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Abstract — In this paper, we find the number of s1des of circuits in suborbital graph for the normalizer of
I',(M) in PSL(2,R), where m will be of the form 2 p pis a prime and P=1 (mod 4) In addition, we
give a number theoretical result which says that the prime divisors p of 2u> £ 2u+1 are of the form

p=1(mod4).

K eywor ds — Normalizer, imprimitive action, suborbital graph, circuits
1. INTRODUCTION

: . az+b
Let PSL(2,R) denote the group of all linear fractional T:Z—>——, where @, b, ¢, d are real and
CZ+
ad —bc =1. The modular group I is the subgroup of PSL(2,R) such that a, b, ¢ and d are integers. For
any natural number m, I' /(M) is the subgroup of I with m|c. The elements of PSL(2,R) are represented

as

b
i(a j,a,b,c,dER and ad —bc =1.
c d

We will omit the symbol * and identify each matrix with its negative.
I', (M) will denote the normalizer of I'j(mM) in PSL(2,R). The elements of I';(M) are of the form

by [1]
ae b/h
cn/h  de
where all letters are integers, €| %2 and h is the largest divisor of 24 for which h’|m with the
S
understanding that the determinant is €> 0, and that r || S means that r |[S and | I,— |=1.

]
Here, m will be 2p°, where p is a prime such that p=1 (mod 4). All circuits in suborbital graph

for the normalizer of T';(mM) in PSL(2,R) where mis a square-free positive integer was studied in [2, 3].
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Our main idea is that we investigate a case in which mis not square-free. Similar studies were done for the

modular group and some Hecke groups [4-6]. In this case, h will be 1 and eis 1, 2, p2 or2 p2 .

2. THE ACTION OF T,(2p?) ON @

~ X
Any element of Q can be givebn as a reduced fraction— , with x,y € Z and (X, y) =1. o is represented as
1 -1 . a X .
— =—_ The action of on — is

0 O c d y

a b) x ax+by
—_ > .
c d/y cx+dy
. . X =X . . . . .
Therefore, the action of a matrix on — and on — is identical. If the determinant of the matrix
a b y -y
( CJ is 1 and (X, y) =1, then (ax+by,cx+dy) =1. A necessary and sufficient condition for I";(m)
C

to act transitively on Q is given in [7].

0’3

Lemma 2.1. Let m be any integer and m= 2.3, “, the prime power decomposition of m. Then
[',(m) is transitive on Q if and only if &, <7, a, S3 and a <l fori=3,.,r.

Corollary 2.2. The action of the normalizer I',(2 p°) is not transitive on Q.
Since the action is not transitive on Q@ we now find a maximal subset of @ on which the normalizer
] . 5 . 1) (1 1 2 p-1
Lemma 2.3. The orbits of the action of I';(2p~) on Q are NHPYE yeues ;
p) Y
1 3 p-2) (p+2) (p+4 2p-1 1 1
, yees , , yens .E , |, where

2p) \2p 2p 2p 2p 2p p 2p

x 2 2p?
(y) { € Q| 2ps, D) =y,x= k L mod (y, )}

N P .
Proof: It is well known that if —e@ is given, then there exists some T eI’ ((2p’)such that

S
T(ka(li with §|2p>. And furthermore, for d|2p’, (81}:[82} if and only if

s) s 2’ d d
a =a,mod| d, o} So the result follows.

acts transitively. First we start with

L emma 2.4. The orbits of the action of I",(2 p*) are as follows. Let | € {1, 2,...,p- 1} . Then

pi AV RTArES
M)
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o HRHEEIREY

Proof: We prove only (a). The rest are similar.

ae b
Let T = yo'e d ] be an arbitrary element in T',(2p*). Then e must be 1,2, p*or2p’.
p’c de

Case 1. Lete=1. Then T € ', (2p*) . Therefore T fixes

p
2a b\ 2al +bp
Case 2. Let e=2. Then = .
2p’c 2d )\ p) \2p’c+2dp

Since 2a bafl = 2al +bp and 2ad- p’bc=1, we conclude that (2al +bp,2 p’cl +2dp)=1.
p’c d/\p p°cl +dp

Therefore,

2p(pcl+d)

2al +bp
2p

J:[ X j,where x = (2al +bp)(pcl +d)mod p.

