T.C. RECEP TAYYİP ERDOĞAN ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

ATOMLARIN İNELASTİK SAÇILMA FONKSİYONLARI ve DİFERANSİYEL TESİR KESİTLERİNİN HARTREE-FOCK-ROOTHAAN TEORİSİ İLE HESAPLANMASI

Tezin Sunum Tarihi: 10/06/2013

Pakize İREGÖZ

Tez Danışmanı: Doç. Dr. Telhat ÖZDOĞAN

YÜKSEK LİSANS TEZİ FİZİK ANABİLİM DALI

RİZE 2013

T.C.

RECEP TAYYİP ERDOĞAN ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

ATOMLARIN İNELASTİK SAÇILMA FONKSİYONLARI ve DİFERANSİYEL TESİR KESİTLERİNİN HARTREE-FOCK-ROOTHAAN TEORİSİ İLE HESAPLANMASI

Bu çalışma, 10/06/2013 tarihinde yapılan sınav ile Fizik Anabilim Dalı'nda YÜKSEK LİSANS tezi olarak kabul edilmiştir.

Ünvanı, Adı, Soyadı

Tez Danışmanı	•	Doç. Dr. Telhat ÖZDOĞAN
Jüri Üyesi	•	Doç. Dr. Mehmet ŞAHİN
Jüri Üyesi	:	Yard. Doç. Dr. Asu USTA

Imzası Ulme Hohi-

ONAY 14. /0.6. / 2013. **IAZ** Doc Fen Bilimleri Enstitüsü Müdürü

ÖNSÖZ

Yüksek lisans çalışmam boyunca bilgi ve deneyimlerinden her zaman yararlanabildiğim, manevi yönden hep destek olan, karşılaştığım bütün zorluklarda yardımlarını hiç esirgemeyen ve sürekli bizleri hep çalışmaya teşvik eden danışman hocam sayın Doç. Dr. Telhat ÖZDOĞAN'a teşekkürlerimi bir borç bilirim. Çalışmalarım sırasında değerli katkılarından dolayı sayın Doç. Dr. Mehmet ŞAHİN'e teşekkür ederim.

Beni bu günlere getiren ve hayatımın her döneminde maddi ve manevi desteklerini eksik etmeyen aileme şükranlarımı sunarım.

PAKİZE İREGÖZ

2013, RİZE

ÖZET

Atom-foton etkileşimindeki bütün saçılma parametreleri elastik ve inelastik saçılma fonksiyonları cinsinden ifade edilebilir. İnelastik saçılma fonksiyonu cinsinden ifade edilen inelastik saçılma diferansiyel tesir kesiti önemli saçılma parametrelerinden biridir.

Bu çalışmada, nötral atomların inelastik saçılma fonksiyonları için Hartree-Fock-Roothaan metodu kullanılarak analitik bir ifade elde edilmiştir. Elde edilen analitik ifade elastik saçılma fonksiyonu ve form faktör integrallerini içermektedir. Form faktör integralleri için Gaunt katsayıları ve bazı yardımcı moleküler integraller cinsinden analitik ifadeler bulunmuştur. İnelastik saçılma fonksiyonu için elde edilen ifadede yer alan bütün yardımcı moleküler integraller ve Gaunt katsayıları için Maple 13 sembolik programlama dilinde programlar yazılmış ve sonuç olarak $2 \le Z \le 54$ aralığındaki nötral atomların inelastik saçılma fonksiyonları keyfi momentum transfer değerlerinde hesaplanmış ve literatürde var olan değerlerle karşılaştırılmıştır. Bu atomların inelastik saçılma fonksiyonları için elde edilen sonuçların literatürdeki değerlerle uyumlu olduğu gözlenmiştir.

Bu çalışmanın ikinci kısmında; atomların inelastik saçılma fonksiyonları için elde edilen ifade ve yazılan bilgisayar programları kullanılarak, $2 \le Z \le 54$ aralığındaki nötral atomların inelastik saçılma diferansiyel tesir kesitleri geniş bir foton enerjisi aralığında hesaplanmış ve literatürde var olan sonuçlarla karşılaştırılmıştır. Bu atomların inelastik saçılma diferansiyel tesir kesitleri için elde edilen sonuçların literatürdeki sonuçlarla iyi bir uyum gösterdiği gözlenmiştir.

Anahtar Kelimeler: İnelastik saçılma fonksiyonu, diferansiyel tesir kesiti, Hartree-Fock-Roothaan teorisi.

ABSTRACT

All the scattering parameters in atom-photon interactions can be described in terms of elastic and inelastic scattering functions inelastic scattering differential cross-section which defined through in elastic scattering functions is one of important scattering parameters.

In the study; using Hartree-Fock-Roothaan method, an analytical expression is obtained for inelastic scattering functions of neutral atoms. The obtained analytical expression includes elastic scattering function and form factor integrals. Analytical expressions have been obtained for form factor integrals through Gaunt coefficients and some auxiliary molecular integrals. Computer programs in Maple 13 symbolic programming language have been constructed for all auxiliary molecular integrals and Gaunt coefficients contained in the obtained formula for inelastic scattering functions and as a result inelastic scattering functions for neutral atoms in range $2 \le Z \le 54$ have been obtained and compared with the available literature. It is seen that the obtained results for inelastic scattering functions of these atoms are in agreement with the literature values.

In the second section of this study; using the obtained expression and computer programs for inelastic scattering functions, inelastic scattering differential cross-sections of the neutral atoms in range $2 \le Z \le 54$ have been calculated in wide range of photon energies and compared with the available literature results. It is seen that the obtained results for inelastic scattering differential cross-sections of these atoms agree well with the results in literature.

Keywords: İnelastic scattering function, differential cross section, Hartree-Fock-Roothaan theory.

İÇİNDEKİLER

ÖNSÖZI
ÖZET II
ABSTRACT III
İÇİNDEKİLERIV
ŞEKİLLER DİZİNİVII
TABLOLAR DİZİNİ VIII
SİMGELER VE KISALTMALAR DİZİNİIX
1.GENEL BİLGİLER
1.1 Giriş1
1.2. Elektromanyetik Radyasyonun Madde ile Etkileşimi
1.2.1 Elektromanyetik Radyasyonun Soğurulması
1.2.1.a. Fotoelektrik Olay
1.2.1.b. Çift Oluşumu
1.2.2. Elektromanyetik Radyasyonun Saçılması
1.2.2.1. Koherent Saçılma
a. Rayleigh Saçılması
b. Delbrück Saçılması
c. Thomson Saçılması
d. Nükleer Rezonans Saçılma
1.2.2.2. İnkohorent Saçılma
a. Compton Saçılması
b. Nükleer Saçılma
c. Raman Saçılması
1.4. Saçılma Tesir Kesitleri ve Uygulama Alanları7
1.5. Diferansiyel Tesir Kesiti

1.6. Hartree-Fock Teorisi
1.6.1. Born-Oppenheimer Yaklaşımı
1.6.2. Slater Determinant1
1.6.3. Varyasyon Metodu
1.6.4. LCAO (Linear Combination of Atomic Orbital) Metodu 12
1.6.4.1. Gaussian Tipli Orbitaller (GTO)
1.6.4.2. Slater Tipli Orbitaller (STO)
1.6.4.3. Slater Tipli Orbitallerin Fourier Dönüşümü 14
1.6.5. Merkezi Alan Yaklaşımı 15
1.7. Literatür Özeti
1.8. Tezin Amacı 17
2. YAPILAN ÇALIŞMALAR 18
2.1. Giriş
2.2. X-ışını Bölgesinde Atom-Foton Etkileşimi
2.3. İnelastik Saçılma Diferansiyel Tesir Kesitlerinin Hesaplanması 19
2.4. İnelastik Saçılma Fonksiyonunun Hesaplanması
2.5. Moleküler Orbitallerin Form Faktör Katkısının Hesaplanması
3. BULGULAR
3.1 Giriş
$3.2 \ 2 \le Z \le 54$ Aralığındaki Atomların Hesaplanan İnelastik Saçılma Fonksiyonları veLiteratür ile Karşılaştırma
$3.3 \ 29 \le Z \le 50$ Aralığındaki Atomların Hesaplanan İnelastik Saçılma Diferansiyel TesirKesitleri ve Literatür ile Karşılaştırma36
3.4 İnelastik Saçılma Fonksiyonlarının Foton Momentum Transfer Vektörüne GöreDeğişimi
3.5 İnelastik Saçılma Diferansiyel Tesir Kesitlerinin Saçılma Açısına Göre Değişimi 40
4. TARTIŞMA VE SONUÇLAR

