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Abstract
An effective-field theory with correlations is developed for a mixed spin-1 and spin-5/2 Ising
ferrimagnetic system on the honeycomb (δ = 3) and square (δ = 4) lattices in the absence and
presence of a longitudinal magnetic field. The ground-state phase diagram of the model is
obtained in the longitudinal magnetic field (h) and a single-ion potential or crystal-field
interaction (1) plane. We also investigate the thermal variations of the sublattice
magnetizations, and present the phase diagrams in the (1/|J |, kBT/|J |) plane. The
susceptibility, internal energy and specific heat of the system are numerically examined, and
some interesting phenomena in these quantities are found due to the absence and presence of
the applied longitudinal magnetic field. Moreover, the system undergoes second- and
first-order phase transition; hence, the system gives a tricritical point. The system also exhibits
reentrant behavior.

PACS numbers: 05.50.+q, 05.70.Fh, 75.10.Hk, 75.30.Kz, 75.50.Gg

1. Introduction

During the past several decades, much effort has been
devoted to determine the critical behavior and other statistical
properties of the various Ising systems, which would enable
a deeper understanding of order–disorder phenomena in
statistical physics and condensed matter physics. The Ising
systems consisting of mixed spins of different magnitudes,
the so-called mixed-spin Ising models, are among the most
interesting extensions of the standard spin-1/2 Ising system.
Mixed spin Ising systems provide good models to investigate
ferrimagnetic materials that are currently of great interest
due to their possible useful properties for technological
applications, as well as academic research. The well-known
mixed spin Ising systems are spins (1/2, 1), spins (1/2, 3/2)
and spins (1, 3/2) Ising systems. These systems have been
studied extensively by using the methods of equilibrium
statistical physics such as the mean-field approximation
(MFA), effective-field theory (EFT), cluster variation
method (CVM), renormalization group (RG) techniques
and Monte-Carlo (MC) simulations (see [1–5] for spins
(1, 1/2), [6–10] for spins (1/2, 3/2) and [11–15] for spins
(1, 3/2) Ising systems, and references therein). Moreover,

the exact solutions of the spins (1/2, 1) were studied
on a honeycomb lattice [16], a bathroom tile [17], diced
lattices [18], a Bethe lattice [19], a two-fold Cayley tree [20],
several decorated planar lattices [21] and a bilayer Bethe
lattice [22]. Dynamics of the mixed spin-1/2 and spin-1
Ising system [23, 24] has also been investigated by using
the Glauber-type stochastic dynamics [25], the dynamical
pair approximation [26], the dynamic MC simulations and
finite-size scaling arguments [27], the MC simulations and
the dynamical pair approximation [28, 29] and the pair
approximation with point distribution [30]. The exact solution
of spins (1/2, 3/2) Ising system has also been studied
on the Bethe lattice [31] and a two-fold Cayley tree [32]
by using the exact recursion relations, on the honeycomb
lattice within the framework of exact star–triangle mapping
transformations [33], on the extended Kagomé lattice [34]
and Union Jack (centered square) lattice [35] by establishing
a mapping correspondence with the eight-vertex model.
On the other hand, the exact formulation of the mixed spin
(1, 3/2) Ising ferrimagnetic system on the Bethe lattice has
been examined by using the exact recursion relations [36].
Moreover, recently, the dynamic phase transitions in the
kinetic mixed spins (1/2, 3/2) [37] and spins (1, 3/2) [38]
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ferrimagnetic systems under a time-dependent magnetic
field have been studied by using the Glauber-type stochastic
dynamics. The mixed spins (1/2, 5/2) [39–41], spins (3/2,
5/2) [42–44], spins (1, 2) [45–47] and spins (2, 5/2) [48–50]
have received less attention. But, up to now, as far as we
know, nobody has studied the spin-1 and spin-5/2 Ising
system.

Therefore, the aim of this paper is to study the
magnetic properties of the mixed spin-1 and spin-5/2 Ising
ferrimagnetic system in the absence and presence of a
longitudinal magnetic field on the honeycomb and square
lattices by using the EFT with correlations in detail. The
ground state phase diagram of the model is obtained in the
longitudinal magnetic field (h) and a single-ion potential or
crystal-field interaction (1) plane. We also investigate the
thermal variations of the sublattice magnetizations and present
the phase diagrams in the (1/|J |, kBT/|J |) plane for h = 0.
Moreover, the susceptibility, internal energy and specific
heat of the system are numerically examined, and some
interesting phenomena in these quantities are found due to
the applied longitudinal magnetic field. This method, namely
EFT with correlation, was first introduced by Honmura and
Kaneyoshi [51] and Kaneyoshi et al [52], which is a more
advanced method dealing with Ising systems than the MFA,
because it considers more correlations. Then, the method
has been widely developed and applied to various magnetic
systems [53], including thin films, superlattices [54–56] and
mixed spin Ising systems [57–59].

The rest of the paper is organized as follows. In section 2,
we introduce briefly the basic framework of the EFT with
correlations and give the formulation for the mixed spin-1 and
spin-5/2 Ising model on the honeycomb and square lattices.
In section 3, the numerical results for the magnetizations,
phase diagrams and thermodynamic quantities, such as
susceptibility, internal energy and specific heat of the model,
are studied in detail. The paper ends with a brief summary and
conclusion of the work in section 4.

