See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/289605215

Suborbital graphs for a special subgroup of the normalizer of Го (m)

Article • January 2010

CITATIONS	READS
12	98

3 authors:

Sara Kader
Ain Shams University
11 PUBLICATIONS 70 CItATIONS
SEE PROFILE

Bahadır Özgür Güler
Karadeniz Technical University
32 PUBLICATIONS 149 CITATIONS
SEE PROFILE

Archive of SID

Iranian Journal of Science \& Technology, Transaction A, Vol. 34, No. A4
Printed in the Islamic Republic of Iran, 2010
© Shiraz University

SUBORBITAL GRAPHS FOR A SPECIAL SUBGROUP OF THE NORMALIZER OF $\Gamma_{0}(\boldsymbol{m})^{*}$

S. KADER ${ }^{1}$, B. O. GULER ${ }^{2 * *}$ AND A. H. DEGER ${ }^{3}$
${ }^{1}$ Department of Mathematics, Nigde University, Nigde, Turkey Email: skader@nigde.edu.tr
${ }^{2}$ Department of Mathematics, Rize University, Rize, Turkey
Email: bahadir.guler@rize.edu.tr
${ }^{3}$ Department of Mathematics, Karadeniz Technical University, Trabzon, Turkey Email: ahikmetd@ktu.edu.tr

Abstract - In this paper, we find the number of sides of circuits in suborbital graph for the normalizer of $\Gamma_{0}(m)$ in $\operatorname{PSL}(2, \mathbb{R})$, where m will be of the form $2 p^{2}, p$ is a prime and $p \equiv 1(\bmod 4)$. In addition, we give a number theoretical result which says that the prime divisors p of $2 u^{2} \pm 2 u+1$ are of the form $p \equiv 1(\bmod 4)$.

Keywords - Normalizer, imprimitive action, suborbital graph, circuits

1. INTRODUCTION

Let $\operatorname{PSL}(2, \mathbb{R})$ denote the group of all linear fractional $T: z \rightarrow \frac{a z+b}{c Z+d}$, where a, b, c, d are real and $a d-b c=1$. The modular group Γ is the subgroup of $\operatorname{PSL}(2, \mathbb{R})$ such that a, b, c and d are integers. For any natural number $m, \Gamma_{0}(m)$ is the subgroup of Γ with $m \mid c$. The elements of $\operatorname{PSL}(2, \mathbb{R})$ are represented as

$$
\pm\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right), a, b, c, d \in \mathbb{R} \text { and } a d-b c=1
$$

We will omit the symbol \pm and identify each matrix with its negative.
$\Gamma_{1}(m)$ will denote the normalizer of $\Gamma_{0}(m)$ in $\operatorname{PSL}(2, \mathbb{R})$. The elements of $\Gamma_{1}(m)$ are of the form by [1]

$$
\left(\begin{array}{cc}
a e & b / h \\
c m / h & d e
\end{array}\right)
$$

where all letters are integers, $e \| m / h^{2}$ and h is the largest divisor of 24 for which $h^{2} \mid m$ with the understanding that the determinant is $e>0$, and that $r \| s$ means that $r \mid s$ and $\left(r, \frac{s}{r}\right)=1$.

Here, m will be $2 p^{2}$, where p is a prime such that $p \equiv 1(\bmod 4)$. All circuits in suborbital graph for the normalizer of $\Gamma_{0}(m)$ in $\operatorname{PSL}(2, \mathbb{R})$ where m is a square-free positive integer was studied in $[2,3]$.

[^0]Our main idea is that we investigate a case in which m is not square-free. Similar studies were done for the modular group and some Hecke groups [4-6]. In this case, h will be 1 and e is $1,2, p^{2}$ or $2 p^{2}$.

2. THE ACTION OF $\Gamma_{1}\left(2 p^{2}\right)$ ON $\widehat{\mathbb{Q}}$

Any element of $\widehat{\mathbb{Q}}$ can be given as a reduced fraction $\frac{x}{y}$, with $x, y \in \mathbb{Z}$ and $(x, y)=1 . \infty$ is represented as
$1-1$ $\frac{1}{0}=\frac{-1}{0}$. The action of $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ on $\frac{x}{y}$ is

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right): \frac{x}{y} \rightarrow \frac{a x+b y}{c x+d y}
$$

Therefore, the action of a matrix on $\frac{x}{y}$ and on $\frac{-x}{-y}$ is identical. If the determinant of the matrix
b $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is 1 and $(x, y)=1$, then $(a x+b y, c x+d y)=1$. A necessary and sufficient condition for $\Gamma_{1}(m)$ to act transitively on $\widehat{\mathbb{Q}}$ is given in [7].