5. ÖNERİLER	
6. KAYNAKLAR	
EKLER	47
ÖZGEÇMİŞ	65

Şekil 1. Fotoelektrik olay
Şekil 2. Çift oluşumu
Şekil 3. Rayleigh saçılması
Şekil 4. Compton saçılması
Şekil 5. Birim katı açı
Şekil 6. He, Li, Be, B, C, N, O, F, Ne, Na, Mg, Al atomlarının inelastik saçılma
fonksiyonlarının foton momentum transfer vektörüne göre değişimleri
Şekil 7. Si, P, S, Cl, Ar, K, Ca, Sc, Ti, V, Cr, Mn atomlarının inelastik saçılma
fonksiyonlarının foton momentum transfer vektörüne göre değişimleri
Şekil 8. Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Br, Kr, Rb atomlarının inelastik saçılma fonksiyonlarının foton momentum transfer vektörüne göre değişimleri
Şekil 9. Sr, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, In atomlarının inelastik saçılma
fonksiyonlarının foton momentum transfer vektörüne göre değişimleri
Şekil 10. Sn, Sb, Te, I, Xe atomlarının inelastik saçılma fonksiyonlarının foton momentum
transfer vektörüne göre değişimleri
Şekil 11. He, Li, Be, B, C, N, O, F, Ne, Na, Mg, Al atomlarının inelastik saçılma
diferansiyel tesir kesitlerinin saçılma açısına göre değişimleri 40
Şekil 12. Si, P, S, Cl, Ar, K, Ca, Sc, Ti, V, Cr, Mn atomlarının inelastik saçılma
diferansiyel tesir kesitlerinin saçılma açısına göre değişimleri
Şekil13. Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Br, Kr, Rb atomlarının inelastik saçılma
diferansiyel tesir kesitlerinin saçılma açısına göre değişimleri
Şekil 14. Sr, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, In atomlarının inelastik saçılma
diferansiyel tesir kesitlerinin saçılma açısına göre değişimleri
Şekil 15. Sn, Sb, Te, I, Xe atomlarının inelastik saçılma diferansiyel tesir kesitlerinin
saçılma açısına göre değişimleri

TABLOLAR DİZİNİ

Tablo 1. Literatürle karşılaştırmalı olarak hesaplanan atomik inelastik saçılma
fonksiyonları $(2 \le Z \le 54)$
Tablo 2. 59.54 keV enerjili γ ışınları için farklı saçılma açılarında literatürle
karşılaştırmalı olarak hesaplanan atomik inelastik saçılma diferansiyel tesir kesitleri 36
Tablo 3. $0 \le n \le 6$ aralığındaki küresel Bessel fonksiyonları
Tablo 4.a. $C_n(\alpha, q)$ Yardımcı moleküler integralinin bazı sembolik değerleri
Tablo 4.b. $S_n(\alpha,q)$ Yardımcı moleküler integralinin bazı sembolik değerleri
Tablo 5. $D_{nl}(\alpha,q)$ Yardımcı moleküler integralinin bazı sembolik ifadeleri
Tablo 6. STO'ların fourier dönüşümünün radyal kısımlarının sembolik ifadeleri
Tablo 7. Bazı STO'ların fourier dönüşümü 55
Tablo 8. s,p,d,f elektronları için $C^{L}(lm, l'm')$ katsayıları
Tablo 9. Atomik form faktör integralleri $(n = n', l = l', m = m', \alpha = \beta)$
Tablo 10. Atomik form faktör integralleri $(n \neq n', l = l', m = m', \alpha \neq \beta)$

SİMGELER VE KISALTMALAR DİZİNİ

h	: Planck sabiti
V	: frekans
λ	: dalgaboyu
с	: ışık hızı
K _e	: elektronun kazandığı kinetik enerji
hv	: gelen fotonun enerjisi
E_{B}	: elektronun bağlanma enerjisi
т	: kütle
<i>m</i> _o	: elektronun durgun kütlesi
$d\Omega$: katı açı
c _{pj}	: lineer kombinasyon katsayısı
$\hat{J}_{j}(r_{1})$: Coulomb operatörü
$\hat{K}_{j}(r_{1})$: exchange (değiş-tokuş) operatörü
\mathcal{E}_{i}	: Lagrangian çarpanı
F	: Fock matrisi
С	: c_{pj} katsayılarından oluşan kare matris
S	: örtme matrisi
ε	: öz-uyumlu alan
Ζ	: çekirdek yükü
Z^*	: etkin çekirdek yükü
$\sigma_{_{nlm}}$: perdeleme sabiti
E_0	: taban durum enerjisi

LCAO	: atomik Orbitallerin Lineer Kombinasyonu
GTO	: Gaussian tipli orbitaller
STO	: Slater tipli orbitaller
HFR	: Hartree-Fock-Roothaan
\vec{p}	: elektron momentumu
Ā	: elektromanyetik alanın vektör potansiyeli
F(q,Z)	: atomik form faktörü
q	: foton momentum transfer vektörünün büyüklüğü
r _e	: klasik elektron yarıçapı
$\left(rac{d\sigma}{d\Omega} ight)_{Th}$: Thomson diferansiyel tesir kesiti
$\left(rac{d\sigma}{d\Omega} ight)_{_{KN}}$: Klein-Nishina diferansiyel tesir kesiti
S(q,Z)	: inelastik saçılma fonksiyonu
$\rho(r)$: elektron yoğunluğu
$\psi(ec{r})$: elektron dalga fonksiyonu
N/2	: elektron barındıran orbital sayısı
η_{j}	: doluluk oranı
$e^{i\overline{q}\overline{r}}$: düzlem dalga vektörü
$\chi_{nlm}(lpha,ec{r})$: atomik orbital
$S_{lm}(\theta, \varphi)$: küresel harmonik
$f_{nlm,n'l'm'}(\alpha,\beta;q)$: atomik form faktör integrali
${U}_{\scriptstyle nlm}\!\left(\!\gamma,ec{q} ight)$: Slater tipli atomik orbitallerin Fourier dönüşümü
$f_{_{nl}}(lpha,q)$: Slater tipli orbitallerin Fourier dönüşümünün radyal kısmı

1. GENEL BİLGİLER

1.1. Giriş

Ondokuzuncu yüzyıla kadar Newton mekaniği ve elektromanyetik teorinin bütün fiziksel olayları açıklamada başarılı olduğuna inanılıyordu. Ancak siyah cisim ışıması, fotoelektrik olay ve Compton olayları Newton mekaniğinin yetersiz olduğunu ortaya çıkardığı gibi yeni fizik olan kuantum mekaniğinin temellerinin atılmasına da sebep olmuştur. Kuantum fiziği ilerleyen yıllarda pek çok olayı oldukça başarılı bir şekilde açıklamış ve bu başarısından dolayı da teorik çalışmalar deneysel çalışmalara yardımcı olduğu için önem kazanmıştır. İlerleyen yıllarda, laboratuvarda çalışılması zor veya mümkün olmayan malzemeler ve olayların ortaya çıkmasıyla teorik çalışmalara duyulan ihtiyaç artmıştır.

Kuantum mekaniğinin oluşmasına sebep olan olaylardan Compton olayının açıklanması ile saçılma ve çarpışma olaylarına olan ilgi artmaya başlamıştır. Saçılma ve çarpışma olaylarında, malzeme üzerine foton veya parçacık demeti gönderilir ve malzemedeki değişikliğe bakılarak malzemenin yapısı hakkında bilgi sahibi olunmaya çalışılır. Laboratuvarda böyle bir çalışma yapılırken incelenen özelliğin enerjinin değişimine göre profiline bakılır. Böyle bir profili elde etmek için de oldukça fazla sayıda deney yapmak gerekir. Bu deneyleri bazı enerji değerlerinde yapmak mümkün olmayabilir. Sonuç olarak, incelenen özelliğin profilini laboratuvar ortamında oluşturmak oldukça zaman aldığı gibi, gerçekleştirilmesi de mümkün olmayabilir. Yukarıda ifade ettiğimiz sebeplerden dolayı, pek çok olayda olduğu gibi, çarpışma ve saçılma olaylarında da teorik çalışmalar önemlidir ve deneysel çalışmalara ışık tutmaktadır (Cooper vd., 2004).

1.2. Elektromanyetik Radyasyonun Madde ile Etkileşimi

Madde üzerine gönderilen foton; maddenin bağlı elektronları, serbest elektronları ve çekirdekleri ile etkileşir. Bu etkileşme sonucunda bazı önemli olaylar meydana gelir. Bu olaylar

- Elektromanyetik radyasyonun soğurulması,
- Elektromanyetik radyasyonun saçılması

olmak üzere iki ana başlık altında incelenebilir (Tannoudji vd., 1998).

1.2.1. Elektromanyetik Radyasyonun Soğurulması

Elektromanyetik radyasyonun soğurulması olayının en çok gözlemlenenleri

- Fotoelektrik Olay
- Çift Oluşumu Olayı

şeklinde sıralanabilir. Bu olayların meydana gelme ihtimalleri, gelen fotonun enerjisine bağlıdır. Gelen fotonun enerjisi 0.001 MeV ile 0.5 MeV arasında ise fotoelektrik olay, 1.02 MeV'den büyük ise çift oluşum gözlenmesi ihtimali artar (Tannoudji vd., 1998).

1.2.1.a. Fotoelektrik Olay

Fotoelektrik olay, hv enerjili bir fotonun, atomun bağlı elektronlarından biri tarafından soğurularak elektronun serbest hale geçmesi olayına denir. Serbest hale geçen elektrona ise fotoelektron denir. Fotoelektrik olay sırasında bütün foton enerjisini soğuran elektron

$$K_e = h\nu - E_B \tag{1.1}$$

kadarlık bir kinetik enerji kazanır. Burada K_e elektronun kazandığı kinetik enerji, hv gelen fotonun enerjisi ve E_B ise elektronun bağlanma enerjisidir. Serbest haldeki bir elektronda enerji ve momentum korunumlu olmayacağından, böyle bir elektronun foton soğurması mümkün değildir. Fakat bağlı elektronlarda durum farklıdır. Atom geri teper ve böylece momentumun korunması sağlanır. Atomun kütlesi çok büyük olduğundan geri tepme enerjisi çok küçüktür ve bu yüzden de kinetik enerji ifadesi ihmal edilmiştir (Tannoudji vd., 1998).