2. Formulation

The mixed spin Ising model on the honeycomb and square
lattices is shown in figures 1(a) and (b), respectively. We
consider a mixed spin-1 and spin-5/2 Ising model consisting
of two sublattices A and B, which are arranged alternately. In
the underlying lattice the sites of sublattice A are occupied by
spins σi , which takes the spin values ±1, 0, while those of
the sublattice B are occupied by spins S j , which take the spin
values ±5/2, ±3/2 and ±1/2. The Hamiltonian of the system
is given by

H = − J
∑
〈i j〉

σi S j − 1

∑
i

(σi )
2 +

∑
j

(S j )
2


− h

∑
i

σi +
∑

j

S j

 , (1)

where 〈i j〉 indicates a summation over all pairs of
nearest-neighboring sites. J is the bilinear nearest-neighbor
exchange interaction, 1 is the crystal-field interaction or

Figure 1. The sketch of the spin arrangement on the honeycomb
and square lattices. The open (◦) and closed (•) circles denote the
spins of σi = 1 and S j = 5/2, respectively. (a) For honeycomb
lattice with δ = 3 and (b) for square lattice with δ = 4.

single-ion anisotropy and h represents the longitudinal
magnetic field.

The problem is now the evaluation of the mean values
〈σi 〉 and 〈S j 〉. The starting point for statistics of the present
spin system is the exact relation due to Callen [60]. As
discussed in [57, 61, 62], for the evaluation of mean values
〈σi 〉 and 〈S j 〉 we can use the exact Ising spin identities and the
differential operator technique introduced by Honmura and
Kaneyoshi [51]. Within the framework of the EFT, one finds
that

〈(σi )
k
〉 =

〈∏
δ

[
A(a) + B(a)S j+δ + C(a)(S j+δ)

2 + D(a)(S j+δ)
3

+E(a)(S j+δ)
4 + F(a)(S j+δ)

5
] 〉

fk(x)|x=0 , (2)

〈(S j )
k
〉 =

〈∏
δ

{1 + (σi+δ) sinh(J∇)

+(σi+δ)
2[cosh(J∇) − 1]

} 〉
gk(x)|x=0 , (3)

where a = J ∇ and δ denotes the nearest-neighbor sites of the
central site i (or a site j); ∇ = ∂/∂x is a differential operator,
and δ = 3 on the honeycomb and δ = 4 on the square lattices.
The functions fk(x) and gk(x) are defined by

f1(x) =
2 sinh[β(x + h)]

2 cosh[β(x + h)] + exp(−β D)
, (4)

f2(x) =
2 cosh[β(x + h)]

2 cosh[β(x + h)] + exp(−β D)
, (5)

g1(x) =

5 sinh
[

5β

2 (x + h)
]

+ 3 sinh
[

3β

2 (x + h)
]

×exp (−4β1) + sinh
[

β

2 (x + h)
]

exp (−6β1)

2 cosh
[

5β

2 (x + h)
]

+ 2 cosh
[

3β

2 (x + h)
]

×exp(−4β1) + 2 cosh
[

β

2 (x + h)
]

exp (−6β1)


,

(6)

2
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g2(x) =

25 cosh
[

5β

2 (x + h)
]

+ 9 cosh
[

3β

2 (x + h)
]

× exp(−4β1) + cosh
[

β

2 (x + h)
]

exp(−6β1)

4 cosh
[

5β

2 (x + h)
]

+ 4 cosh
[

3β

2 (x + h)
]

× exp(−4β1) + 4 cosh
[

β

2 (x + h)
]

exp(−6β1)


,

(7)

g3(x) =

125 sinh
[

5β

2 (x + h)
]

+ 27 cosh
[

3β

2 (x + h)
]

× exp(−4β1) + cosh
[

β

2 (x + h)
]

exp(−6β1)

8 cosh
[

5β

2 (x + h)
]

+ 8 cosh
[

3β

2 (x + h)
]

× exp(−4β1) + 8 cosh
[

β

2 (x + h)
]

exp(−6β1)


,

(8)

g4(x) =

625 cosh
[

5β

2 (x + h)
]

+ 81 cosh
[

3β

2 (x + h)
]

× exp(−4β1) + cosh
[

β

2 (x + h)
]

exp(−6β1)

16 cosh
[

5β

2 (x + h)
]

+ 16 cosh
[

3β

2 (x + h)
]

×exp(−4β1) + 16 cosh
[
β

2 (x + h)
]
exp(−6β1)


,

(9)

g5(x) =

3125 sinh
[

5β

2 (x + h)
]

+ 243 cosh
[

3β

2 (x + h)
]

× exp(−4β1) + cosh
[

β

2 (x + h)
]

exp(−6β1)

32 cosh
[

5β

2 (x + h)
]

+ 32 cosh
[

3β

2 (x + h)
]

× exp(−4β1) + 32 cosh
[
β

2 (x + h)
]

exp(−6β1)


,

(10)
where β = 1/kBT , kB is the Boltzmann constant and T is the
absolute temperature. The coefficients A(a), B(a), C(a), D(a),
E(a) and F(a) in equation (2) are obtained by using the exact
van der Waerden identity

A(a)=
1

128

[
3 cosh

(
5a

2

)
− 25 cosh

(
3a

2

)
+ 150 cosh

(a

2

)]
,

B(a) =
1

960

[
9 sinh

(
5a

2

)
−125 sinh

(
3a

2

)
+ 2250 sinh

(a

2

)]
,

C(a) =
1

48

[
−5 cosh

(
5a

2

)
+ 39 cosh

(
3a

2

)
− 34 cosh

(a

2

)]
,

D(a) =
1

24

[
− sinh

(
5a

2

)
+ 13 sinh

(
3a

2

)
− 34 sinh

(a

2

)]
,

E(a) =
1

24

[
cosh

(
5a

2

)
− 3 cosh

(
3a

2

)
+ 2 cosh

(a

2

)]
,

F(a) =
1

60

[
sinh

(
5a

2

)
− 5 sinh

(
3a

2

)
+ 10 sinh

(a

2

)]
. (11)