Lemma 2.1. Let m be any integer and $m=2^{\alpha_{1}} \cdot 3^{\alpha_{2}} \cdot p_{3}^{\alpha_{3}} \ldots p_{r}^{\alpha_{r}}$, the prime power decomposition of m. Then $\Gamma_{1}(m)$ is transitive on $\widehat{\mathbb{Q}}$ if and only if $\alpha_{1} \leq 7, \alpha_{2} \leq 3$ and $\alpha_{i} \leq 1$ for $i=3, \ldots, r$.

Corollary 2.2. The action of the normalizer $\Gamma_{1}\left(2 p^{2}\right)$ is not transitive on $\widehat{\mathbb{Q}}$.
Since the action is not transitive on $\widehat{\mathbb{Q}}$ we now find a maximal subset of $\widehat{\mathbb{Q}}$ on which the normalizer acts transitively. First we start with

Lemma 2.3. The orbits of the action of $\Gamma_{0}\left(2 p^{2}\right)$ on $\widehat{\mathbb{Q}}$ are $\binom{1}{1} ;\binom{1}{2} ;\binom{1}{p},\binom{2}{p}, \ldots,\binom{p-1}{p}$; $\binom{1}{2 p},\binom{3}{2 p}, \ldots,\binom{p-2}{2 p},\binom{p+2}{2 p},\binom{p+4}{2 p}, \ldots,\binom{2 p-1}{2 p} ;\binom{1}{p^{2}} ;\binom{1}{2 p^{2}}$, where $\binom{x}{y}:=\left\{\left.\frac{k}{l} \in \widehat{\mathbb{Q}} \right\rvert\,\left(2 p^{2}, l\right)=y, x \equiv k \frac{l}{y} \bmod \left(y, \frac{2 p^{2}}{y}\right)\right\}$.

Proof: It is well known that if $\frac{k}{s} \in \widehat{\mathbb{Q}}$ is given, then there exists some $T \in \Gamma_{0}\left(2 p^{2}\right)$ such that
 $a_{1} \equiv a_{2} \bmod \left(d, \frac{2 p^{2}}{d}\right)$. So the result follows.

Lemma 2.4. The orbits of the action of $\Gamma_{1}\left(2 p^{2}\right)$ are as follows. Let $l \in\{1,2, \ldots, p-1\}$. Then
(a) If l is odd then

$$
\binom{l}{p} \cup\binom{p-l}{p} \cup\binom{l}{2 p} \cup\binom{2 p-l}{2 p}
$$

(b) If l is even then

$$
\binom{l}{p} \cup\binom{p-l}{p} \cup\binom{p+l}{2 p} \cup\binom{2 p-l+1}{2 p}
$$

(c)

$$
\binom{1}{1} \cup\binom{1}{2} \cup\binom{1}{p^{2}} \cup\binom{1}{2 p^{2}}
$$

Proof: We prove only (a). The rest are similar.
Let $T=\left(\begin{array}{cc}a e & b \\ 2 p^{2} c & d e\end{array}\right)$ be an arbitrary element in $\Gamma_{1}\left(2 p^{2}\right)$. Then e must be $1,2, p^{2}$ or $2 p^{2}$.
Case 1. Let $e=1$. Then $T \in \Gamma_{0}\left(2 p^{2}\right)$. Therefore T fixes $\binom{l}{p}$.
Case 2. Let $e=2$. Then $\left(\begin{array}{cc}2 a & b \\ 2 p^{2} c & 2 d\end{array}\right)\binom{l}{p}=\binom{2 a l+b p}{2 p^{2} c l+2 d p}$.
Since $\left(\begin{array}{cc}2 a & b \\ p^{2} c & d\end{array}\right)\binom{l}{p}=\binom{2 a l+b p}{p^{2} c l+d p}$ and $2 a d-p^{2} b c=1$, we conclude that $\left(2 a l+b p, 2 p^{2} c l+2 d p\right)=1$. Therefore,

$$
\binom{2 a l+b p}{2 p(p c l+d)}=\binom{x}{2 p}, \text { where } x \equiv(2 a l+b p)(p c l+d) \bmod p .
$$