Şekil 1. Fotoelektrik olay

Düşük atom numaralı elementlerin bağlanma enerjileri de düşük olduğundan fotoelektrik etki bahsedilen fotonlar için güçsüz kalır. Z arttıkça bağlanma enerjisi ve dolayısıyla da fotoelektrik etki de artar (Tannoudji vd., 1998).

Fotoelektrik olay, atomun çevresinde tüm yörüngelerde meydana gelebilir. Foton enerjisinin yüksek olduğu durumlarda bu olayın iç yörüngelerde olma olasılığı artar. Buna göre fotoelektrik olay; düşük enerjilerde dış, yüksek enerjilerde ise iç yörüngelerde meydana gelmektedir. Foton enerjisi herhangi bir yörüngenin bağ enerjisine eşit olduğu durumda, etkileşme o yörüngede yoğunluk kazanmaktadır (Tannoudji vd., 1998).

1.2.1.b. Çift Oluşumu

Fotonların enerjilerini kaybettikleri olaylardan birisi de çift oluşumu olayıdır. Bu olay, bir fotonun bir elektron ile bir pozitrona dönüşmesi ile oluşur. Elektron ile pozitronun kütleleri ve yükleri büyüklük olarak eşit, fakat yükleri zıt işaretlidir. Bir elektronun veya pozitronun durgun kütle enerjisi $m_0c^2 = 0.511$ MeV'dir. Bu nedenle çift oluşumu olayının oluşabilmesi için foton enerjisinin en az 1.02 MeV olması gerekir. Bu olay meydana gelirken hiçbir korunum ilkesi bozulmaz. Yani; yük, çizgisel momentum ve toplam enerji korunur (Tannoudji vd., 1998).

Şekil 2. Çift oluşumu

1.2.2. Elektromanyetik Radyasyonun Saçılması

Elektromanyetik radyasyonun saçılması olayını saçılan foton enerjisine göre

- Koherent (Elastik) Saçılma
- İnkoherent (İnelastik) Saçılma

olmak üzere ikiye ayrılır (Tannoudji vd., 1998).

1.2.2.1. Koherent Saçılma

Koherent saçılma, fotonların enerjilerinde bir değişiklik olmadan atomdan saçılması olarak tanımlanabilir. Koherent saçılma, elastik veya Rayleigh saçılması olarak da adlandırılabilir. Bu saçılmada, gelen foton ile saçılan fotonun dalga boyları aynıdır. Gelen ve saçılan radyasyonun toplam şiddeti, her bir elektron tarafından saçılan radyasyonun genliklerinin toplamı ile bulunur. Bu saçılma; Rayleigh, Delbrück, Thomson ve nükleer rezonans saçılmaları olarak sınıflandırılır (Tannoudji vd., 1998).

a. Rayleigh Saçılması

Gelen foton bağlı bir elektron üzerine düştüğünde, atomdan elektron sökecek kadar enerji alamadığı hallerde Rayleigh saçılması meydana gelir (Tannoudji vd., 1998).

Şekil 3. Rayleigh Saçılması

Bu saçılmanın olabilmesi için, gelen fotonun enerjisinin, 0.1- 0.5 MeV aralığında olması gereklidir. Büyük enerjili fotonların hafif elementlerden saçılmasında Rayleigh saçılması, Compton saçılması yanında ihmal edilebilir. Rayleigh saçılması, elektronun etkileşmeden sonra orijinal pozisyonuna döndüğü saçılma olarak da tanımlanabilir (Tannoudji vd., 1998).

b. Delbrück Saçılması

Bu saçılmaya elastik nükleer potansiyel saçılma da denilmektedir. Delbrück saçılması; fotonun, çekirdeğin oluşturduğu Coulomb alanından saçılmasıdır. Bu olayda, çekirdek çevresindeki durgun Coulomb alanında bir elektron-pozitron çifti oluşur. Atomun tamamen geri tepmesiyle bu çiftin yok olması enerji ve faz bakımından, gelen fotonun aynısı olan yeni bir foton meydana getirir. Bu olayın etkisi oldukça küçük olduğundan deney sonuçlarında çok net olarak gözlenememektedir (Tannoudji vd., 1998).

c. Thomson Saçılması

Klasik olarak bir tek yük sistemi gibi düşünülen çekirdek, gelen dalga tarafından salındırılır. Çekirdeğin kütlesi çok büyük olduğundan bu etki çok küçüktür. Gelen fotonun dalga boyunun nükleer yarıçaptan çok büyük olması durumunda maksimum etki gözlenir (Tannoudji vd., 1998).

d. Nükleer Rezonans Saçılma

Nükleer rezonans saçılması, fotonun atom çekirdeği ile etkileşmesi sonucu meydana gelir. Bu olayda, çekirdek iki nükleer enerji seviyesi arasındaki farka eşit enerjiye sahip olan bir fotonun soğurulması ile çekirdek uyarılır. Daha sonra bu olayı çekirdeğin uyarılmış durumdan kurtulması takip eder (Tannoudji vd., 1998).

1.2.2.2. İnkohorent Saçılma

İnkohorent saçılmada gelen ve saçılan fotonlar arasında enerji farkı vardır. Yani gelen ve saçılan fotonların dalga boyları birbirinden farklıdır. Bu saçılmada fazlar arasında bir bağlantı yoktur. Bu sebeple de saçılan dalgalar arasında bir girişim gözlenemez. Bu durumda atom tarafından saçılan ışının toplam şiddeti, atomun her bir elektronu tarafından saçılma şiddetleri toplanarak elde edilir. İnkoherent saçılma; Compton saçılması, nükleer saçılma ve Raman saçılması olmak üzere üç çeşittir (Cooper vd., 2004; Tannoudji vd., 1998).

a. Compton Saçılması

Compton saçılması, ışığın tanecikli yapıda olduğunu gösteren olaylardan biridir. Bu olay, gama fotonunun atomun dış yörüngesindeki zayıf bağlı bir elektrona çarparak enerjisinin bir kısmını o elektrona vermesi ve geliş doğrultusu ile θ açısı yaparak saçılması ile oluşur (Cooper vd., 2004).

Şekil 4. Compton Saçılması

Compton olayında; gelen foton, durgun haldeki elektrona çarptıktan sonra gelen foton ile saçılan fotonun dalga boyları arasında değişiklik (kayma) meydana gelir. Buna göre; gelen fotonun dalga boyu λ ve saçılan fotonun dalga boyu λ' ise dalga boyları arasındaki kayma enerji ve momentumun korunumundan faydalanılarak

$$\Delta \lambda = \lambda' - \lambda = \lambda_c (1 - \cos \theta) \tag{1.2}$$

şeklinde yazılabilir. Burada λ_c Compton dalga boyudur ve

$$\lambda_c = \frac{h}{m_0 c} = 2,43.10^{-12} m \tag{1.3}$$

şeklinde tanımlanır. Denklem (1.2) ifadesinden de görüldüğü gibi, Compton saçılması sadece θ açısına bağlı olarak değişmektedir (Cooper vd., 2004).

Fotoelektrik olay genellikle K ve L tabakalarına ait elektronlarda baskın olmasına rağmen, Compton olayı dış tabaka elektronlarında daha baskındır. Compton saçılması, elektronun bağlanma enerjisinin, gelen fotonun enerjisi yanında ihmal edilecek kadar küçük olduğu durumlarda baskın olarak meydana gelir (Cooper vd., 2004).

b. Nükleer Saçılma

Nükleer saçılma; fotonun, atomun çekirdeği ile etkileşmesi sonucu meydana gelmektedir. Bu olayda 10 MeV'den daha büyük enerjili fotonların çekirdekle etkileşmesi sonucu çekirdekten bir nötron ve bir proton fırlatılır (Tannoudji vd., 1998).

c. Raman Saçılması

Fotonun moleküller tarafından soğurulmasıdır. Bu olayda hv enerjili bir foton soğurulur ve atom bir *n* durumundan bir *n'* durumuna uyarılır. Atom hv' enerjili bir foton yayınlar ve uyarılmış *a* durumundan son *b* durumuna döner. Atomun son durumu başlangıç durumundan farklı ise saçılma inkoherenttir ve bu olay Raman saçılması olarak bilinir (Tannoudji vd., 1998).

1.4. Saçılma Tesir Kesitleri ve Uygulama Alanları

Tesir kesiti, gelen hedef parçacıkla numunedeki parçacığın reaksiyona girme ihtimaliyetinin bir ölçüsüdür. Ölçülebilen bir nicelik olan tesir kesiti, hedef parçacığı çevreleyen hayali bir alanla temsil edilir. Bir hedef parçacığın tesir kesiti, söz konusu olayın tabiatına ve gelen parçacığın enerjisine bağlıdır. Bu nicelik, ışının madde ile etkileşmesine bağlı olarak, soğurma ve saçılma tesir kesiti olarak isimlendirilir (Griffiths, 2008).

Suni radyoizotopların üretilmesinde, soğurmada, saçılmada veya herhangi bir nükleer reaksiyonda gelen ışınlardaki parçacıklar hedef çekirdeğe çarptığı zaman neler olabileceği ihtimaliyetini ifade etmek için tesir kesitine ihtiyaç duyulmuştur. Tesir kesitinin tam olarak bilinmesi, karakteristik *K*, *L* ve *M* tabaka ve alt-tabaka *X*-ışını floresans tesir kesitlerinin deneysel olarak ölçülmesinde, atomların yapısı, yaş tayini, tahribatsız miktar analizlerinde, ilaç sanayi gibi fiziksel ve kimyasal birçok alanda kullanılmaktadır. Bununla birlikte bu ölçümler, fotoiyonizasyon tesir kesitleri, sıçrama oranı, *X*-ışını yayınlanma hızları ve floresans verim gibi fiziksel parametrelerin doğrudan kontrolünü sağlar (Griffiths, 2008).