Equations (2) and (3) are also exact and are valid for any
lattice. If we try to exactly treat all the spin–spin correlations
for that set of equations, the problem quickly becomes
intractable. A first obvious attempt to deal with it is to ignore
correlations; the decoupling approximation:〈

σi (σi ′)2 . . . σin

〉
∼= 〈σi 〉

〈
(σi ′)2

〉
· · · 〈σin 〉,〈

S j (S j ′)2 . . . (S jn )5
〉
∼= 〈S j 〉

〈
(S j ′)2

〉
· · · 〈(S jn )5

〉,

(12)

with i 6= i ′
6= · · · 6= in and j 6= j ′

6= · · · 6= jn have been
introduced within the EFT with correlations [51, 53, 63].
In fact, the approximation corresponds essentially to the
Zernike approximation [64] in the bulk problem, and has
been successfully applied to a great number of magnetic
systems including the surface problems [51, 53, 63, 65]. On
the other hand, in the mean-field theory, all the correlations,
including the self-correlations, are neglected. Based on these
approximations, equations (2) and (3) reduce to

mA =
[
A(a) + B(a)〈S j 〉 + C(a)

〈
(S j )

2
〉
+ D(a)

〈
(S j )

3
〉

+E(a)
〈
(S j )

4
〉
+ F(a)

〈
(S j )

5
〉]δ

f1(x)|x=0, (13)

qA =
[
A(a) + B(a)〈S j 〉 + C(a)

〈
(S j )

2
〉
+ D(a)

〈
(S j )

3
〉

+E(a)
〈
(S j )

4
〉
+ F(a)

〈
(S j )

5
〉]δ

f2(x)|x=0, (14)

mB = [1 + 〈σi 〉 sinh(J∇)

+
〈
(σi )

2
〉
{cosh(J∇) − 1}

]δ
g1(x)|x=0, (15)

qB = [1 + 〈σi 〉 sinh(J∇)

+
〈
(σi )

2
〉
{cosh(J∇) − 1}

]δ
g2(x)|x=0, (16)

rB = [1 + 〈σi 〉 sinh(J∇)

+
〈
(σi )

2
〉
{cosh(J∇) − 1}

]δ
g3(x)|x=0, (17)

υB = [1 + 〈σi 〉 sinh(J∇)

+
〈
(σi )

2
〉
{cosh(J∇) − 1}

]δ
g4(x)|x=0, (18)

wB = [1 + 〈σi 〉 sinh(J∇)

+
〈
(σi )

2
〉
{cosh(J∇) − 1} ]δg5(x)|x=0, (19)

So far we have discussed the basic formulation of the mixed
spin-1 and spin-5/2 Ising model with a crystal-field in a
longitudinal magnetic field with a coordination number δ;
hence equations (13)–(19) can be used to investigate the
thermal variations of the sublattice magnetizations and then
phase diagrams can be calculated. As one can see, in our
treatment new order parameters qA, qB, rB, vB and wB

naturally appear, which one is able to evaluate. This is
not the case with the standard MFA where all correlations
are neglected. This is one of the reasons why the present
framework provides better results than the standard MFA.

2.1. Application to the honeycomb lattice (δ = 3)

We are now interested in studying the transition temperature
(or the phase diagrams) of the system. Certain features of

3
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the phase diagram can be determined analytically through
a Landau free energy expansion in the order parameters.
For simplicity, we will discuss in detail the honeycomb
lattice with δ = 3 seen in figure 1(a). Putting δ = 3 into
equations (13)–(19), and expanding the right-hand sides of
these equations, one can obtain the following set of coupled
equations:

mA = A0 + A1mB + A2m2
B + A3m3

B A4m4
B + A5m5

B

+ A6m6
B + A7m7

B + A8m8
B + A9m9

B + A10m10
B

+ A11m11
B + A12m12

B + A13m13
B + A14m14

B + A15m15
B ,

(20)

mB=B0+B1mA+B2m2
A+B3m3

A+B4m4
A+B5m5

A+ B6m6
A, (21)

where the coefficients Ai (i = 0, 1, . . . , 15) and
B j ( j = 0, 1, 2, . . . , 6) can be easily calculated by applying
mathematical relations exp(α∇) f (x) = f (x + α) and
exp(α∇) g(x) = g(x + α) as given in the appendix A. The
definitions of the sublattice magnetizations for the honeycomb
lattice are mA = 〈σi 〉 and mB = 〈S j 〉. Solving the coupled
equations (20) and (21), we can obtain the magnetization
curves for the honeycomb lattice. We will perform this
calculation in the next section.

2.2. Application to the square lattice (δ = 4)

In this subsection, we shall obtain the set of coupled
equations on the square lattice with δ = 4. For constructing
these coupled equations, we need to consider not three- but
four-site blocks as seen in figure 1(b). To obtain the set of
coupled equations, one can put δ = 4 into equations (13)–(19)
and expand the right-hand sides of these equations. The
application of equations (13)–(19) to square lattice with δ = 4
leads then to the following set of mutually coupled equations

mA = C0 + C1mB + C2m2
B + C3m3

B + C4m4
B + C5m5

B

+ C6m6
B + C7m7

B + C8m8
B + C9m9

B + C10m10
B

+ C11m11
B + C12m12

B + C13m13
B + C14m14

B + C15m15
B

+ C16m16
B + C17m17

B + C18m18
B + C19m19

B + C20m20
B , (22)

mB = D0 + D1mA + D2m2
A + D3m3

A + D4m4
A

+ D5m5
A + D6m6

A + D7m7
A + D8m8

A, (23)

where the coefficients Ck (k = 0, 1, . . . , 20) and
Dl (l = 0, 1, . . . , 8) can be easily calculated by applying
mathematical relations exp(α∇) f (x) = f (x + α) and
exp(α∇) g(x) = g(x + α) as given in appendix B. The
definitions of the sublattice magnetizations for the square
lattice are mA = 〈σi 〉 and mB = 〈S j 〉. Solving the coupled
equations (22) and (23), we can obtain the magnetization
curves for the square lattice.