This shows that $\binom{\ell}{p}$ and $\binom{\ell}{2 p}$ must be in a single orbit of $\Gamma_{1}\left(2 p^{2}\right)$.
Case 3. Let $e=p^{2}$. Then $T=\left(\begin{array}{cc}a p^{2} & b \\ 2 p^{2} c & d p^{2}\end{array}\right), a d p^{4}-2 p^{2} b c=p^{2}$.

$$
T\binom{l}{p}=\binom{a p^{2} l+b p}{2 p^{2} c l+d p^{3}}=\binom{a p l+b}{2 p c l+d p^{2}}
$$

and as in Case 2, $\left(a p l+b, 2 p c l+d p^{2}\right)=1$. Therefore,

$$
T\binom{l}{p}=\binom{x}{p}, \text { where } x \equiv(a p l+b)(2 c l+d p) \bmod p \text { or } x \equiv 2 b c l(\bmod p)
$$

Since $2 b c \equiv-1(\bmod p), \quad x \equiv p-l(\bmod p)$. Therefore $\binom{l}{p}$ and $\binom{p-l}{p}$ must be in a single orbit of $\Gamma_{1}\left(2 p^{2}\right)$.

Case 4. Let $e=2 p^{2}$. Then we easily find that T sends $\binom{l}{p}$ to $\binom{2 p-l}{2 p}$. So we consequently have the orbit $\binom{l}{p} \cup\binom{p-l}{p} \cup\binom{l}{2 p} \cup\binom{2 p-l}{2 p}$.
Corollary 2.6. The action of $\Gamma_{1}\left(2 p^{2}\right)$ on $\widehat{\mathbb{Q}}\left(2 p^{2}\right)=\binom{1}{1} \cup\binom{1}{2} \cup\binom{1}{p^{2}} \cup\binom{1}{2 p^{2}}$ is transitive.
Lemma 2.7. The stabilizer of a point in $\widehat{\mathbb{Q}}\left(2 p^{2}\right)$ is an infinite cyclic group.
Proof: Since the action is transitive, stabilizers of any two points are conjugate. Therefore, we can only look at the stabilizer of ∞ in $\Gamma_{1}\left(2 p^{2}\right)$.

$$
T\binom{1}{0}=\left(\begin{array}{cc}
a e & b \\
2 p^{2} c & d e
\end{array}\right)\binom{1}{0}=\binom{a e}{2 p^{2} c}=\binom{1}{0}
$$

then $c=0$. In this case $e=1$ and since $a d=1, T=\left(\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right)$. This shows that stabilizer $\left(\Gamma_{1}\left(2 p^{2}\right)\right)_{\infty}$ of ∞ is $\left\langle\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)\right\rangle$.

We know from [7] (see also [8]) that the orders of the elliptic elements of $\Gamma_{1}\left(2 p^{2}\right)$ may be 2, 3, 4, or
6. Therefore, we give the following:

Lemma 2.8. Let p be a prime and $p \equiv 1(\bmod 4)$. Then the normalizer $\Gamma_{1}\left(2 p^{2}\right)$ contains an elliptic element E of order 4 and that E is of the form $\left(\begin{array}{cc}2 a & b \\ 2 p^{2} c & 2(1-a)\end{array}\right)$, $\operatorname{det} E=2$.

Let (G, X) be transitive permutation group, and suppose that R is an equivalence relation on X. R is said to be G-invariant if $(x, y) \in R$ implies $(g(x), g(y)) \in R$ for all $g \in G$. The equivalence classes of a G-invariant relation are called blocks. We give the following from [9].

Lemma 2.9. Suppose that (G, X) is a transitive permutation group, and H is a subgroup of G such that, for some $x \in X, G_{x} \subset H$. Then $R=\{(g(x), g h(x)): g \in G, h \in H\}$ is an equivalence relation.

Lemma 2.10. Let (G, X) be a transitive permutation group, and \approx the G-invariant equivalence relation defined in Lemma 2.9; then $g_{1}(\alpha)=g_{2}(\alpha)$ if and only if $g_{1} \in g_{2} H$. Furthermore, the number of blocks is $|G: H|$.