1.5. Diferansiyel Tesir Kesiti

Gelen foton demeti hedef atomları ile etkileştiğinde, her zaman yalnızca bir tür etkileşme oluşturmazlar. Eğer birden fazla etkileşme olmuşsa, her bir tür için tesir kesiti genellikle farklı olacaktır. Bu özel tesir kesitlerine kısmi tesir-kesitleri denir ve toplam tesir kesiti bunların toplamına eşittir. Hedef materyal atomları fotonlarla etkileştikten sonra hedeften çıkan fotonlar, ya da parçacıklar çok kez anizotropik dağılım gösterirler ve aynı zamanda farklı açılarda farklı enerjilere sahip olurlar. Geliş doğrultusu ile θ açısı yaparak saniyede $d\Omega$ katı açısı içinde giden parçacıkların sayısının bilinmesi önemlidir. Bunun

hesabının yapılabilmesi için açıya bağlı başka bir tesir-kesiti türü sunulur. Bu yeni tesir kesitine diferansiyel tesir kesiti adı verilir ve birim katı açı başına düşen tesir-kesiti olarak tanımlanır (Şekil 5) (Griffiths, 2008).

Şekil 5. Birim katı açı

Diferansiyel ve toplam tesir kesiti için aşağıdaki ifadeler kolayca elde edilebilir:

Diferansiyel tesir kesitini $\frac{d\sigma}{d\Omega}$ (tesir-kesiti / steradyan) ile gösterirsek, toplam tesir kesiti;

$$\sigma_t = \int \frac{d\sigma}{d\Omega} d\Omega \tag{1.4}$$

şeklinde bulunur. Burada $d\Omega$ değeri Şekil 5 yardımı ile

$$d\Omega = \frac{a lan}{\left(u z a k l k / h l z\right)^2} = \frac{dA}{r^2} = \sin \theta \, d\theta \, d\phi \tag{1.5}$$

şeklinde elde edilir. Toplam katı açı ise $\Omega = 4\pi$ 'dir. Buna göre; diferansiyel tesir kesiti için

$$\frac{d\sigma}{d\Omega} = \frac{\text{birim zamanda } d\Omega \text{ açısı içine saçılan parçacık sayısı}}{\text{birim zamanda birim kesitten gelen parçacık sayısı}} = \frac{dN}{J}$$
(1.6)

ifadesi yazılabilir (Griffiths, 2008).

1.6. Hartree-Fock Teorisi

Rölativistik olmayan zamandan bağımsız Schrödinger denkleminin çözümü, kuantum kimyasının önemli problemlerindendir. Tek elektronlu sistemler için tam ve analitik bir çözüm mümkün iken çok elektronlu sistemler için böyle bir çözüm ancak yaklaşık yöntemlerle mümkündür. Çok elektronlu sistemlerin Schrödinger denkleminin çözümü için ilk olarak 1927 yılında Hartree çarpım dalga fonksiyonları önerildi. Bu yaklaşıma göre; *N* elektronlu bir sistemin dalga fonksiyonu tek elektron dalga fonksiyonlarının çarpımı şeklinde yazılır:

$$\psi(\vec{x}_1, \vec{x}_2 \dots \vec{x}_N) = \phi(\vec{x}_1)\phi(\vec{x}_2)\dots\phi(\vec{x}_N) = \prod_{i=1}^N \phi_i(\vec{x}_i).$$
(1.7)

Bu denklemde $\phi_i(\vec{x}_i)$ i. elektronu temsil eden dalga fonksiyonudur ve spin orbitali olarak tanımlanır \vec{x}_i ise i. elektronun spin ve konum koordinatlarını ifade eder. Konum koordinatları küresel koordinatlarda ifade edilir. Yani $\vec{x} = (r, \theta, \varphi; m_s)$ 'dır. Burada m_s iki değer alabilir. Bu değerler spin yukarı (1/2, α yada \uparrow) ve spin aşağı (-1/2, β yada \downarrow) 'dır. Bu yaklaşıma göre dalga fonksiyonu elektronların yer değiştirmesine göre antisimetrik değildir. Bu yüzden Pauli ilkesini sağlamaz (Helgaker vd., 2000).

Daha iyi bir dalga fonksiyonu için Pauli ilkesini de sağlayan bir yaklaşım Slater determinant dalga fonksiyonu yaklaşımıdır. Hartree metodunun eksikliklerini dikkate alarak Slater determinant dalga fonksiyonunu kullanan metot ise Hartree-Fock metodudur. Hartree-Fock metodunun kabulleri

- 1) Born-Oppenheimer Yaklaşımı
- 2) Slater Determinantı
- 3) Varyasyon Metodu
- 4) LCAO (Linear Combination of Atomic Orbital) Metodu
- 5) Merkezi Alan Yaklaşıklığı

şeklinde sıralanabilir (Helgaker vd., 2000). Aşağıda bu kabuller incelenmiştir.

1.6.1. Born-Oppenheimer Yaklaşımı

Çekirdekler elektronlara göre yaklaşık olarak 1800 kat daha ağır oldukları için elektronlar çekirdeklerin hareketini hissetmezler. Yani, çekirdeklerin kinetik enerjisi

elektronların kinetik enerjisinin yanında ihmal edilebilecek boyuttadır. Bu yaklaşıma Born-Oppenheimer yaklaşımı denir (Helgaker vd., 2000).

Herhangi bir atomik veya moleküler sistemin Schrödinger denklemi

$$\hat{H}\Psi\left(\vec{r},\vec{R}\right) = E\Psi\left(\vec{r},\vec{R}\right) \tag{1.8}$$

şeklinde yazılabilir. Burada $\Psi(\vec{r}, \vec{R})$ sistemi temsil eden dalga fonksiyonudur ve elektronlar ile çekirdeklerin koordinatlarını içerir. Denklem (1.8)'de Hamiltoniyen işlemcisi ise

$$\hat{H} = -\frac{1}{2} \sum_{I=1}^{M} \nabla_{I}^{2} - \frac{1}{2} \sum_{i=1}^{N} \nabla_{i}^{2} - \sum_{I=1}^{M} \sum_{i=1}^{N} \frac{Z_{I}}{r_{Ii}} + \sum_{i=1}^{N-1} \sum_{j>i}^{N} \frac{1}{r_{ij}} + \sum_{I=1}^{M-1} \sum_{J>I}^{M} \frac{Z_{I}Z_{J}}{R_{IJ}}$$
(1.9)

şeklinde tanımlanır. Born-Oppenheimer yaklaşımına göre çekirdeklerin kinetik enerjisi elektronların kinetik enerjisinin yanında ihmal edilirse toplam Hamiltoniyen

$$\hat{H} = -\frac{1}{2} \sum_{i=1}^{N} \nabla_{i}^{2} - \sum_{I=1}^{M} \sum_{i=1}^{N} \frac{Z_{I}}{r_{Ii}} + \sum_{i=1}^{N-1} \sum_{j>i}^{N} \frac{1}{r_{ij}} + \hat{H}_{\zeta-\zeta}$$
(1.10)

olur. Burada \hat{H}_{c-c} çekirdekler arası Coulomb tipli etkileşmeyi ifade eden operatördür ve sadece çekirdekler arası koordinatları içerir:

$$\hat{H}_{\zeta-\zeta} = \sum_{I=1}^{M-1} \sum_{J>I}^{M} \frac{Z_I Z_J}{R_{IJ}}$$
(1.11)

Denklem (1.10) ile verilen Hamiltoniyen ifadesi

$$\hat{H} = \hat{H}_{el} + \hat{H}_{C-C}$$
(1.12)

şeklinde

$$\hat{H}_{el} = -\frac{1}{2} \sum_{i=1}^{N} \nabla_i^2 - \sum_{I=1}^{M} \sum_{i=1}^{N} \frac{Z_I}{r_{li}} + \sum_{i=1}^{N-1} \sum_{j>i}^{N} \frac{1}{r_{ij}}$$
(1.13)

Yeniden ifade edilebilir. Burada (1.13) ile verilen \hat{H}_{el} ifadesi elektronik Hamiltoniyeni olarak isimlendirilir. Son durumda Schrödinger denklemi çekirdeklerin ve elektronik

hareketlerin Schrödinger denklemi olmak üzere ikiye ayrılır. Çekirdeklerin Schrödinger denklemi kolayca çözülebiliyor iken, elektronik Schrödinger denklemi bazı yaklaşıklıklar yapılarak çözülebilir (Helgaker vd., 2000).