2.3. Thermodynamical properties

Now, we illustrate how to calculate the thermodynamical
quantities (the susceptibility χα , internal energy U and

specific heat C) for the system with a crystal-field in a
longitudinal magnetic field. The susceptibility for the system
can be determined easily from the following equation:

χα = lim
h→0

∂mα

∂h
, (24)

where α (α = A, B) are the values of the sublattice
magnetizations. Hence, the total longitudinal susceptibility
[66] is given by

χT = χA + χB =
∂mA

∂h

∣∣∣∣
h=0

+
∂mB

∂h

∣∣∣∣
h=0

. (25)

The internal energy per site of the system can be obtained
from the thermodynamic average of the Hamiltonian. In
the traditional method [67], the internal energy U of the
mixed-spin system is given by

U

N
= −

1

2
〈σi Ei 〉 −

1

2
〈S j E j 〉 −1

(〈
(σi )

2
〉

+
〈
(S j )

2
〉)

− h
(
〈σi 〉 + 〈S j 〉

)
, (26)

with Ei = −J
∑

δ S j+δ and E j = −J
∑

δ σi+δ , where
the summations are over the nearest neighbors of a site i (or a
site j). 〈σi Ei 〉 and 〈S j E j 〉 can be written as

〈σi Ei 〉 = z J
[
A(a) + B(a)〈S j 〉 + C(a)

〈
(S j )

2
〉

+D(a)
〈
(S j )

3
〉
+ E(a)

〈
(S j )

4
〉
+ F(a)

〈
(S j )

5
〉]δ−1

×
∂

∂∇

[
A(a) + B(a)〈S j 〉 + C(a)

〈
(S j )

2
〉

+D(a)
〈
(S j )

3
〉
+ E(a)

〈
(S j )

4
〉
+ F(a)

〈
(S j )

5
〉]

× f1(x)|x=0, (27)

〈S j E j 〉 = z J
[
1 + 〈σi 〉 sinh(J∇) +

〈
(σi )

2
〉
(cosh(J∇) − 1)

]δ−1

×
∂

∂∇

[
1 + 〈σi 〉 sinh(J∇) +

〈
(σi )

2
〉
(cosh(J∇) − 1)

]
g1(x)|x=0.

(28)

It is clear that for the evaluation of internal energy U , we must
know equations (26)−(28), and also the parameters mA, mB,
qA, qB, rB, vB and wB. Then, these quantities can be easily
obtained by solving equations (13)–(19) numerically.

Finally, the specific heat C of the system can be
determined from the relation

C =
∂U

∂T
. (29)

3. Numerical results and discussions

In this section, we examine some interesting and typical
results for the mixed spin-1 and spin-5/2 Ising model with
a crystal-field in a longitudinal magnetic field. Numerical
results and discussions are given only for a honeycomb lattice
for the reason that these results are similar for a square lattice,
except that the critical temperature occurs at high values.
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Table 1. All possible spin configurations of the model, their respective energies and the conditions for the existence of the configurations.