To apply the ideas, we take $\left(\Gamma_{1}\left(2 p^{2}\right), \widehat{\mathbb{Q}}\left(2 p^{2}\right)\right),\left\langle\Gamma_{0}\left(2 p^{2}\right),\left(\begin{array}{cc}2 a & b \\ 2 p^{2} c & 2(1-a)\end{array}\right)\right\rangle$ and the stabilizer $\left(\Gamma_{1}\left(2 p^{2}\right)\right)_{\infty}$ of ∞ in $\Gamma_{1}\left(2 p^{2}\right)$ instead of $(G, X), H$ and G_{x}. In this case the number of blocks is 2 and these blocks are

$$
[\infty]:=\binom{1}{p^{2}} \cup\binom{1}{2 p^{2}} \text { and }[0]:=\binom{1}{1} \cup\binom{1}{2}
$$

3. SUBORBITAL GRAPHS OF $\Gamma_{1}\left(2 p^{2}\right)$ ON $\widehat{\mathbb{Q}}\left(2 p^{2}\right)$

Let (G, X) be a transitive permutation group. Then G acts on $X \times X$ by

$$
g(\alpha, \beta)=(g(\alpha), g(\beta)), \quad(g \in G ; \alpha, \beta \in X) .
$$

The orbits of this action are called suborbitals of the normalizer G. The orbit containing (α, β) is denoted by $O(\alpha, \beta)$. From $O(\alpha, \beta)$ we can form a suborbital graph $G(\alpha, \beta)$: its vertices are the elements of X, and there is a directed edge from γ to δ if $(\gamma, \delta) \in O(\alpha, \beta)$. A directed edge from γ to δ is denoted by $\gamma \rightarrow \delta$. If $(\gamma, \delta) \in O(\alpha, \beta)$, then we will say that there exists an edge $\gamma \rightarrow \delta$ in $G(\alpha, \beta)$.

If $\alpha=\beta$, the corresponding suborbital graph $G(\alpha, \alpha)$, called the trivial suborbital graph, is selfpaired: it consists of a loop based at each vertex $x \in X$. We will mainly be interested in the remaining non-trivial suborbital graphs. These ideas were first introduced by Sims [10].

We now investigate the suborbital graphs for the action of $\Gamma_{1}\left(2 p^{2}\right)$ on $\widehat{\mathbb{Q}}\left(2 p^{2}\right)$. Since the action of $\Gamma_{1}\left(2 p^{2}\right)$ on $\widehat{\mathbb{Q}}\left(2 p^{2}\right)$ is transitive, $\Gamma_{1}\left(2 p^{2}\right)$ permutes the blocks transitively; so the subgraphs are all isomorphic. Hence, it is sufficient to study with only one block. On the other hand, it is clear that each
non-trivial suborbital graph contains a pair $\left(\infty, u / p^{2}\right)$ for some $u / p^{2} \in \widehat{\mathbb{Q}}\left(2 p^{2}\right)$. Therefore, we work on the following case: We denote by $F\left(\infty, u / p^{2}\right)$ the subgraph of $G\left(\infty, u / p^{2}\right)$ such that its vertices are in the block [∞].

Theorem 3.1. Let r / s and x / y be in the block [∞]. Then there is an edge $r / s \rightarrow x / y$ in $F\left(\infty, u / p^{2}\right)$ if and only if
(i) If $p^{2} \mid s$ but $2 p^{2} \nmid s$, then $x \equiv \pm 2 u r\left(\bmod p^{2}\right), y \equiv \pm 2 u s\left(\bmod 2 p^{2}\right), r y-s x= \pm p^{2}$
(ii) If $2 p^{2} \mid s$, then $x \equiv \pm u r\left(\bmod p^{2}\right), y \equiv \pm u s\left(\bmod p^{2}\right), r y-s x= \pm p^{2}$.

