fÞ

L/R1 PTC
Hcr ðMPaÞ and (nHcr); k = 4; j = 1

0.25 2.713(42) 2.530(42) 3.079(42) 5.022(42)
0.50 0.652(23) 0.608(23) 0.739(23) 1.207(23)
0.75 0.287(17) 0.269(17) 0.325(17) 0.533(17)
1.0 0.165(15) 0.155(15) 0.186(15) 0.306(15)
3.0 0.023(12) 0.022(12) 0.026(11) 0.044(12)
5.0 0.009(11) 0.008(11) 0.010(11) 0.017(11)

L/R1 PTC
Lcr ðMPaÞ and (nLcr); k = 4; j = 1

0.25 2.887(44) 2.693(44) 3.277(44) 5.344(44)
0.50 0.692(24) 0.646(24) 0.785(24) 1.282(24)
0.75 0.304(18) 0.284(18) 0.344(18) 0.562(18)
1.0 0.173(15) 0.162(15) 0.195(15) 0.320(15)
3.0 0.024(12) 0.023(12) 0.027(12) 0.044(12)
5.0 0.009(11) 0.008(11) 0.010(11) 0.017(11)

L/R1 fTC ðHzÞ and (nfcr); k = 2.4; j = 1, 2
0.25 1792.146(1) 1731.158(1) 1841.049(1) 1783.534(1)
0.50 473.674(1) 459.253(1) 485.275(1) 471.635(1)
0.75 248.149(1) 242.721(1) 252.549(1) 247.378(1)
1.0 177.391(5) 174.326(6) 179.713(5) 176.976(6)
3.0 50.678(9) 49.757(9) 51.428(9) 50.548(9)
5.0 27.324(9) 26.788(9) 27.720(8) 27.248(9)

L/R1 fTC ðHzÞ and (nfcr); k = 2.4; j = 1
0.25 1792.146(1) 1731.158(1) 1908.841(1) 1122.309(1)
0.50 473.674(1) 459.253(1) 503.144(1) 451.368(1)
0.75 248.149(1) 242.721(1) 261.848(1) 293.855(1)
1.0 177.391(5) 174.326(6) 186.330(5) 215.822(6)
3.0 50.678(9) 49.757(9) 53.322(9) 64.507(9)
5.0 27.324(9) 26.788(9) 28.741(8) 35.614 (9)

L/R1 fTC ðHzÞ and (nfcr); k = 2.4; j = 2
0.25 1792.146(1) 1792.146(1) 1728.499 (1) 1310.944(1)
0.50 473.674(1) 473.674(1) 456.852(1) 346.490(1)
0.75 248.149(1) 248.149(1) 239.336(1) 181.519(1)
1.0 177.391(5) 177.391(5) 171.091(5) 129.760(5)
3.0 50.678(9) 50.678 (9) 48.878(9) 37.071(9)
5.0 27.324(9) 27.324 (9) 26.353(9) 19.987(9)
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of critical parameters are nearly same for parabolic and exponential cases, but percentage effects decrease for the linear case,
i.e. for ujð�fÞ ¼ �f; ðj ¼ 1;2Þ. For example; as the ratio L/R1 = 0.25 the percentage effects of the non-homogeneity on buckling
pressures and lowest cyclic frequency are 6.75% and 3.40%, respectively, but as L/R1 = 5 the percentage effects are 5.08% and
1.9%, respectively.

Fig. 5 shows variations of the values of hydrostatic buckling pressures for homogeneous and non-homogeneous orthotro-
pic truncated conical shells with different non-homogeneity functions versus E01=E02 ratio. The truncated conical shell has
geometrical parameters as L = 2 m, R1 = 1 m, R2 = 2 m, h = 0.01 m, c = 30�. It is seen that as E01=E02 ratio is increased, the val-
ues of hydrostatic buckling pressures decrease for homogeneous and non-homogeneous orthotropic truncated conical shells
with clamped edges. As the ratio E01=E02 increases, the percentage effects on the hydrostatic buckling pressure for the
homogeneous and non-homogeneous orthotropic truncated conical shells are nearly equal. When the variation of the Yong’s
moduli and the density are given by linear, quadratic and exponential functions, it is observed that the effect of this non-
homogeneity on the hydrostatic buckling pressure is relatively more for the exponential function.