Two-site blocks Energy Condition

〈−1 − 5/2〉 −
5
2 J + 7

2 h −
29
4 1 5J − 2h > 0, J − h + 41 < 0 and 5J − 2h + 21 > 0

〈−1 − 3/2〉 −
3
2 J + 5

2 h −
13
4 1 J − 21 > 0, J − h + 21 > 0 and J − h + 41 < 0

〈−1 − 1/2〉 −
J
2 + 3

2 h −
5
4 1 J − 21 > 0, J − 2h + 21 > 0 and J − h + 21 < 0

〈−1 + 3/2〉
3
2 J −

1
2 h −

13
4 1 h > 0, J − 21 < 0 and J − h − 41 > 0

〈−1 + 5/2〉
5
2 J −

3
2 h −

29
4 1 h > 0, J − 21 < 0, J − h − 41 < 05J + 2h < 0 and 5J + 2h − 21 < 0

〈+1 − 5/2〉
5
2 J + 3

2 h −
29
4 1 h < 0, J − 21 < 0, J + h − 41 < 05J − 2h < 0 and 5J − 2h − 21 < 0

〈+1 − 3/2〉
3
2 J + 1

2 h −
13
4 1 h < 0, J + h − 41 > 0 and J − 21 < 0

〈+1 + 1/2〉 −
J
2 −

3
2 h −

5
4 1 J − 21 > 0, J + 2h + 21 < 0 and J + h + 21 < 0

〈+1 + 3/2〉 −
3
2 J −

5
2 h −

13
4 1 J + h + 41 < 0, J + h + 21 > 0 and J − 21 > 0

〈+1 + 5/2〉 −
5
2 J −

7
2 h −

29
4 1 J + h + 41 > 0, 5J + 2h + 21 > 0 and 5J + 2h > 0

〈0 + 5/2〉 −
5
2 h −

25
4 1 J − 21 < 0, 5J + 2h − 21 > 0 and 5J + 2h + 21 < 0

〈0 + 1/2〉 −
h
2 −

1

4 J + 2h + 21 < 0, J − 21 > 0 and h > 0

〈0 − 1/2〉
h
2 −

1

4 J − 2h + 21 < 0, J − 21 > 0 and h < 0

〈0 − 5/2〉
5
2 h −

25
4 1 J − 21 < 0, 5J − 2h − 21 > 0 and 5J − 2h + 21 < 0

3.1. Ground-state phase diagram

Since the ground-state phase diagram can be exactly
obtained and it can be used to check the reliability of the
theoretical results, we start our investigation by calculating the
ground-state phase diagram. The ground state phase diagram
is obtained in the h/δ|J | versus 1/δ|J | plane from the
condition of the minimum energy value of the configuration
by comparing with the energy of the other configurations
for a given set of the parameters, as seen in figure 2. Each
one of these configurations for the given system parameters
correspond to the stable states of the model. Hence, we
have found 14 possible spin configurations; the respective
energies and the condition for their existence are given in
table 1. All possible spin configurations are also indicated
in the ground-state phase diagram, as seen in figure 2. It
has ten multicritical points where more than one phase can
coexist, namely a1, a2, . . . , a10. The multiphase lines separate
the phases; for example, the multiphase line a4–a5 separates
the ferrimagnetic (−1, 5/2) phase from the ferrimagnetic
(−1, 3/2) phase.

3.2. Phase diagrams

In this subsection, we shall show some typical results for the
mixed spin-1 and spin-5/2 Ising model with a crystal-field
at zero longitudinal magnetic field. We have obtained the
phase diagrams by solving equations (20) and (21), and
equations (22) and (23) for honeycomb and square lattices,
respectively. First, we present the phase diagrams of the model
in the (1/|J |, kBT/|J |) plane for the honeycomb (δ = 3) and
square (δ = 4) lattices, illustrated in figure 3. In these phase
diagrams, the solid and dashed lines represent the second-
and first-order phase transition lines for both honeycomb
and square lattices, respectively, and the tricritical points
are denoted by filled circles. It is clear that the second-
and first-order phase transition lines separate the
ferrimagnetic phases from the paramagnetic (P) phase.
The gray and black triangles are the separating points

 

Figure 2. The ground-state phase diagram of the mixed spin-1 and
spin-5/2 Ising model in the (h/δ|J |, 1/δ|J |) plane for J < 0. The
spin configurations, the respective energies and the conditions for
the existence of the phases are represented by the labels given in
table 1.

for the honeycomb and square lattices, respectively,
and they correspond to the a5 multicritical points that
are marked in the ground-state phase diagram, as seen
in figure 2. These triangles separate the ferrimagnetic
(−1, 3/2) phase from the ferrimagnetic (−1, 5/2) phase.
The following interesting phenomena are observed from
the phase diagram: (i) The system exhibits a tricritical
point where the second-order phase transition turns to
a first-order one. (ii) When the 1/|J | values are bigger
than the separating point value, the second-order phase
transition occurs from the ferrimagnetic (−1, 5/2) phase
to the P phase. (iii) When the 1/|J | values are between
the separating and tricritical points, again the systems
on honeycomb and square lattices undergo second-order
phase transition; the transition is from the ferrimagnetic
(−1, 3/2) phase to the P phase. (iv) Below the tricritical
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Figure 3. Phase diagrams in the (1/|J |, kBT/|J |) plane for the
mixed spin Ising model consisting of spins σ = 1 and S = 5/2
within the EFT at zero longitudinal magnetic field for both the
honeycomb and square lattices. The solid and dashed lines represent
the second- and first-order phase transition lines, respectively,
for both honeycomb and square lattices; the tricritical points are
denoted by filled circles; the gray and black triangles are the
separating points for the honeycomb and square lattices,
respectively, and they correspond to the a5 multicritical points that
are marked in the ground-state phase diagram. These triangles
separate the ferrimagnetic (−1, 3/2) phase from the ferrimagnetic
(−1, 5/2) phase.

point, both systems undergo a first-order phase transition
in a certain range of 1/|J |, and the transition is from the
ferrimagnetic (−1, 3/2) phase to the P phase. Moreover, both
phase diagrams exhibit reentrant behavior for low values of T,
i.e. as the temperature increases, the system passes from the P
phase to the ferrimagnetic (−1, 3/2) phase, and then back to
the P phase again. In spin systems, the reentrant behavior can
be understood as follows. At high temperatures, the entropy
is the most important factor and uncorrelated fluctuations
determine the thermodynamics. The system is then in the
P phase bias due to the applied field. As the temperature is
lowered, the energy and entropy are both important and the
correlated fluctuations affect the dominance of either phase
significantly. The system enters the ordered phase. At low
temperatures, the energy is important, not the entropy and
the system reenters the P phase again [68]. We have found
similar phase diagrams to the one seen in the phase diagrams
of the MC study of the two-dimensional quadratic mixed
spin (1/2, 1) Ising model with crystal-field interaction [2],
the mixed spin (1/2, 1) Ising ferrimagnetic system on the
Bethe lattice [19], the EFT study of the mixed (1, 3/2) Ising
ferrimagnetic system [14], the MFA of the mixed spin (1,
3/2) Ising system [12], the mixed spin (1, 3/2) Ising model on
the Bethe lattice [36] and MC studies of critical phenomena
in the mixed spin (1, 3/2) BC Ising model on a simple cubic
lattice [15].