Proof: Assume first that $r / s \rightarrow x / y$ is an edge in $F\left(\infty, u / p^{2}\right)$ and that $p^{2} \mid s$ but $2 p^{2} \nmid s$. Therefore, there exists some T in the normalizer $\Gamma_{1}\left(2 p^{2}\right)$ such that T sends the pair $\left(\infty, u / p^{2}\right)$ to the pair $(r / s, x / y)$, that is $T(\infty)=r / s$ and $T\left(u / p^{2}\right)=x / y$. Since $2 p^{2} \nmid s, T$ must be of the form $\left(\begin{array}{cc}2 a & b \\ 2 p^{2} c & 2 d\end{array}\right) . T(\infty)=\frac{2 a}{2 p^{2} c}=\binom{(-1)^{i} r}{(-1)^{i} s}$ gives that $r=(-1)^{i} a$ and $s=(-1)^{i} p^{2} c$, for $i=0,1$.

$$
T\left(u / p^{2}\right)=\left(\begin{array}{cc}
2 a & b \\
2 p^{2} c & 2 d
\end{array}\right)\binom{u}{p^{2}}=\binom{2 a u+b p^{2}}{2 p^{2} c u+2 d p^{2}}=\binom{(-1)^{j} x}{(-1)^{j} y} \text { for } j=0,1
$$

Since the matrix $\left(\begin{array}{cc}2 a & b \\ p^{2} c & d\end{array}\right)$ has determinant 1 and $\left(u, p^{2}\right)=1$, then $\left(2 a u+b p^{2}, p^{2} c u+d p^{2}\right)=1$. And therefore, $\left(2 a u+b p^{2}, 2 p^{2} c u+2 d p^{2}\right)=1$. So

$$
x=(-1)^{j}\left(2 a u+b p^{2}\right), y=(-1)^{j}\left(2 p^{2} c u+2 d p^{2}\right) .
$$

That is, $x \equiv(-1)^{i+j} 2 a u\left(\bmod p^{2}\right), y \equiv(-1)^{i+j} 2 s u\left(\bmod 2 p^{2}\right)$. Finally, since

$$
\left(\begin{array}{cc}
2 a & b \\
2 p^{2} c & 2 d
\end{array}\right)\left(\begin{array}{cc}
1 & u \\
0 & p^{2}
\end{array}\right)=\left(\begin{array}{cc}
(-1)^{i} 2 r & (-1)^{j} x \\
(-1)^{i} 2 s & (-1)^{j} y
\end{array}\right) \text {, for } i, j=0,1,
$$

we get $r y-s x= \pm p^{2}$. This proves (i).
Secondly, let $r / s \rightarrow x / y$ be an edge in $F\left(\infty, u / p^{2}\right)$ and $2 p^{2} \mid s$. In this case T must be of the form $\left(\begin{array}{cc}a & b \\ 2 p^{2} c & d\end{array}\right)$, det $T=1$. Therefore, since $T(\infty)=\binom{a}{2 p^{2} c}=\binom{(-1)^{i} r}{(-1)^{i} s}$ we get $a=r$ and $s=2 p^{2} c$, by taking i to be 0 . Likewise, since

$$
\left(\begin{array}{cc}
a & b \\
2 p^{2} c & d
\end{array}\right)\binom{u}{p^{2}}=\binom{a u+b p^{2}}{2 p^{2} c u+d p^{2}}=\binom{(-1)^{j} x}{(-1)^{j} y}
$$

we have $x \equiv u r\left(\bmod p^{2}\right)$ and $y \equiv u s\left(\bmod p^{2}\right)$ and that $r y-s x=p^{2}$. In the case where $i=0$ and $j=1$, the minus sign holds.

In the opposite direction we do calculations only for (i) and the plus sign. The other are likewise done. So suppose $x \equiv 2 u r\left(\bmod p^{2}\right), y \equiv 2 u s\left(\bmod 2 p^{2}\right), r y-s x=p^{2}, p^{2} \mid s$ and $2 p^{2} \nmid s$. Therefore there exists b, d in \mathbb{Z} such that $x=2 u r+p^{2} b$ and $y=2 u s+2 p^{2} d$. Since $r y-s x=p^{2}$, we
get $2 r d-b s=1$, or $4 r d-b s=2$. Hence the element $T:=\left(\begin{array}{cc}2 r & b \\ 2 s & 2 d\end{array}\right)$ is not only in the normalizer $\Gamma_{1}\left(2 p^{2}\right)$, but also H. It is obvious that $T(\infty)=\binom{r}{s}$ and $T\binom{u}{p^{2}}=\binom{x}{y}$.