1.6.2. Slater Determinantı

N-elektronlu bir sistem için Pauli ilkesini sağlayan dalga fonksiyonu

$$\psi(\vec{x}_{1,}, \vec{x}_{2}...\vec{x}_{N}) = \frac{1}{\sqrt{N!}} \begin{vmatrix} \phi_{1}(\vec{x}_{1}) & \phi_{2}(\vec{x}_{1}) & \dots & \phi_{N}(\vec{x}_{1}) \\ \phi_{1}(\vec{x}_{2}) & \phi_{2}(\vec{x}_{2}) & \dots & \phi_{N}(\vec{x}_{2}) \\ \vdots & \vdots & \vdots & \vdots \\ \phi_{1}(\vec{x}_{N}) & \phi_{2}(\vec{x}_{N}) & \dots & \phi_{N}(\vec{x}_{N}) \end{vmatrix}$$
(1.14)

şeklinde verilebilir (Helgaker vd., 2000). Bu dalga fonksiyonuna Slater determinant dalga fonksiyonu adı verilir. Slater determinant dalga fonksiyonu aşağıdaki özelliklere sahiptir:

- 1) Satırlar bir elektronun farklı orbitallerde bulunma olasılığını gösterir.
- 2) Sütunlar bir orbitalde farklı elektronların bulunma olasılığını gösterir.
- 3) Determinantta iki satırın yer değiştirmesi durumunda determinantın işareti değişir. Bu durum dalga fonksiyonunun antisimetrikliğine karşılık gelir.
- 4) İki tane özdeş sütun varsa determinantın değeri sıfır olur. Bu durum Pauli dışarlama ilkesine karşılık gelir.

Slater determinantındaki her bir eleman $\phi_i(\vec{x}_i)$ spin orbitali olarak isimlendirilir ve uzay ile spinin koordinatlarını içerir:

$$\phi_i(\vec{x}_i) = \phi_i(\vec{r}_i)\sigma(s) \tag{1.15}$$

Burada $\phi_i(\vec{r}_i)$ moleküler orbital (baz seti) ve $\sigma(s)$ ise spin fonksiyonu olarak isimlendirilir (Helgaker vd., 2000).

1.6.3. Varyasyon Metodu

Varyasyon yöntemi başlangıçta tahmin ettiğimiz dalga fonksiyonunu geliştirmeyi ve taban durum enerjisini minimize ederek bulmayı amaçlayan bir yöntemdir. Önce tahmini olan ve deneme fonksiyonu denilen fonksiyonun kalitesinin belirlenmesi için bir kriter ortaya koyar ve sonra bunu en iyi hale getireceğini gösterir. Sistemin taban durum enerjisi E_0 olsun ve Rayleigh oranı denilen

$$E = \langle H \rangle = \frac{\int \psi_d^* \hat{H} \psi_d \, dv}{\int \psi_d^* \psi_d \, dv} \tag{1.16}$$

integralini inceleyelim. Varyasyon metoduna göre $E > E_0$ 'dır. E 'nin değeri ne kadar küçük ise, bu enerji taban durumu enerjisine o kadar yakındır ve bunun sonucu olarak, ψ_d deneme fonksiyonu taban durumu dalga fonksiyonuna o kadar yakındır (Helgaker vd., 2000).

Bir sistemin dalga fonksiyonuna ulaşmak için içindeki değişkenler, Rayleigh oranı minimum değerini alıncaya kadar değiştirilir. Sonra *E*'yi minimum yapan değişkenlerin değerleri en iyi dalga fonksiyonunu oluşturmak için kullanılır (Helgaker vd., 2000).

1.6.4. LCAO (Linear Combination of Atomic Orbital) Metodu

LCAO metoduna göre; moleküler orbitaller, bir elektronlu fonksiyonların sonlu lineer toplamı şeklinde yazılır (Roothaan, 1951):

$$\phi_j(\vec{r}) = \sum_p c_{pj} \chi_p(\alpha_p, \vec{r}).$$
(1.17)

Bu ifadede; $\phi_j(\vec{r})$ *j*. moleküler orbital ve $\chi_p(\alpha_p, \vec{r})$ ise tek elektronlu dalga fonksiyonu veya baz fonksiyonudur. Hesaplanacak olan atomik veya moleküler özelliğin doğru hesabı, kullanılan baz fonksiyonunun seçimine oldukça duyarlıdır. Literatürde yaygın olarak kullanılan baz fonksiyonları Gaussian ve Slater tipli orbitallerdir.

1.6.4.1. Gaussian Tipli Orbitaller (GTO):

Gaussian tipli orbitaller

$$G_{nlm}(\xi, r) = A_{nlm} e^{-\xi r^2} S_{lm}(\theta, \varphi)$$
(1.18)

ifadesi ile verilir (Boys, 1950). Burada A_{nlm} normalizasyon sabiti ve $S_{lm}(\theta, \phi)$ ise reel veya kompleks küresel harmoniklerdir ve

$$S_{lm}(\theta,\varphi) = P_{l|m|}(\cos\theta)\Phi_m(\varphi)$$
(1.19)

şeklinde tanımlanır (Jeffrey and Dai, 2008). Burada $P_{l|m|}(\cos \theta)$ normalize olmuş bağlı Legendre fonksiyonlarıdır ve analitik ifadesi

$$P_{l|m|}(\cos\theta) = \frac{\left(1-x^2\right)^{\frac{|m|}{2}}}{2^l} \left[\frac{(2l+1)(l-|m|)!}{2(l+|m|)!}\right]^{\frac{1}{2}} \sum_{k} \frac{(-1)^k (2l-2k)!}{k!(l-k)!(l-|m|-2k)!} x^{l-|m-2k|} (1.20)$$

biçimindedir (Jeffrey and Dai, 2008). Denklem (1.19) ifadesindeki $\Phi_m(\varphi)$ ise, kompleks küresel harmonikler için

$$\Phi_m(\varphi) = \frac{1}{\sqrt{2\pi}} e^{im\varphi} \tag{1.21}$$

ve reel küresel harmonikler için

$$\Phi_m(\varphi) = \frac{1}{\sqrt{\pi(1+\delta_{m0})}} \begin{cases} \cos|m|\varphi \quad ; m \ge 0 \text{ ise} \\ \sin|m|\varphi \quad ; m < 0 \text{ ise} \end{cases}$$
(1.22)

şeklinde verilmektedir (Jeffrey and Dai, 2008).

1.6.4.2. Slater Tipli Orbitaller (STO);

Slater tipli orbitaller

$$\chi_{nlm}(\xi, r) = N_n(\xi) r^{n-1} e^{-\xi r} S_{lm}(\theta, \varphi)$$
(1.23)

ile ifade edilir (Slater, 1930; Zener, 1930). Burada $S_{lm}(\theta, \varphi)$ küresel harmoniklerdir ve (1.19) denkleminde ifade edilmiştir. $N_n(\xi)$ ise normalizasyon sabitidir ve

$$N_n(\xi) = \frac{(2\xi)^{n+\frac{1}{2}}}{\sqrt{(2n)!}}$$
(1.24)

şeklinde tanımlanır (Slater, 1930; Zener, 1930). Bu denklemlerde *n*, *l* ve *m* kuantum sayıları, *r* atomik yörüngesinin merkeze olan uzaklığı, ξ ise orbital üstelidir ve Hartree-Fock denklemlerinin çözümünden elde edilir.

STO ve GTO'ların Karşılaştırılması

Bu baz fonksiyonlarından en yaygın kullanılanı GTO fonksiyonudur. Gaussian baz fonksiyonlarının kullanılmasının en büyük avantajı çok merkezli moleküler integrali hesabında, matematiksel açıdan kolaylık sağlamasıdır. Fakat GTO'ler çekirdeğe yakın ve çekirdekten uzak bölgelerde deneysel sonuçlarla uyum göstermemektedir (Özdoğan and Ruiz, 2008).

Yaygın olarak kullanılan diğer baz fonksiyonu STO'dur. Bu fonksiyonlar çekirdeğe yakın ve çekirdekten uzak bölgelerdeki sınır şartlarında, deneysel sonuçlarla uyum sağlamaktadır. Moleküler sistemlerin fiziksel durumlarını ifade etmek için STO'ler GTO'lardan daha çok tercih edilmektedir (Özdoğan and Ruiz, 2008).

1.6.4.3. Slater Tipli Orbitallerin Fourier Dönüşümü

Slater tipli atomik orbitallerin Fourier dönüşümü

$$U_{nlm}(\alpha, \vec{q}) = (2\pi)^{-3/2} \int \chi_{nlm}(\alpha, \vec{r}) e^{-i\vec{q}\vec{r}} d^3r$$
(1.25)

ile verilir. Burada düzlem dalga için

$$e^{-i\bar{q}\bar{r}} = 4\pi \sum_{L=0}^{\infty} \sum_{M=-L}^{L} (-i)^{L} j_{L}(qr) Y_{LM}(\hat{p}) Y_{LM}^{*}(\hat{r})$$
(1.26)

ifadesi ve STO'lar için denklem (1.23) kullanılırsa, STO'ların Fourier dönüşümü için

$$U_{nlm}(\alpha, \vec{q}) = (-i)^l f_{nl}(\alpha, q) S_{lm}(\theta, \varphi)$$
(1.27)

ifadesi elde edilir. Burada $S_{lm}(\theta, \varphi)$ küresel harmoniklerdir, $f_{nl}(\alpha, q)$ ise Slater tipli orbitallerin Fourier dönüşümünün radyal kısmıdır ve

$$f_{nl}(\alpha, \vec{q}) = \frac{1}{(q^2 + \alpha^2)^{n+1}} \sum_{s=0}^{E\left(\frac{n-l}{2}\right)} B_{nl}^s(\alpha) q^{l+s}$$
(1.26)

ile ifade edilir. Burada $B_{nl}^{s}(\alpha)$ ve $E\left(\frac{n}{2}\right)$

$$B_{nl}^{s}(\alpha) = \frac{(-1)^{s}}{\sqrt{\pi}} 2^{n+l+1} \alpha^{2n-l-2s+\frac{1}{2}} \frac{F_{2l+2s+1}(n+l+1)F_{s}(l+s)}{\sqrt{F_{l}(2l)F_{n-l}(2n)F_{n-l}(n+l)}}$$
(1.27)

$$E\left(\frac{n}{2}\right) = \frac{n}{2} - \frac{1}{4}\left[1 - (-1)^n\right] = \begin{cases} \frac{n}{2} & ;n \ cift \ ise\\ \frac{n-1}{2} & ;n \ tek \ ise \end{cases}$$
(1.28)

şeklinde tanımlanır (Geller, 1963).