3.3. Magnetization curves and susceptibilities

Thermal behavior of the sublattice magnetizations (mA and
mB) and corresponding susceptibilities χα (α = A, B, total)
are illustrated in figure 4. We have obtained thermal behavior

Figure 4. The behavior of the sublattice magnetizations and
magnetic susceptibilities as a function of temperature on the
honeycomb lattice (h = 0). TC (thick arrow) and TC′ (thin arrow)
are the second-order phase transition temperatures from the
ferrimagnetic (−1, 5/2) phase to the paramagnetic (P) phase; and
from the ferrimagnetic (1, 3/2) phase to the P phase, respectively.
Tt (dashed arrow) represents the first-order phase transition
temperature from the ferrimagnetic (1, 3/2) phase to the P phase.
(a) Exhibiting a second-order phase transition from the
ferrimagnetic (−1, 5/2) phase to the P phase for 1/|J | = 0.1; 4.248
is found for TC. (b) Exhibiting a second-order phase transition from
the ferrimagnetic (−1, 3/2) phase to the P phase for 1/|J | = −1.2;
1.95 is found for TC′ . (c) Exhibiting a first-order phase transition
from the ferrimagnetic (−1, 3/2) phase to the P phase for
1/|J | = −1.5; 0.699 is found for Tt.
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of sublatice magnetizations and corresponding susceptibilities
by solving equations (20) and (21), and equations (20),
(21) and (25), respectively. We present a few representative
graphs to display their behavior for only a honeycomb
lattice, seen in figures 4(a)–(c). The results are depicted
in figures 4(a)–(c) for the system with zero longitudinal
magnetic field (h = 0), when the values of 1/|J | are 0.1,
−1.2 and −1.5, respectively. In these figures, TC (thick arrow)
and TC′ (thin arrow) are the second-order phase transition
temperatures from the ferrimagnetic (−1, 5/2) phase to the
P phase and from the ferrimagnetic (−1, 3/2) phase to
the P phase, respectively. Tt (dashed arrow) represents the
first-order phase transition temperature from the ferrimagnetic
(−1, 3/2) phase to the P phase. It is seen from figure 4(a)
for 1/|J | = 0.1 that the system undergoes a second-order
phase transition from the ferrimagnetic (−1, 5/2) phase to
the P phase, because sublattice magnetizations go to zero
continuously as the temperature increases and a second-order
phase transition occurs at TC = 4.248. When the temperature
approaches TC, the sublattice susceptibility χ5/2 increases
very rapidly and goes to positive infinity at TC = 4.248. On
the other hand, the other sublattice susceptibility χ1 decreases
very rapidly and goes to negative infinity at TC = 4.248.
The total susceptibility χT exhibits the usual temperature
behavior in the vicinity of TC, χT → +∞ as T → TC. This
has also been tested by our sublattice magnetizations and
susceptibilities calculations, because we found exactly the
same TC for both calculations. Figure 4(b) illustrates the
thermal variations of m1, m5/2 and χα for 1/|J | = −1.2, and
the behavior of figure 4(b) is similar to figure 4(a), except that
the system undergoes a second-order phase transition from the
ferrimagnetic (−1, 3/2) phase to the P phase at TC′ = 1.95.
Figure 4(c) is calculated for 1/|J | = −1.5 and shows m1,
m5/2 go to zero discontinuously as the temperature increases;
hence a first-order phase transition occurs at Tt = 0.699.
Moreover, in the vicinity of Tt the sublattice susceptibility
χ5/2 rapidly increases for T < Tt and suddenly decreases for
T > Tt. On the other hand, χ1 decreases very rapidly for
T < Tt and suddenly increases for T > Tt. If one compares
the behavior of sublattice magnetizations and susceptibilities,
one can see that Tt is found to be exactly the same for both
calculations.

3.4. Internal energy and specific heat

In order to study the present system in detail, temperature
variations of the internal energy and specific heat per site have
also been investigated. Let us study the thermal variation of
the internal energy and specific heat of the system for the
honeycomb lattice by solving equations (20), (21), (26) and
(29) numerically. In the case of h = 0, we have plotted the
temperature dependence of the internal energy and specific
heat with δ = 3 for selected values of 1/|J |, i.e. 1.0, 0.5,
0.0, −0.5, −1.0, −1.47 and −1.5 in figure 5. Figure 5(a)
shows that when T < TC or T > TC the specific heat for
the second-order phase transition increases with increasing
temperature. The specific heats may express the discontinuity
at T = TC, although in the high-temperature region (T >

TC) they take finite values. As to the specific heat, its
behavior is very similar to that of the mixed spin-1/2 and

spin-3/2 ferro- and ferrimagnetic system [61], the mixed
spin-3/2 and spin-5/2 ferrimagnetic system [44] and the mixed
spin-1/2 and spin-5/2 ferrimagnetic system [41]. Figure 5(b)
illustrates the behavior of the internal energy. It expresses a
discontinuity of the curvature at the critical temperature TC.
In the figures, the maxima of the specific heat C correspond
to the points where the first-order derivatives of the internal
energy U are discontinuous, at which the second-order phase
transitions occur. This behavior is consistent with previous
studies on mixed spin-1 and spin-2 [47] and mixed spin-2
and spin-5/2 [48, 49]. Figure 5(c) shows the temperature
dependences of the specific heat, when the phase transition
is first order and 1/|J | = −1.47 and 1/|J | = −1.5. At the
first-order phase transition temperature, the specific heat C
arrives at a maximum value, and then reduces suddenly to a
small value. The corresponding internal energies are given in
figure 5(d). In this figure, the internal energies increase with
increasing temperature discontinuously at the first-order phase
transition temperature.