Theorem 3.2. If we present edges of $F\left(\infty, u / p^{2}\right)$ as hyperbolic geodesics in the upper half-plane \mathbb{H}, no edges of the subgraph $F\left(\infty, u / p^{2}\right)$ of $\Gamma_{1}\left(2 p^{2}\right)$ cross in \mathbb{H}.

Proof: Without loss of generality, since the action on $\widehat{\mathbb{Q}}\left(2 p^{2}\right)$ is transitive, suppose that $\infty \rightarrow u / p^{2}, x_{1} / y_{1} p^{2} \rightarrow x_{2} / y_{2} p^{2}$ and $x_{1} / y_{1} p^{2}<u / p^{2}<x_{2} / y_{2} p^{2}$, where all letters are positive integers. Since $x_{1} / y_{1} p^{2} \rightarrow x_{2} / y_{2} p^{2}$ and $x_{1} / y_{1} p^{2}<u / p^{2}<x_{2} / y_{2} p^{2}$, then $x_{1} y_{2}-x_{2} y_{1}=-1$ and $x_{1} / y_{1}<u<x_{2} / y_{2}$, respectively. Therefore

$$
\left(x_{1} / y_{1}\right)-\left(x_{2} / y_{2}\right)<u-\left(x_{2} / y_{2}\right)<0 .
$$

Then $\left(x_{1} y_{2}-x_{2} y_{1}\right) / y_{1} y_{2}<\left(u y_{2}-x_{2}\right) / y_{2}<0$. So $-1 / y_{2}<u y_{2}-x_{2}<0$, a contradiction [11].

4. THE NUMBER OF SIDES OF CIRCUITS

Let (G, X) be a transitive permutation group and $G(\alpha, \beta)$ be a suborbital graph. By a directed circuit in $G(\alpha, \beta)$, we mean a sequence $v_{1} \rightarrow v_{2} \rightarrow \ldots \rightarrow v_{m} \rightarrow v_{1}$, where $m \geq 3$; an anti-directed circuit will denote a configuration like the above with at least one arrow (not all) reversed. If $m=2,3$ or 4 then the circuit, directed or not, is called a self-paired, a triangle or a rectangle, respectively.

Theorem 4.1. $F\left(\infty, u / p^{2}\right)$ has a self-paired edge if and only if $2 u^{2} \equiv-1\left(\bmod p^{2}\right)$.

Proof: Without loss of generality, from transitivity, we can suppose that the self-paired edge be $\frac{1}{0} \rightarrow \frac{u}{p^{2}} \rightarrow \frac{1}{0}$. Applying Theorem 3.1, the proof then follows.
Theorem 4.2. $F\left(\infty, u / p^{2}\right)$ contains no triangles.

Proof: Suppose contrary $F\left(\infty, u / p^{2}\right)$ contains a triangle. From transitivity and Theorem 3.1 the form of such a triangle $\frac{1}{0} \rightarrow \frac{u}{p^{2}} \rightarrow \frac{x}{2 p^{2}} \rightarrow \frac{1}{0}$. But, to be $\frac{x}{2 p^{2}} \rightarrow \frac{1}{0}$ gives a contradiction to Theorem 3.1(ii).

Theorem 4.3. The normalizer $\Gamma_{1}\left(2 p^{2}\right)$ does not contain period 3 .

Proof: Suppose the converse that $\Gamma_{1}\left(2 p^{2}\right)$ does have a period 3. Then it has an elliptic element T of order 3. T must be of the form $\left(\begin{array}{cc}a & b \\ 2 p^{2} c & d\end{array}\right)$, det $T=1$ and $a+d= \pm 1$. Take $a+d=1$. Then $a+d=1\left(\bmod 2 p^{2}\right)$, and since $a+d=1$, then $a(1-a)=1\left(\bmod 2 p^{2}\right)$, or $a^{2}-a+1=0\left(\bmod 2 p^{2}\right)$, which is a contradiction.

Theorem 4.4. The subgraph $F\left(\infty, u / p^{2}\right)$ contains a rectangle if and only if $2 u^{2} \pm 2 u+1 \equiv 0\left(\bmod p^{2}\right)$.