Fig. 6 shows variations of the values of fundamental cyclic frequencies for homogeneous and non-homogeneous ortho-
tropic truncated conical shells in which Young’s moduli and density vary together and separately, versus E01=E02 ratio.
The non-homogeneity function is parabolic. It is seen that as E01=E02 ratio is increased, the values of fundamental cyclic fre-
quencies decrease for homogeneous and non-homogeneous orthotropic truncated conical shells. As the ratio E01=E02 in-
creases, the percentage effects on the fundamental cyclic frequencies for homogeneous and non-homogeneous cases are
nearly equal. When the Young’s moduli vary together with the density in the thickness direction, the higher effect on the
fundamental cyclic frequency is nearly 1.8%. When the only density varies in the thickness direction and the Young’s moduli
are kept constant the higher effect on the fundamental cyclic frequency is 3.55%. When the density is kept constant and only
the Young’s moduli are changed, the higher effect on the fundamental cyclic frequency is 5.2%.

The values of hydrostatic buckling pressures and fundamental cyclic frequencies for homogeneous and non-homoge-
neous orthotropic truncated conical shells are shown in Figs. 7 and 8, respectively, with respect to R2/R1, as the semi-vertex
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angle c = 30� and h = 0.01 m. When the ratio R2/R1 is increased, the values of the hydrostatic buckling pressure and funda-
mental cyclic frequency decrease for homogeneous and non-homogeneous orthotropic truncated conical shells. When the
non-homogeneous orthotropic truncated conical shells is compared with homogeneous orthotropic truncated conical shells;
the percent changes in the values of the hydrostatic buckling pressure are 5.4%; 12.3% and 85% for the non-homogeneity
cases as linear, parabolic and exponential, respectively. But the effect of the non-homogeneity on the values of the funda-
mental cyclic frequencies is not considerable. As the R2/R1 ratio increases, the percentage effects on the critical parameters
for the homogeneous and non-homogeneous orthotropic truncated conical shells are nearly equal.

6. Conclusions

In this paper an analytical procedure is given to study the free vibration and stability characteristics of homogeneous and
non-homogeneous orthotropic truncated and complete conical shells with clamped edges under uniform hydrostatic and
lateral pressures. At first, the basic relations, the modified Donnell type stability and compatibility equations have been ob-
tained for orthotropic truncated conical shells, the material properties of which vary continuously in the thickness direction.
Applying Galerkin methods to the foregoing equations, the analytical formulas for buckling pressures and fundamental cyclic
natural frequencies of non-homogeneous orthotropic conical shells are obtained. The appropriate formulas for homogeneous
orthotropic and isotropic conical shells and for cylindrical shells made of homogeneous and non-homogeneous, orthotropic
and isotropic materials are found as a special case. Finally, the influences of the non-homogeneity, orthotropy and the vari-
ations of conical shells characteristics on the critical lateral and hydrostatic pressures and natural frequencies are investi-
gated, when Young’s moduli and density vary together and separately. The results obtained for homogeneous cases are
compared with their counterparts in the literature.

Appendix A

The expressions d�k;D�k; cij; bij ð�k ¼ 1—16; i; j ¼ 1—4Þ defined as follows:
d1 ¼ c12; d2 ¼ c11 � 4c12 � c22; d3 ¼ 5c12 þ 3c22 � 3c11 � c21; d4 ¼ 2 c11 � c22 � c12 þ c21ð Þ;
d5 ¼ c21; d6 ¼ c11 � 2c31 þ c22; d7 ¼ 4c31 � 3c11 � c22; d8 ¼ 2ðc11 � c31 þ c21Þ; d9 ¼ c24;

d10 ¼ c14 þ c23 þ 2c32; d11 ¼ 3c14 þ c23 þ 4c32; d12 ¼ 2ðc14 þ c32 þ c24Þ; d13 ¼ c13;

d14 ¼ c23 � c14 þ 4c13; d15 ¼ c24 � 3c23 þ 3c14 � 5c13; d16 ¼ 2ðc23 � c14 � c24 þ c13Þ;

ðA1Þ

D1 ¼ b11; D2 ¼ 2b31 þ b21 þ b12; D3 ¼ 4b31 þ 3b21 þ b12; D4 ¼ 2ðb31 þ b21 þ b11Þ;
D5 ¼ b22; D6 ¼ b21 � 4b22 � b12; D7 ¼ 5b22 þ 3b12 � b11 � 3b21;

D8 ¼ 2b21 � 2b22 � 2b12 þ 2b11; D9 ¼ b14; D10 ¼ 2b32 � b13 � b24;

D11 ¼ b13 þ 3b24 � 4b32; D12 ¼ 2b32 � 2b24 � 2b14; D13 ¼ b23; D14 ¼ b13 � b24 þ 4b23;