3.5. Effects of the longitudinal magnetic field on the
magnetic quantities

We shall investigate the influence of the longitudinal magnetic
field on the sublattice magnetizations, susceptibility, specific
heat and internal energy for the honeycomb lattice. In
figures 6(a)–(d) the temperature dependences of sublattice
magnetizations, susceptibility, specific heat and internal
energy, respectively, are depicted for different values of
h/δ|J | = 0.0, 0.75, 1.50, 2.25, 3.0 and 1/|J | = 0.1. The
numbers on the curves are the values of the longitudinal
magnetic field. In figure 6(a), sublattice magnetizations
mA = 5/2 and mB = −1 at zero temperature; they decrease
to zero continuously as the temperature increases; therefore
a second-order phase transition occurs at TC = 4.248 in
the case of h/δ|J | = 0. In the presence of a longitudinal
magnetic field, the behavior of the magnetic quantities is
different from the absence of h/δ|J |. It can be clearly
seen that the sublattice magnetizations decrease slowly
from their saturation magnetizations to small constant
magnetizations with increasing temperature. Moreover, the
remaining magnetizations become larger as the applied
magnetic field increases. In figure 6(b), we have given the
numerical results of the susceptibility of the system in the
(χ, kBT/J ) plane for several values of h/δ|J |. Our results are
in good agreement with those of previous works [69–71]. As
seen from this figure, in the absence of longitudinal magnetic
field, the curves of susceptibility rapidly increase and exhibit
a peak at the second-order phase transition temperature
and then rapidly decrease as the temperature increases. In
the presence of a longitudinal magnetic field, the critical
temperature is removed, and the higher the longitudinal
magnetic field, the smaller is the susceptibility, reflecting the
fact that the longitudinal magnetization is weaker. Finally,
the specific heat and internal energy of the system as a
function of temperature are depicted in figures 6(c) and (d),
respectively, at the selected values of h/δ|J | = 0.0, 0.75,
1.50, 2.25 and 3.0. The specific heat of the system exhibits
a second-order phase transition at the transition temperature
TC = 4.248 in the case of h/δ|J | = 0, and rapidly decreases
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Figure 5. Temperature dependence of the specific heat C and internal energy U for the model on the honeycomb lattice (h = 0). (a)
Specific heats at the selected values of 1/|J |, i.e. 1.0, 0.5, 0.0, −0.5 and −1.0. (b) Internal energies at the selected values of 1/|J |, i.e. 1.0,
0.5, 0.0, −0.5 and −1.0. (c) Specific heats at the selected values of 1/|J |, i.e. −1.47 and −1.5. (d) Internal energies at the selected values
of 1/|J |, i.e. −1.47 and −1.50.

with increasing temperature. In the presence of h/δ|J |,
the critical temperature has been removed. As is seen in
figure 6(c), an interesting phenomenon is observed in the
low-temperature region T < TC of the specific heat. The
curves show two maxima. Here, the anomalous behavior
of specific heat comes from the following fact: for the
system with the values of 1/|J | = 0.1 and h/δ|J | = 1.50
and 2.25 in the vicinity of the critical value (h/δ|J | = 2.5
in the ground-state phase diagram) between the ferrimagnetic
(−1, 5/2) phase and the ferrimagnetic (1, 5/2) phase, the
ground-state spin configuration may change from σi = −1 to
σi = +1. Therefore, the first maximum occurs when h/δ|J |

values approach the critical point and disappears when h/δ|J |

values are far from the critical value. For example, since
h/δ|J | = 0.75 and 3.0 are much more different from the
critical value (h/δ|J | = 2.5), a first maximum does not exist
anymore. One should note that the same feature has been
obtained in some similar Ising spin systems [44, 56, 66, 72].
We can also see that the internal energy exhibits a
discontinuity in its curvature at the transition temperature
TC = 4.248, for h/δ|J | = 0. If the longitudinal magnetic field

is different from zero, the critical temperature does not occur
in the system. We have found similar behavior to that seen in
the previous works [69–71].

4. Summary and conclusions

In this paper, we have studied the magnetic properties of the
ferrimagnetic mixed spin-1 and spin-5/2 Ising system with
a crystal-field in the absence and presence of longitudinal
magnetic field (h) on the honeycomb (δ = 3) and square
(δ = 4) lattices by using the EFT with correlations. The
ground state phase diagram of the model is obtained
in the longitudinal magnetic field (h) and a single-ion
potential or crystal-field interaction (1) plane, given in
figure 2. We also investigated the thermal variations of the
sublattice magnetizations and corresponding susceptibilities,
seen in figure 4; and present the phase diagrams in the
(1/|J |, kBT/|J |) plane for h = 0, shown in figure 3. We
have found that the system undergoes the second- and
first-order phase transitions; hence the system exhibits a
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Figure 6. The temperature dependence of the sublattice magnetizations, susceptibility χ , specific heat C and internal energy U for the
model on the honeycomb lattice for 1/|J | = 0.1 at the selected values of h/δ|J |, i.e. 0.0, 0.75, 1.50, 2.25 and 3.0. (a) For sublattice
magnetizations m1, m5/2; (b) for susceptibilities χ ; (c) for specific heats C and (d) for internal energies U.

tricritical point. The system also displays reentrant behavior
for both the honeycomb and square lattice. Other relevant
thermodynamical quantities have been evaluated, such as the
magnetic susceptibility χ , internal energy U and specific heat
C, seen in figures 4 and 5. We have found that χ diverges
at the critical temperatures. The maxima of the specific heat
C correspond to the points where the first-order derivatives
of the internal energy U are discontinuous, at which the
second-order phase transitions occur. All the results are in
perfect agreement with the ones existing in the literature
[44, 47–49, 61, 69–71]. The results are discussed in detail
for the present system with and without longitudinal magnetic
field.