Proof: Assume first that $F\left(\infty, u / p^{2}\right)$ has a rectangle $\frac{k_{0}}{l_{0}} \rightarrow \frac{m_{0}}{n_{0}} \rightarrow \frac{s}{t} \rightarrow \frac{x_{0}}{y_{0}} \rightarrow \frac{k_{0}}{l_{0}}$. It can be easily shown that H permutes the vertices and edges of $F\left(\infty, u / p^{2}\right)$ transitively. Therefore we suppose that the above rectangle is transformed under H to the rectangle $\frac{1}{0} \rightarrow \frac{m}{p^{2}} \rightarrow \frac{x}{y} \rightarrow \frac{k}{l} \rightarrow \frac{1}{0}$.

Furthermore, without loss of generality, suppose $\frac{m}{p^{2}}<\frac{x}{y}<\frac{k}{l}$. From the first edge and Theorem 3.1 we get $m \equiv u\left(\bmod p^{2}\right)$. The second edge gives $x \equiv-2 u m\left(\bmod p^{2}\right)$ and $2 y m-x=-1$; and that from the third edge we have $k \equiv-u x\left(\bmod p^{2}\right)$ and $x-2 k y=-1$. If we combine these we obtain

$$
2 u^{2}+2 y m+1 \equiv 0\left(\bmod p^{2}\right) \text { or } 2 u^{2}+2 u y+1 \equiv 0\left(\bmod p^{2}\right)
$$

Since $x=2 y m+1=2 k y-1$, then $y(m-k)=-1$. This gives that $y=1$. Therefore $2 u^{2}+2 u+1 \equiv 0\left(\bmod p^{2}\right)$.

If $\frac{m}{p^{2}}>\frac{x}{y}>\frac{k}{l}$ holds then we conclude that $2 u^{2}-2 u+1 \equiv 0\left(\bmod p^{2}\right)$, and furthermore, if $2 u^{2}-2 u+1 \equiv 0\left(\bmod p^{2}\right)$ then we get the rectangle

$$
\frac{1}{0} \rightarrow \frac{u}{p^{2}} \rightarrow \frac{2 u-1}{2 p^{2}} \rightarrow \frac{u-1}{p^{2}} \rightarrow \frac{1}{0} .
$$

Secondly suppose that $2 u^{2} \pm 2 u+1 \equiv 0 \bmod p^{2}$. Then, using Theorem 3.1, we see that $\frac{1}{0} \rightarrow \frac{u}{p^{2}} \rightarrow \frac{2 u \pm 1}{2 p^{2}} \rightarrow \frac{u \pm 1}{p^{2}} \rightarrow \frac{1}{0}$ is a rectangle.

As an example, $\infty \rightarrow 3 / 25 \rightarrow 7 / 50 \rightarrow 4 / 25 \rightarrow \infty$ is a rectangle in $G(\infty, 3 / 25)$.

Corollary 4.5. For some u in $\mathbb{Z}, F\left(\infty, u / p^{2}\right)$ contains a rectangle if and only if the group H has a period 4.

Proof: Firstly suppose $F\left(\infty, u / p^{2}\right)$ contains a rectangle. Then, Theorem 4.4 shows that $2 u^{2} \pm 2 u+1 \equiv 0\left(\bmod p^{2}\right)$. So we have the elliptic element $\left(\begin{array}{cc}-2 u & \frac{2 u^{2} \pm 2 u+1}{p^{2}} \\ -2 p^{2} & 2 u \pm 2\end{array}\right)$ of order 4 in H. Since the index of H is 2 in $\Gamma_{1}\left(2 p^{2}\right)$, the elements of this form must be in H.

Conversely, suppose that H has a period for order 4 , so H contains an elliptic element of order 4. Let this element be $\left(\begin{array}{cc}2 a & b \\ 2 p^{2} & -2 a \pm 2\end{array}\right), \operatorname{det}=2$. From this we get $p^{2} \mid\left(2 u^{2} \pm 2 u+1\right)$. Therefore $F\left(\infty, u / p^{2}\right)$ contains a rectangle.

We predict from the above lemmas that the elliptic elements of $\Gamma_{1}\left(2 p^{2}\right)$ correspond to the circuit in $F\left(\infty, u / p^{2}\right)$. To support this idea we have

Theorem 4.6. The set $H \backslash \Gamma_{0}\left(2 p^{2}\right)$ has a period for order 2 if and only if there exists some $u \in \mathbb{Z}$, $(u, p)=1$ such that $F\left(\infty, u / p^{2}\right)$ has a self-paired edge.