D15 ¼ b14 � 3b13 þ 3b24 � 5b23; D16 ¼ 2b13 � 2b24 þ 2b23 � 2b14

ðA2Þ

c11 ¼ a1
11b11 þ a1

12b21; c12 ¼ a1
11b12 þ a1

12b22; c13 ¼ a1
11b13 þ a1

12b23 þ a2
11;

c14 ¼ a1
11b14 þ a1

12b24 þ a2
12; c21 ¼ a1

21b11 þ a1
22b21; c22 ¼ a1

21b12 þ a1
22b22;

c23 ¼ a1
21b13 þ a1

22b14 þ a2
21; c24 ¼ a1

21b14 þ a1
22b13 þ a2

22; c31 ¼ a1
66b31;

c32 ¼ a1
66b32 þ a2

66; b11 ¼ a0
22=L0; b12 ¼ �a0

12=L0; b13 ¼ a0
12a1

21 � a1
11a0

22

� 	
=L0;

b14 ¼ a0
12a1

22 � a1
12a0

22

� 	
=L0; b21 ¼ �a0

21=L0; b22 ¼ a0
11=L0; b23 ¼ a0

21a1
11 � a1

21a0
11

� 	
=L0;

b24 ¼ a0
21a1

12 � a1
22a0

11

� 	
=L0; b31 ¼ 1=a0

66; b32 ¼ �a1
66=a0

66; L0 ¼ a0
11a0

22 � a0
12a0

21:

ðA3Þ
in which expressions ak
ij, k ¼ 0;1;2; i; j ¼ 1;2;6 are defined as follows:
ak
11 ¼

E01hkþ1

1� m12m21

Z 1=2

�1=2

�fk 1þ lu1ð�fÞ
� �

d�f; ak
22 ¼

E02hkþ1

1� m12m21

Z 1=2

�1=2

�fk 1þ lu1ð�fÞ
� �

d�f;

ak
12 ¼ m21ak

11 ¼ ak
21 ¼ m12ak

22; ak
66 ¼ 2G0hkþ1

Z 1=2

�1=2

�fk 1þ lu1ð�fÞ
� �

d�f; k ¼ 0;1;2;

q1 ¼ q0

Z 1=2

�1=2
1þ lu2ð�fÞ
� �

d�f:

ðA4Þ
Appendix B

In Ref. [37] the natural frequency �xTC for the elliptical truncated conical shell is defined as
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�xTC ¼ X2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
D0

q0hR4
2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2

1 þ ðkþ 1Þ2

4m2
1 þ ðk� 1Þ2

vuut
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�2ðk�1Þx0

1� e�2ðkþ1Þx0

m2
1 þ ðkþ 1Þ2

m2
1 þ ðk� 1Þ2

kþ 1
k� 1

vuut ; ðB1Þ
where the following definitions apply:
X2
2 ¼

16
3

m4
1 þ

8
3

m2
1n2

1
e2

e3
þ n4

1
e1

e3
þ 2

3
k2 � 2k� 2
� 	 e2

e3
� 1

sin2 c0

e01
e3

" #
n2

1 þ
8
3

m2
1ð2k2 � 4kþ 3Þ þ k2ðk� 2Þ2

þ 8
3
ðk� 1Þ2 þ

g2
2

1�e2

3
e4
e3

� �2
4m2

1 þ k2� 	2

16
3 m4

1 þ 8
3

e2
e3

m2
1n2

1 þ n4
1

e1
e3
þ e7n2

1 þ 8
3 m2

1ð2k2 þ 1Þ þ k4 þ 2
3 k2 þ 1

; ðB2Þ

e7 ¼
2e2 k2 � 2k� 2
� 	

3e3
� 1

sin2 c0

e1

e3
; g2

2 ¼ g2
1

4m2
1 þ ðk� 1Þ2

4m2
1 þ k2 ;

g2
1 ¼ g2 1� e�2kx0

1� e�2ðk�1Þx0

m2
1 þ ðk� 1Þ2

m2
1 þ k2

k� 1
k

; g2 ¼ E0hS2
2

D0 tan2 c
; D0 ¼

E0h3

12ð1� m2
0Þ

;

The elliptical truncated conical shell is transformed into the circular truncated conical shell when e ¼ 0. If e ¼ 0 is substituted
in Eq. (B1) corresponding formula for the natural frequency of the circular truncated conical shell are obtained. In this case
the following definitions apply:
e01 ¼ 0; e1 ¼ e2 ¼ e3 ¼ e4 ¼ e5 ¼ e6 ¼ 1; m1 ¼ b1; n1 ¼ b2; c0 ¼ c: ðB3Þ
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