The influence of longitudinal magnetic field on the
sublattice magnetizations, total magnetization, susceptibility,
specific heat and internal energy has been discussed in detail,
seen in figure 6. The stronger the longitudinal magnetic field,
the smaller are the susceptibility and specific heat, reflecting
the fact that magnetization is weaker. However, susceptibility,
internal energy and specific heat of the system are numerically

examined, and some interesting phenomena in these quantities
are found due to the applied longitudinal magnetic field.
It yields some reasonable results in comparison with those
of the other works. Moreover, experimental evidence of
the effect of a longitudinal magnetic field can be found in
references [73–75].
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Appendix A

The coefficients Ai (i =0, 1, . . . , 15) and B j ( j =0, 1, . . . , 6)

in equations (20) and (21) can be easily calculated by using
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the mathematical relations exp(α∇) f (x) = f (x + α) and
exp(α∇)g(x) = g(x + α), where ∇ = ∂/∂x is a differential
operator. These coefficients Ai (i = 0, 1, . . . , 15) and
B j ( j = 0, 1, 2, . . . 6) are obtained as follows:

A0 =
1

16 777 216 [27 f1(−15J/2) − 675 f1(−13J/2)

+ 9675 f1(−11J/2) − 79 075 f1(−9J/2)

+ 415 575 f1(−7J/2) − 989 919 f1(−5J/2)

+ 86 775 f1(−3J/2) + 8946 225 f1(−J/2)

+ 8946 225 f1(J/2) + 86 775 f1(3J/2)

− 989 919 f1(5J/2) + 415 575 f1(7J/2)

− 79 075 f1(9J/2) + 9675 f1(11J/2)

− 675 f1(13J/2) + 27 f1(15J/2)],

A15 =
1

1728 000 [− f1(−15J/2) + 15 f1(−13J/2)

− 105 f1(−11J/2) + 455 f1(−9J/2) − 1365 f1(−7J/2)

+ 3003 f1(−5J/2) − 5005 f1(−3J/2) + 6345 f1(−J/2)

− 6345 f1(J/2) + 5005 f1(3J/2) − 3003 f1(5J/2)

+ 1365 f1(7J/2) − 455 f1(9J/2) + 105 f1(11J/2)

− 15 f1(13J/2) + f1(15J/2)],

B0 = g1(0),

B1 =
3
2 [−g1(−J ) + g1(J )] ,

B2 =
3
4 [−6g1(0) + g1(−2J ) + 2g1(−J ) + 2g1(J ) + g1(2J )],

B3 =
1
8 [−g1(−3J ) − 12g1(−2J ) + 27g1(−J ) − 27g1(J )

+ 12g1(2J ) + g1(3J )],

B4 =
3
8 [16g1(0) + g1(−3J ) − 9g1(−J ) − 9g1(J ) + g1(3J )],

B5 =
3
8 [−g1(−3J ) + 4g1(−2J ) − 5g1(−J ) + 5g1(J )

− 4g1(2J ) + g1(3J )],

B6 =
1
8 [−20g1(0) + g1(−3J ) − 6g1(−2J ) + 15g1(−J )

+ 15g1(J ) − 6g1(2J ) + g1(3J )].

Appendix B

The coefficients Ck (k = 0, 1, . . . , 20) and Dl (l =

0, 1, . . . , 8) in equations (22) and (23) can be easily
calculated by the same way. These coefficients are obtained
as follows:

C0 =
1

4294 967 296 [81 f1(−10J ) − 2700 f1(−9J )

+ 49 950 f1(−8J ) − 576 300 f1(−7J ) + 4572 925 f1(−6J )

− 23 752 176 f1(−5J ) + 75 239 400 f1(−4J )

− 59 476 400 f1(−3J ) − 342 915 150 f1(−2J )

+ 1157 549 400 f1(−J ) + 2673 589 236 f1(0)

+ 1157 549 400 f1(J ) − 342 915 150 f1(2J )

− 59 476 400 f1(3J ) + 75 239 400 f1(4J )

− 23 752 176 f1(5J ) + 4572 925 f1(6J ) − 576 300 f1(7J )

+ 49 950 f1(8J ) − 2700 f1(9J ) + 81 f1(10J )],

C20 =
1

207 360 000 [ f1(−10J ) − 20 f1(−9J ) + 190 f1(−8J )

− 1140 f1(−7J ) + 4845 f1(−6J ) − 15 504 f1(−5J )

+ 38 760 f1(−4J ) − 77 520 f1(−3J ) + 125 970 f1(−2J )

− 167 960 f1(−J ) + 184 756 f1(0) − 167 960 f1(J )

+ 125 970 f1(2J ) − 77 520 f1(3J ) + 38 760 f1(4J )

− 15 504 f1(5J ) + 4845 f1(6J ) − 1140 f1(7J )

+ 190 f1(8J ) − 20 f1(9J ) + f1(10J )],

D0 = [g1(0)],

D1 = 2[−g1(−J ) + g1(J )],

D2 =
1
2 [−14g1(0)+3g1(−2J )+4g1(−J )+4g1(J )+3g1(2J )],

D3 =
1
2 [−g1(−3J ) − 6g1(−2J ) + 15g1(−J ) − 15g1(J )

+ 6g1(2J ) + g1(3J )],

D4 =
1
16 [246g1(0) + g1(−4J ) + 24g1(−3J )

− 8g1(−2J ) − 120g1(−J ) − 120g1(J )

− 28g1(2J ) + 24g1(3J ) + g1(4J )],

D5 =
1
4 [−g1(−4J ) − 4g1(−3J ) + 26g1(−2J ) − 36g1(−J )

+ 36g1(J ) − 26g1(2J ) + 4g1(3J ) + g1(4J )],

D6 =
1
8 [−110g1(0) + 3g1(−4J ) − 8g1(−3J ) − 12g1(−2J )

+ 72g1(−J )+72g1(J )−12g1(2J )−8g1(3J )+3g14J )],

D7 =
1
4 [−g1(−4J ) + 6g1(−3J ) − 14g1(−2J ) + 14g1(−J )

− 14g1(J ) + 14g1(2J ) − 6g1(3J ) + g1(4J )],

D8 =
1
16 [70g1(0) + g1(−4J ) − 8g1(−3J ) + 28g1(−2J )

− 56g1(−J )−56g1(J )+28g1(2J )−8g1(3J )+g1(4J )].
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[33] Jaščur M and Strečka J 2005 Physica A 358 393
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