! l
This shows that ( j and ( must be in a single orbit of ',(2p*).
Y Y

2

Case 3.Let €= p°. Then T = ap2 sz, adp* -2 p’bc= p’.
2pc dp

- Iy ( ap’l+bp | ( apl+b
p) \2p’c+dp’ 2pcl +dp’
and as in Case 2, (apl +b,2pcl + dp®) =1. Therefore,

|
T [ p)=[ )F()) , where X = (apl +b)(2cl + dp)mod por x=2bcl (mod p) )

. | p-I o
Since 2bc= —l(mod p), x=p-I (mod p). Therefore and must be in a single
orbit of I, (2p°). P P

I 2p-I
Case 4. Let @=2p*. Then we easily find that T sends [ J to [ P J . So we consequently have
the orbit ) U ) .
p P 2p 2p

_ 1 1 1 1

Corollary 2.6. The action of I',(2p*) on Q(2 p°) = (J v, (2] u{ X ] v, {2 zj is transitive.
P p

L emma 2.7. The stabilizer of a point in Q@ (2 p*) is an infinite cyclic group.

Proof: Since the action is transitive, stabilizers of any two points are conjugate. Therefore, we can only
look at the stabilizer of oo in ', (2 p°).

"ol aelo)ael{o)

Autumn 2010 Iranian Journal of Science & Technology, Trans. A, Volume 34, Number A4
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1 b
then C=0. In this case €=1 and since ad =1, T ={ j . This shows that stabilizer (FI(Z pz)) of

sy 1))

We know from [7] (see also [8]) that the orders of the elliptic elements of I" (2 p>) may be 2, 3, 4, or

6. Therefore, we give the following:

Lemma 2.8. Let p be a prime and pP= l(mod 4). Then the normalizer T",(2p*)contains an elliptic
2a b

2p’c 2(1-a)

Let (G, X) be transitive permutation group, and suppose that R is an equivalence relation on X. Ris

element E of order 4 and that E is of the form ( ] ,det E=2.
said to be G-invariant if (X, y) € R implies (g (X), g ( y)) € R for all g € G.The equivalence classes of

a G-invariant relation are called blocks. We give the following from [9].

Lemma 2.9. Suppose that (G, X) is a transitive permutation group, and H is a subgroup of G such that,
for someXxe X , G, < H.Then R= {(g (X), gh(x)) :geG,he H } is an equivalence relation.

Lemma 2.10. Let (G, X) be a transitive permutation group, and = the G-invariant equivalence relation
defined in Lemma 2.9; then @, (05) =0, (a) if and only if g, € g,H. Furthermore, the number of blocks
is [G: H.

_ NP , [ 2a b »
To apply the ideas, we take (F1(2 p°),Q(2p )), r,2p, apc 2(1-a) and the stabilizer
(Fl(Z pz)) of o in T',(2p°) instead of (G, X), Hand G, . In this case the number of blocks is 2 and

(g 1)

3. SUBORBITAL GRAPHSOF T,(2p?) ON Q@ (2p?)

these blocks are

Let (G, X) be a transitive permutation group. Then G acts on X x X by
9(a.8)=(9(),9(B)). (9€G; a.feX ).

The orbits of this action are called suborbitals of the normalizer G. The orbit containing (a, o) ) is
denoted by O(a,ﬁ). From O(a,ﬂ ) we can form a suborbital graph G(a,ﬁ): its vertices are the
elements of X, and there is a directed edge from ¥ to O if (]/, o ) € O(a, p ) A directed edge from y to
O is denoted by y —»> 6. If (7, 5) eO(a,,B), then we will say that there exists an edge y — & in
G(a, ).

If a =/, the corresponding suborbital graph G(a,a) , called the trivial suborbital graph, is self-
paired: it consists of a loop based at each vertex X € X . We will mainly be interested in the remaining
non-trivial suborbital graphs. These ideas were first introduced by Sims [10].

We now investigate the suborbital graphs for the action of I',(2 p*) on Q(2 pz) . Since the action of
[,(2p*) on Q(2p°) is transitive, T',(2p*) permutes the blocks transitively; so the subgraphs are all
isomorphic. Hence, it is sufficient to study with only one block. On the other hand, it is clear that each
Iranian Journal of Science & Technology, Trans. A, Volume 34, Number A4 Autumn 2010
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non-trivial suborbital graph contains a pair (oo, u/ pz) for some u/ p2 eQ((2 pz) . Therefore, we work on
the following case: We denote by F (oo, u/ pz) the subgraph of G(oo, u/ pz) such that its vertices are in
the block [0].

Theorem 3.1. Let I’/S and X/y be in the block [00]. Then there is an edge I’/S—) x/y in F (oo,u/ pz)
if and only if

(i) If p*|sbut 2p’ s, then x==+2ur (mod p*), y =+2us (mod2p’), ry—sx==p’

(ii) If 2P |'S, then x=ur (mod p’), y=+us(mod p*), ry—sx=+p’.