1.6.5. Merkezi Alan Yaklaşımı

Bu yaklaşıma göre; her bir elektron geride kalan elektronların ve çekirdeğin ortalama potansiyelinde hareket eder. Bir elektron, diğer elektronlar tarafından itilirken çekirdek tarafından çekilir. Çekirdeği diğer elektronların perdelemesinden dolayı, elektron tarafından hissedilen çekirdek yüküne ya da bir elektron tarafından hissedilen yüke "etkin çekirdek yükü" denir. Etkin çekirdek yükü $Z^* = Z - \sigma_{nlm}$ eşitliği ile verilir. Burada Z gerçek çekirdek yüküdür yani elementin atom numarası ve σ_{nlm} ifadesine perdeleme sabiti denir. Perdeleme sabitine bağlı üstel ifade;

$$\xi_{nlm} = \frac{Z^*}{n^*} = \frac{Z - \sigma_{nlm}}{n^*}$$
(1.29)

şeklinde ifade edilir. n^* etkin kuantum sayısıdır. Perdeleme sabiti ile ilgili kurallar ilk defa Slater tarafından ifade edilmiştir. Perdeleme sabitleri aşağıdaki deneysel kurallara göre tayin edilmektedir (Helgaker vd., 2000): 1. Baş kuantum sayısı yerine etkin kuantum sayısı alınır.

n	1	2	3	4	5	6
n^*	1	2	3	3.7	4.0	4.2

2. Orbitaller aşağıdaki gibi gruplara ayrılır.

(1s), (2s,2p), (3s,3p), (3d), (4s,4p), (4d), (4f), (5s,5s), ...

Burada 1,2,3... sayıları *n* baş kuantum sayılarını göstermektedir. Her parantez içi bir grubu belirtir.

- **3.** Göz önüne alınan orbitaller *s* ve *p* orbitallerine ait ise aşağıdaki etkiler göz önüne alınır.
 - **a.** Söz konusu elektrondan daha dış orbitallerde bulunan elektronlar için, Slater perdeleme sabiti "0" alınır veya perdelemeye katkısı yoktur.
 - b. Söz konusu elektron ile aynı grupta bulunan elektronlar için; *1s* elektronu için
 0.30, diğer orbital elektronları için 0.35 büyüklüğünde kabul edilir.
 - c. Dikkate alınan elektronun baş kuantum sayılı (s, p) gruplarında bulunan elektronların perdelemeye katkısı 0.85'dir. Daha alt tabakadaki s ve p elektronların perdeleme katkısı "1" alınır.
 - **d.** Göz önüne alınan orbitaller *d* ve *f* orbitallerine ait ise, incelenen elektron ile aynı tabakada olsa bile ilgili sabit 1.0 alınır.

1.7. Literatür Özeti

Atomların inelastik saçılma fonksiyonlarının temeli Waller Hartree teorisine dayanır (Waller I and Hartree D R, 1929). Periyodik tablodaki tablodaki atomların inelastik saçılma fonksiyonları Cromer (Cromer D T, 1969) ve Cromer ve Mann (Cromer and Mann, 1967) tarafından relativistik olmayan Hartree-Fock metodu ile hesaplanmıştır. $1 \le Z \le 100$ aralığındaki atomların inelastik saçılma fonksiyonları atomların küresel simetrik yük yoğunluğuna sahip oldukları kabulü yapılarak Hubbel tarafından hesaplanmıştır. Cromer, Cromer ve Mann ve Hubbel'in çalışmalarında ortaya çıkan yardımcı moleküler integraller numerik olarak hesaplanmıştır. Yukarıda bahsedilen hatalı kabullerden dolayı periyodik tablodaki atomların inelastik saçılma fonksiyonlarının değerlerinin analitik metotlarla güncellenmesi gerekmektedir.

1.8. Tezin Amacı

Bu çalışmada; fiziğin pek çok alanında uygulama alanı olan atomların inelastik saçılma fonksiyonu ve inelastik saçılma diferansiyel tesir kesiti, Hartree-Fock-Roothaan metodu ile matematiksel olarak incelenecektir.

Saçılma ile ilgili literatür çalışmalarında atomların yaklaşık olarak küresel elektron dağılımına sahip olduğu kabul edilir. Bu çalışmada, literatürdeki çalışmalardan farklı olarak atomların elektron dağılımları ile ilgili bir sınırlama getirilmeyecektir.

Elektronik yapı ve atomik-moleküler özellik hesaplamalarında baz fonksiyonu olarak çoğunlukla Gaussian tipli orbitaller kullanılır. Çünkü Gaussian tipli orbitaller kullanıldığında ortaya çıkan moleküler integraller, çözümü çok kolay olan integrallerdir. Ancak Gaussian tipli orbitaller çekirdeğe yakın ve çekirdekten çok uzak mesafelerde elektronu çok iyi temsil etmediği için bu şekilde elde edilecek sonuçlar da güvenilir değildir. Slater tipli atomik orbitaller elektronu en iyi temsil eden dalga fonksiyonları olmasına rağmen, kullanıldıklarında ortaya çıkan moleküler integraller çözülmesi çok zor integrallerdir. Bu yüzden Slater tipli atomik orbital kullanımından çoğunlukla kaçınılır veya kullanıldığında ortaya çıkan yardımcı moleküler integraller nümerik olarak hesaplanır. Bu çalışmada; atomların inelastik saçılma diferansiyel tesir kesiti hesaplanırken baz fonksiyonu olarak Slater tipli atomik orbitaller kullanılacak ve ortaya çıkan yardımcı moleküler integraller analitik olarak hesaplanacaktır.

İnelastik saçılma fonksiyonu ve inelastik saçılma diferansiyel tesir kesiti için elde edilecek olan ifadelerin Maple sembolik programlama dilinde programları yapılacak ve bu program aracılığı ile atomların inelastik saçılma fonksiyonları ve inelastik saçılma diferansiyel tesir kesitleri q'ya bağlı olarak hesaplanıp tablolar halinde verilecektir. Bu çalışmada literatürdeki değerlerden deneye daha yakın sonuçlar elde edecek bir paket program hesaplaması amaçlanmaktadır.

2. YAPILAN ÇALIŞMALAR

2.1. Giriş

X-ışınlarının atom ve moleküllerle etkileşimi atom ve moleküllerin elektronik yapısı, kimyasal çevresi ve bunun gibi pek çok parametre hakkında bilgiler verir. Bu bölümde $2 \le Z \le 54$ aralığındaki atomların *X*-ışını bölgesinde inelastik saçılma fonksiyonları ve inelastik saçılma diferansiyel tesir kesitleri ele alınıp, foton-momentum transferlerinin keyfi değerlerinde HFR metodu ile hesaplanacak ve var olan literatür değerleriyle karşılaştırmalı olarak verilecektir. Bu hesaplamalara başlamadan önce *X*-ışını bölgesinde atom-foton etkileşimine kısaca değinilecektir.

2.2. X-ışını Bölgesinde Atom-Foton Etkileşimi

X-ışını enerjilerinde atom-foton etkileşimleri şekilde gösterildiği gibi; fotoabsorbsiyon, elastik ve inelastik saçılmalar olmak üzere üçe ayrılabilir. Gelen fotonun enerjisi K tabakası iyonizasyon enerjisinden düşük ise görünür ve ultraviole enerji bölgelerinde olduğu gibi fotoabsorbsiyon etkin olur. Enerjinin artmasıyla fotoabsorbsiyon tesir kesiti $E^{-7/2}$ şeklinde azalır ve çoğunlukla düşük elementler için MeV boyutundaki çift oluşumu ve nükleer rezonans olaylarına nazaran saçılma daha etkin olur. Fotoabsorbsiyon, elastik (Rayleigh), inelastik (Compton) saçılmaları radyasyon alanı ile atomdaki elektron arasındaki en düşük mertebeli etkileşimlerdir (Schüelke, 2007).

Rölativistik olmayan etkileşim Hamiltoniyeni

$$H_{\rm int} = \frac{e^2}{2mc^2} A^2 - \frac{e}{mc^2} \vec{p}\vec{A}$$
(2.1)

ile verilir. Burada \vec{p} elektron momentumu ve \vec{A} ise elektromanyetik alanın vektör potansiyelidir. Foton anhilasyon (annihilation) ile oluşan fotoabsorbsiyon yukarıdaki ifade de $\vec{p}\vec{A}$ ile temsil edilmiştir. Saçılma olayında fotonlar korunur ve bu yüzden \vec{A} potansiyeli çift sayıda meydana gelir. Bunun sonucu olarak elastik ve inelastik saçılma olayları A^2 terimini içerir. A^2 terimi ve ikinci mertebeden olan $\vec{p}\vec{A}$ terimleri Feynmann diyagramlarıyla görülebilir. Birinci mertebeden olan A^2 saçılması "Sagull" diyagramıdır ve rezonanstan uzak bölgelerde etkin olur. İkinci ve üçüncü diyagramlar ikinci mertebe olan $\vec{p}\vec{A}$ etkileşimlerinden kaynaklanır (Tannoudji vd., 1998).