Proof: First suppose that the set has such an elliptic element T. Then T must be of the form $\left(\begin{array}{cc}2 a & -b \\ 2 p^{2} & -2 a\end{array}\right)$, $\operatorname{det} T=2$. Therefore we have $2 a^{2}+1 \equiv 0\left(\bmod p^{2}\right)$. So, Theorem 3.1 shows that $\frac{1}{0} \rightarrow \frac{a}{p^{2}} \rightarrow \frac{1}{0}$ is a selfpaired edge in $F\left(\infty, u / p^{2}\right)$.

Secondly, let $F\left(\infty, u / p^{2}\right)$ have a self-paired edge. Without loss of generality, from transitivity, we can suppose that the self-paired edge be $\frac{1}{0} \rightarrow \frac{u}{p^{2}} \rightarrow \frac{1}{0}$. So we have, by Theorem 3.1, $2 u^{2} \equiv-1\left(\bmod p^{2}\right)$. This showes that there exists some $b \in \mathbb{Z}$ such that $b=\frac{-\left(2 u^{2}+1\right)}{p^{2}}$. Therefore $\left(\begin{array}{cc}2 a & -b \\ 2 p^{2} & -2 a\end{array}\right)$ is an elliptic element of order 2 in the set $H \backslash \Gamma_{0}\left(2 p^{2}\right)$.

Notice that $H \backslash \Gamma_{0}\left(2 \cdot 5^{2}\right)$ has no period for order 2, and therefore $F(\infty, u / 25)$ does not have a selfpaired edge.

Finally, as a finishing point, we give a number theoretical result as follows:

Theorem 4.7. The prime divisors p of $2 u^{2}+2 u+1$, for any $u \in \mathbb{Z}$, are of the form $p \equiv 1(\bmod 4)$.

Proof: Let u be any integer and p a prime divisor of $2 u^{2}+2 u+1$. Then, without any difficulty, it can be easily seen that the normalizer $\Gamma_{1}(2 p)$, like $\Gamma_{1}\left(2 p^{2}\right)$, has the elliptic element $\left(\begin{array}{cc}-2 u & \frac{2 u^{2}+2 u+1}{p} \\ -2 p & 2 u+2\end{array}\right)$ of
order 4. From Lemma 2.8 we get that $p \equiv 1(\bmod 4)$.

REFERENCES

1. Conway, J. H. \& Norton, S. P. (1977). Montorous Moonshine. Bull. London Math. Soc.11, 308-339.
2. Akbas, M. \& Baskan, T. (1996). Suborbital graphs for the normalizer of $\Gamma_{0}(\mathrm{~N})$. Tr. J. of Mathematics 20, 379-387.
3. Keskin, R. (2006). Suborbital graphs for the normalizer $\Gamma_{0}(m)$. European J. Combin. 27 (2), 193-206.
4. Akbas, M. (2001). On suborbital graphs for the modular group. Bull. London Math. Soc. 33(6), 647-652.
5. Jones, G. A., Singerman, D. \& Wicks, K. (1991). The Modular Group and Generalized Farey Graphs. London Math. Soc. Lecture Note Series, 160, 316-338.
6. Keskin, R. (2001). On suborbital graphs for some Hecke groups. Discrete Math. 234(1-3), 53-64.
7. Akbas, M. \& Singerman, D. (1992). The Signature of the normalizer of $\Gamma_{0}(N)$. London Math. Soc. Lecture Note Series 165, 77-86.
8. Machlaclan, C. (1981). Groups of units of zero ternary quadratic forms. Proceeding of the Royal Society of Edinburg, 88 A, 141-157.
9. Bigg, N. L. \& White, A. T. (1979). Permutation groups and combinatorial structures. London Mathematical Society Lecture Note Series 33, CUP.
10. Sims, C. C. (1967). Graphs and Finite Permutation Groups. Math. Z., 95, 76-86.
11. Rose, H. E. (1988). A Course in Number Theory. Oxford University Press.

[^0]: *Received by the editor February 21, 2009 and in final revised form December 18, 2010
 ** Corresponding author