Proof: Assume first that I’/S—) x/y is an edge in F (oo, u/ p2) and that p2 |S but 2 p2 {'S. Therefore,
there exists some T in the normalizer I',(2p°) such that T sends the pair (oo,u/ pz) to the pair
r/s,x/y), that is T(w)=r/s and T(u/pz)zx/y. Since 2p° 1S, T must be of the form
2a b 2a_((=D'r

. T(0) = = _
2p’c 2d () 2p’c ((-1)'s

2a b )\(u : ~1)!
T(U/p2)= R , |= 2au+bp = ( 1)_X forj=0,1.
2p’c 2d )\ p 2p’cu+2dp’ ) \(=D'y
) ) 2a b . 2 2 2 2
Since the matrix o'c d has determinant 1 and (U, p°) =1, then (2au+bp-, p°’cu+dp~)=1.
And therefore, (2au+bp’,2p’cu+2dp*)=1. So

gives that r = (=1)'a and s=(-1)' p°c, fori=0,1.

x=(=1)' (2au+bp*), y=(-1)' (2 p*cu+2dp?).

That is, Xx=(-1)""12au (mod p’ ), y=(-1)""2su (mod2 p’ ) . Finally, since

(2a bj(l UJ_ (D'2r (DX) o
2pc 2dJl0 p*) ((=1y2s (-1)y) e

we get 'y —SX = = p°. This proves (i).
Secondly, let I/S— X/Y be an edge in F (oo, u/ p’) and 2 pz_ | S. In this case T must be of the form
a b . a (=D'r )
5 , det T=1. Therefore, since T(x)= , |= | we get a=rand sS=2p°c, by
2pc d 2pc) ((-D's

taking i to be 0. Likewise, since

(a b)(u]: au+bp® ) ((-1)'x
2p%c d)\p?) 2p’cu+dp’) ((=D)'y)’

we have x=ur (mod p’) and y= us(mod pz)and that ry—sx=p’. In the case where i = 0 and j = 1, the
minus sign holds.

In the opposite direction we do calculations only for (i) and the plus sign. The other are likewise
done. So suppose X=2ur (mod pz), y =2us (m0d2 pz), ry—-sx=p°>, p°|s and 2p°fts.

Therefore there exists b, d in Z such that X=2ur + p’b and y=2us+2p’d. Since ry—sx=p’, we

Autumn 2010 Iranian Journal of Science & Technology, Trans. A, Volume 34, Number A4
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2
get 2rd—bs=1, or 4rd—bs=2. Hence the element T := {; 2d] is not only in the normalizer
S
(2 p*), but also H. It is obvious that T(0) = (rsj and T ( [L)sz = [;)

Theorem 3.2. If we present edges of F (oo, u/ pz) as hyperbolic geodesics in the upper half-plane H , no
edges of the subgraph F (oo, u/ pz) of T',(2p?) cross in H.

Proof: Without loss of generality, since the action on Q(2p?)is transitive, suppose that

0 — u/ p’, Xl/y1 p’ — Xz/y2 p° and Xl/y1 p’ <u/ p’ < Xz/y2 P>, where all letters are positive

integers. Since X1/Y1 p’ — Xz/y2 p’ and )(1/y1 p’ <u/ p’ < Xz/y2 p’, then XY,-XY, =-1 and
X /Y, <U< X, /Y, , respectively. Therefore

(/%) =(%/¥,) <u—(x/y,)<0.

Then ()(1y2 —xzyl)/ylyz <(uy2 —><2)/y2 <0.So —1/y, <uy, —X, <0, a contradiction [11].

4. THE NUMBER OF SIDESOF CIRCUITS

Let (G, X) be a transitive permutation group and G(a, p ) be a suborbital graph. By a directed circuit in
G(a, ), we mean a sequence V, —>V, —>...—>V,, —V,, where M23; an anti-directed circuit will
denote a configuration like the above with at least one arrow (not all) reversed. If m=2,3 or 4 then the
circuit, directed or not, is called a self-paired, a triangle or a rectangle, respectively.

Theorem 4.1. F (o0,u/ p* ) has a self-paired edge if and only if 2u” = ~1 (mod p’).

Proof: Without loss of generality, from transitivity, we can suppose that the self-paired edge be

l N iz - % . Applying Theorem 3.1, the proof then follows.
p

0

Theorem 4.2. F (oo, u/ pz) contains no triangles.

Proof: Suppose contrary F (oo, u/ pz) contains a triangle. From transitivity and Theorem 3.1 the form of

X 1 X 1 : .
s — — . But, to be > 6 gives a contradiction to Theorem 3.1(ii).
p

such a triangle —— — —

Theorem 4.3. The normalizer I',(2p*) does not contain period 3.