2.3. İnelastik Saçılma Diferansiyel Tesir Kesitlerinin Hesaplanması

Fotoabsorbsiyon olayının aksine serbest atomdan fotonların saçılması ile ilgili literatür oldukça sınırlıdır. Bunun sebebi saçılma tesir kesitinin Thomson tesir kesiti mertebesinde $(0.6652 \times 10^{-24} cm^2)$ ve fotoabsorbsiyon tesir kesitine göre düşük olmasıdır. Elastik (Rayleigh) ve inelastik (Compton) saçılması olayları sırasıyla form faktörleri ve inelastik saçılma fonksiyonları ile ifade edilirler. Polarize olmayan bir demet için elastik saçılmayı temsil eden elastik saçılma diferansiyel tesir kesiti form faktörü cinsinden

$$\left(\frac{d\sigma}{d\Omega}\right)_{elastik} = \left(\frac{d\sigma}{d\Omega}\right)_{Th} \left|F(q,Z)\right|^2$$
(2.2)

ve inelastik saçılmayı temsil eden inelastik saçılma diferansiyel tesir kesiti ise

$$\left(\frac{d\sigma}{d\Omega}\right)_{inelastik} = \left(\frac{d\sigma}{d\Omega}\right)_{Th-KN} S(q,Z)$$
(2.3)

şeklinde ifade edilir. (2.2) denkleminde $\left(\frac{d\sigma}{d\Omega}\right)_{Th}$ ile ifade edilen parametre Thomson diferansiyel tesir kesitidir ve

$$\left(\frac{d\sigma}{d\Omega}\right)_{Th} = \frac{1}{2}r_e^2\left(1 + \cos^2\theta\right)$$
(2.4)

ile verilir. Burada *r*_e ise

$$r_e = \frac{e^2}{4\pi\varepsilon_0 m_e c^2} = 2,818 \times 10^{-15} \,\mathrm{m}$$
(2.5)

ile verilen klasik elektron yarıçapı ve θ ise saçılma açısıdır. (2.2) denklemindeki q parametresi foton momentum transfer vektörünün büyüklüğüdür ve

$$q = 4\pi \frac{\sin(\theta/2)}{\lambda} \tag{2.6}$$

ifadesi ile verilir ve F(q, Z) ise

$$F(q,Z) = \sum_{j=1}^{Z} \left\langle e^{i\vec{q}.\vec{r}_j} \right\rangle$$
(2.7)

ile tanımlanan atomik form faktörüdür ve elektron yoğunluğunun ters Fourier dönüşümünü temsil eden tek-elektronlu bir saçılma parametresidir (Kim and Inokuti, 1968).

Denklem (2.3)'te verilen $\left(\frac{d\sigma}{d\Omega}\right)_{KN}$ Klein-Nishina veya Thomson diferansiyel tesir kesitidir. Klein-Nishina diferansiyel tesir kesiti

$$\left(\frac{d\sigma}{d\Omega}\right)_{K-N} = \frac{r_e^2}{2} \frac{E'^2}{E} \left[\frac{E}{E'} + \frac{E'}{E} - \sin^2\theta\right]$$
(2.8)

ile verilir. Burada *E* gelen fotonun enerjisi ve *E'* ise saçılan fotonun enerjisidir. Denklem (2.3)'te S(q,Z) ile verilen parametre ise

$$S(q,Z) = \sum_{j=1}^{Z} \sum_{k=1}^{Z} \left\langle e^{i\bar{q}\bar{r}_{jk}} \right\rangle - \left| F(q,Z) \right|^2$$
(2.9)

şeklinde tanımlanan ve iki elektronlu bir saçılma parametresi olan inelastik saçılma fonksiyonudur (Cooper vd., 2004; Griffiths, 2008). Burada F(q,Z) elastik saçılma fonksiyonu veya atomik form faktörü olarak isimlendirilir ve

$$F(q,Z) = \int \rho(r)e^{i\vec{q}\vec{r}}d^3r$$
(2.10)

şeklinde ifade edilir. Burada $\rho(r) = \psi^*(\vec{r})\psi(\vec{r})$ elektron yoğunluğu, $\psi(\vec{r})$ taban durum dalga fonksiyonu ve q ise foton-momentum transfer vektörünün büyüklüğüdür (Kim and Inokuti, 1968).

2.4. İnelastik Saçılma Fonksiyonunun Hesaplanması

Denklem (2.9) ile tanımlanan inelastik saçılma fonksiyonu aynı zamanda

$$S(q,Z) = Z - F(q) \tag{2.11}$$

şeklinde verilebilir. Burada F(q) aşağıdaki gibi verilir:

$$F(q) = 2\sum_{j=1}^{N/2} \eta_j G_{jj}(q)$$
(2.12)

Burada N/2 elektron barındıran orbital sayısı, Z elektron sayısı, η_j ise

$$\eta_{j} = \begin{cases} 1 & \text{; } j.\text{nci orbital tam dolu ise} \\ 1/2 & \text{; } j.\text{nci orbital yan dolu ise} \end{cases}$$
(2.13)

ile tanımlanan doluluk oranı, $G_{jj}(q)$

$$G_{jj}(q) = \left| F_{jj}(\vec{q}) \right|^2 = \frac{1}{4\pi} \int F_{jj}^*(\vec{q}) F_{jj}(\vec{q}) d\Omega$$
(2.14)

ve $F_{jj}(q)$ ise

$$F_{jj}(q) = \int \psi_{j}^{*}(\vec{r}) e^{i\vec{q}\vec{r}} \psi_{j}(\vec{r}) d^{3}r$$
(2.15)

şeklinde verilen moleküler orbitallerin form faktörü katkısıdır (Benesch and Malli, 1968).

2.5. Moleküler Orbitallerin Form Faktör Katkısının Hesaplanması

Denklem (2.15) ile verilen moleküler orbitallerin form faktör katkısını hesaplayabilmek için LCAO dalga fonksiyonlarının

$$\psi_{j}(\vec{r}) = \psi_{n_{j}l_{j}m_{j}}(\vec{r}) = \sum_{p=1}^{M} c_{jp} \chi_{n_{p}l_{j}m_{j}}(\alpha_{p}, \vec{r})$$
 (2.16)

tanımı (Roothaan, 1951) kullanılırsa,

$$F_{jj}(q) = \sum_{p=1}^{M} c_{jp} \sum_{s=1}^{M} c_{js} f_{n_{p}l_{j}m_{j}, n_{s}l_{j}m_{j}}(\alpha_{p}, \alpha_{s}; q)$$
(2.17)

ifadesi elde edilir. Burada $f_{nlm,n'lm}(\alpha,\beta;q)$ atomik form faktörü integralidir ve

$$f_{nlm,n'lm}(\alpha,\beta;q) = \int \chi^*_{nlm}(\alpha,\vec{r}) e^{i\vec{q}\vec{r}} \chi_{n'lm}(\beta,\vec{r}) d^3r \qquad (2.18)$$

şeklinde ifade edilir. (2.18) denkleminde $e^{i\vec{q}\vec{r}}$ düzlem dalga vektörüdür ve

$$e^{i\bar{q}\bar{r}} = \sum_{L=0}^{\infty} i^L \sqrt{4\pi(2L+1)} j_L(qr) Y_{L0}(\theta_r, \varphi_r)$$
(2.19)

ile verilir (Jeffery, 2008). Düzlem dalga ifadesi, $\chi_{nlm}(\alpha, \vec{r})$ atomik orbital tanımı ve açısal integrallerle ilgili olarak da

$$C^{L}(lm, l'm') = \sqrt{\frac{4\pi}{2L+1}} \int_{\Omega} Y^{*}_{LM}(\Omega) Y^{*}_{lm}(\Omega) Y_{l'm'}(\Omega) d\Omega$$
(2.20)

Gaunt katsayısı ifadesi (Gaunt, 1929), (2.18) denkleminde kullanılırsa,

$$f_{nlm,n'lm}(\alpha,\beta;q) = N_n(\alpha)N_{n'}(\beta)\sum_{L=0}^{2l} {}^{(2)}(-1)^{\frac{L}{2}}G^L(lm,lm)D_{n+n',L}(\alpha+\beta;q)$$
(2.21)

ifadesini elde ederiz. Burada $G^{L}(lm, lm)$ Gaunt ifadesidir ve

$$G^{L}(lm, lm) = \sqrt{4\pi(2L+1)}C^{L}(lm, lm)$$
(2.22)

ile verilir. Denklem (2.21)'deki $D_{nL}(\alpha,q)$ ise yardımcı moleküler integraldir ve genel ifadesi

$$D_{nl}(\alpha,q) = \int_{0}^{\infty} x^{n} e^{-\alpha x} j_{l}(qx) dx$$
(2.23)

şeklindedir. $D_{nl}(\alpha,q)$ yardımcı moleküler integrali Ek B'de detaylı bir şekilde incelenmiştir.