Proof: Suppose the converse that I",(2 P*) does have a period 3. Then it has an elliptic element T of

order 3. T must be of the form ,det T=1land a+d==1. Take a+d=1. Then

pc
a+d=1 (mod2p2), and since a+d =1, then a(l—a)=l (mod2p2), or
a’-a+1=0 (m0d2 p’ ) , which is a contradiction.

Theorem 4.4. The subgraph F(oo,u/ pz) contains a rectangle if and only if
2u* +2u+1=0 (mod p).

Iranian Journal of Science & Technology, Trans. A, Volume 34, Number A4 Autumn 2010


www.SID.ir

Suborbital graphs for a special subgroup of the normalizer of r‘o(m) 311

k m s X k
Proof: Assume first that F (oo,u/ pz) has a rectangle |_0 - —L— T -2 l—O. It can be easily
n y
0 0 0 0
shown that H permutes the vertices and edges of F (oo, u/ p2) transitively. Therefore we suppose that the

1 X k1
above rectangle is transformed under H to the rectangle — > ——> —— I_ - 6 .
p y
Furthermore, without loss of generality, suppose ﬂz <2 E From the first edge and Theorem 3.1

y
we get M=U (mod pz) . The second edge gives X=-2um (mod pz) and 2ym— X = —1; and that from

the third edge we have k = —ux (mod p’ ) and X—2ky = —1. If we combine these we obtain

2u” +2ym-+1=0 (mod p’ ) or 2u’ +2uy+1=0 (mod p’).

Since Xx=2ym+1=2ky—1, then Yy(m-Kk)=-1. This gives that y=1. Therefore

20 +2u+1=0 (mod p).

m_ x Kk
If —>—>— holds then we conclude that 207 —2u+1=0 ( mod pz), and furthermore, if

2 p _y 2
2u"-2u+1=0 ( mod p ) then we get the rectangle

1 u 2u-1 u-1 1
- - —.
0 p 2p° p’ 0

Secondly suppose that 2u’+2uU+1=0 mod p°. Then, using Theorem 3.1, we see that
1 u 2uxl uzxl

- -
0 p2 2 2 p2
As an example, 00 —> 3/25 — 7/50 — 4/25 — o0 is a rectangle in G(oo,3/25) .

1.
— — is arectangle.

Corollary 4.5. For some uin Z, F (oo, u/ pz) contains a rectangle if and only if the group H has a period
4.

Proof: Firstly suppose F (oo,u/ pz) contains a rectangle. Then, Theorem 4.4 shows that
2u° +2u+1
P’ of order 4 in H.

-2p’ 2u+2
Since the index of His 2 in I', (2 p°), the elements of this form must be in H.

20 £2u+1=0 (mod pz). So we have the elliptic element

Conversely, suppose that H has a period for order 4, so H contains an elliptic element of order 4. Let

2a b
2p° —2at2

contains a rectangle.

this element be [ ), det = 2. From this we get p° |(2u® £2u+1). Therefore F (oo,u/ p2)

We predict from the above lemmas that the elliptic elements of I"(2 p*) correspond to the circuit in
F (oo, u/ pz) . To support this idea we have

Theorem 4.6. The set H \T',(2p”) has a period for order 2 if and only if there exists some u € Z,
(u, p) =1 such that F (oo, u/ p2) has a self-paired edge.

Autumn 2010 Iranian Journal of Science & Technology, Trans. A, Volume 34, Number A4
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Proof: First suppose that the set has such an elliptic element T. Then T must be of the form { 2a b ],

2p° -2a
det T = 2. Therefore we have 2a>*+1=0 (mod pz) . So, Theorem 3.1 shows that %_> % _>% is a self-
p

paired edge in F (oo, u/ pz) .

Secondly, let F (oo, u/ pz) have a self-paired edge. Without loss of generality, from transitivity, we

. 1 u 1
can suppose that the self-paired edge be 6—)—2—>6 So we have, by Theorem 3.1,
p

—2U% +1)

3 . Therefore

2u° =-1 (mod pz) . This showes that there exists some b € Z such that b=
2a  -b
) is an elliptic element of order 2 in the set H \ T',(2p*).
2p° —2a
Notice that H \ T',(2-5%) has no period for order 2, and therefore F (OO, u/ 25) does not have a self-

paired edge.

Finally, as a finishing point, we give a number theoretical result as follows:

Theorem 4.7. The prime divisors p of 2u” +2u+1, for any u € Z, are of the form p=1 (rnod4).

Proof: Let u be any integer and p a prime divisor of 2u” +2u+1. Then, without any difficulty, it can be

5 2u* +2u+1
easily seen that the normalizer I',(2p), like T',(2p?), has the elliptic element | ~ u p of
-2p 2u+2

order 4. From Lemma 2.8 we get that p=1 (mod 4) .
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