Moleküler orbitallerin form faktör katkısı için elde edilen (2.17) denklemi

$$G_{jj}(q) = \left| F_{jj}(\vec{q}) \right|^2 = \frac{1}{4\pi} \int F_{jj}^*(\vec{q}) F_{jj}(\vec{q}) d\Omega$$
(2.24)

ifadesinde kullanılırsa,

$$G_{jj}(q) = \sum_{k=1}^{M} c_{jk}^{2} \sum_{s=1}^{M} c_{js}^{2} g_{n_{k}l_{j}m_{j},n_{s}l_{j}m_{j}}(\alpha_{k},\alpha_{s};q)$$
(2.25)

bulunur. Burada $g_{nlm,n'lm}(\alpha,\beta;q)$ fonksiyonunun form faktör integrallerinin çarpımının küresel ağırlıklı ortalamalarıdır ve

$$g_{nlm,n'lm}(\alpha,\beta;\vec{q}) = \frac{1}{4\pi} \int_{\Omega} f_{nlm,n'lm}^*(\alpha,\beta;\vec{q}) f_{nlm,n'lm}(\alpha,\beta;\vec{q}) d\Omega$$
(2.26)

ile verilir. Form faktör integralleri için (2.21) ifadesi (2.26) denkleminde kullanılırsa,

$$g_{nlm,n'lm}(\alpha,\beta;q) = [N_n(\alpha)N_{n'}(\beta)]^2 \sum_{L=0}^{2l} {}^{(2)}(-1)^L [G^L(lm,lm)D_{n+n',L}(\alpha+\beta,q)]^2 (2.27)$$

elde edilir.

3. BULGULAR

3.1. Giriş

Bu bölümde; $2 \le Z \le 54$ aralığındaki atomların inelastik saçılma fonksiyonları ve inelastik saçılma diferansiyel tesir kesitleri için $x = \frac{\sin \theta/2}{\lambda}$ nın $0 \le x \le 4$ aralığında hesaplanan değerleri literatürle karşılaştırmalı olarak verilmiştir. Bu bölümde ayrıca bu atomların inelastik saçılma fonksiyonlarının foton-momentum transfer vektörünün büyüklüğüne göre ve inelastik saçılma diferansiyel tesir kesitinin saçılma açısına göre değişimleri incelenmiştir.

3.2. 2≤Z≤54 Aralığındaki Atomların Hesaplanan İnelastik Saçılma Fonksiyonları ve Literatür ile Karşılaştırma

Burada atomların inelastik saçılma fonksiyonları için HFR teorisi ile Bölüm 2.4'de elde edilen formüller ve bu formüllerin Maple 15 sembolik programlama dilinde hazırlanan programları kullanılarak, $2 \le Z \le 54$ aralığındaki atomların inelastik saçılma fonksiyonları hesaplanmış ve literatürde var olan değerlerle karşılaştırılmıştır.

Tablo 1. Literatürle karşılaştırmalı olarak hesaplanan atomik inelastik saçılma fonksiyonları $(2 \le Z \le 54)$

Z		2		3			
x	Bu Çalışma	Lite	eratür	Bu Çalışma	Literatür		
		[1]	[2]		[1]	[2]	
0.0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
0.1	0.2826	0.2065	0.3122	1.0390	0.6042	1.0474	
0.2	0.8772	0.9672	0.9336	1.4222	1.3205	1.4412	
0.3	1.3967	1.5099	1.4380	1.8050	1.8194	1.8286	
0.4	1.7104	1.7642	1.7274	2.1657	2.2404	2.1866	
0.5	1.8673	1.8789	1.8705	2.4513	2.5243	2.4658	
1.0	1.9964	1.9901	1.9955	2.9509	2.9415	2.9488	
1.5	1.9997	1.9983	1.9997	2.9948	2.9880	2.9940	
2.0	1.9999	1.9962	2.0000	2.9992	2.9966	2.9990	
3.0	1.9999	2.0000	2.0000	2.9999	2.9997	2.9999	
Z		4		5			
-----	------------	-----------	--------	------------	--------	-----------	--
	Bu Çalışma	Literatür		Bu Calisma	Lite	Literatür	
		[1]	[2]	Du Çanşına	[1]	[2]	
0.0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
0.1	1.4439	0.6604	1.4628	1.3534	0.7376	1.3814	
0.2	2.2179	1.9482	2.2281	2.7856	2.3305	2.7811	
0.3	2.4927	2.3755	2.4942	3.2735	3.0107	3.2647	
0.4	2.7742	2.7463	2.7693	3.5254	3.3777	3.5105	
0.5	3.0467	3.0776	3.0368	3.7546	3.6924	3.7323	
1.0	3.8153	3.8238	3.8066	4.6099	4.6412	4.5890	
1.5	3.9689	3.9571	3.9655	4.9039	4.8961	4.8956	
2.0	3.9939	3.9865	3.9928	4.9759	4.9641	4.9728	
3.0	3.9995	3.9979	3.9995	4.9978	4.9935	4.9974	

Z		6		7		
	Bu Çahşma	Literatür		Bu Calisma	Literatür	
		[1]	[2]	Du Çanşına	[1]	[2]
0.0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.1	1.5253	0.9130	1.2054	1.2888	1.0753	1.0445
0.2	3.3439	2.5734	2.9160	3.3737	2.7589	2.8157
0.3	3.9740	3.5634	3.8275	4.5170	3.4242	4.0681
0.4	4.2553	4.0392	4.2410	4.9906	4.6491	4.7736
0.5	4.4991	4.3654	4.4880	5.2725	5.0435	5.1714
1.0	5.3855	5.4192	5.3473	6.1742	6.1820	6.1130
1.5	5.7975	5.8023	5.7802	6.6621	6.6795	6.6305
2.0	5.9370	5.9250	5.9300	6.8738	6.8670	6.8601
3.0	5.9928	5.9848	5.9917	6.9818	6.9703	6.9791

Z x		8		9			
	Bu Çalışma	Literatür		Bu Calisma	Lite	Literatür	
		[1]	[2]	Du Çanşına	[1]	[2]	
0.0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
0.1	1.1164	1.2708	0.9695	1.1454	1.4223	0.8888	
0.2	3.2576	2.9716	2.8001	3.4768	3.1850	2.6925	
0.3	4.8236	4.3615	4.3096	5.3244	4.6666	4.3526	
0.4	5.6136	5.1987	5.2777	6.2736	5.6714	5.5588	
0.5	6.0216	5.6966	5.8453	6.7224	6.2962	6.3452	
1.0	6.9860	6.9416	6.9022	7.7995	7.7024	7.7038	
1.5	7.5133	7.5341	7.4620	8.3629	8.3734	8.2878	
2.0	7.7886	7.7902	7.7642	8.6876	8.6964	8.6480	
3.0	7.9621	7.9485	7.9569	8.9321	8.9183	8.9226	

Z x		10		11		
	Bu Calisma	Lite	eratür	Bu Calisma	Lite	eratür
	Du Çanşına	[1]	[2]	Du Çanşına	[1]	[2]
0.0	0.0000	0.0000	0.000	0.000	0.000	0.000
0.1	0.9969	1.5662	0.811	1.700	1.144	1.502
0.2	3.2168	3.4185	2.546	3.532	3.521	2.890
0.3	5.3025	4.9508	4.268	5.481	4.985	4.430
0.4	6.6265	6.0909	5.644	6.966	6.225	5.803
0.5	7.3314	6.8446	6.640	7.886	7.156	6.902
1.0	8.6259	8.4623	8.489	9.418	9.181	9.251
1.5	9.2181	9.2019	9.113	10.074	10.006	9.938
2.0	9.5776	9.5880	9.517	10.464	10.459	10.376
3.0	9.8911	9.8793	9.875	10.840	10.829	10.813

Z x		12		13			
	Bu Çalışma	Literatür		Bu Calisma	Lite	Literatür	
		[1]	[2]	Du Çanşına	[1]	[2]	
0.0	0.000	0.000	0.000	0.000	0.000	0.000	
0.1	2.226	1.293	2.065	2.275	1.178	2.295	
0.2	4.036	3.801	3.443	4.543	3.999	4.065	
0.3	5.784	5.220	4.770	6.159	5.544	5.250	
0.4	7.304	6.442	6.063	7.634	6.730	6.434	
0.5	8.381	7.456	7.180	8.803	7.762	7.523	
1.0	10.210	9.880	9.975	10.996	10.546	10.652	
1.5	10.926	10.801	10.766	11.765	11.585	11.592	
2.0	11.349	11.316	11.229	12.230	12.162	12.083	
3.0	11.780	11.7684	11.738	12.714	12.697	12.653	

Z		14		15			
	Bu Çahşma	Literatür		Bu Calisma	Literatür		
		[1]	[2]	Du Çanşına	[1]	[2]	
0.0	0.000	0.000	0.000	0.000	0.000	0.000	
0.1	2.805	1.254	2.278	2.743	1.352	2.163	
0.2	5.069	4.126	4.520	5.563	4.195	4.705	
0.3	6.619	5.922	5.807	7.159	6.280	6.298	
0.4	8.083	7.117	6.902	8.574	7.561	7.430	
0.5	9.289	8.135	7.935	9.786	8.576	8.416	
1.0	11.808	11.185	11.286	12.614	11.803	11.888	
1.5	12.609	12.359	12.408	13.451	13.123	13.209	
2.0	13.110	12.998	12.937	13.986	13.826	13.790	
3.0	13.642	13.616	13.558	14.566	14.525	14.457	

Z		16		17		
	Bu Çahşma	Literatür		Bu Calisma	Literatür	
		[1]	[2]	Du Çanşına	[1]	[2]
0.0	0.000	0.000	0.000	0.000	0.000	0.000
0.1	2.635	1.503	2.147	2.865	1.596	2.066
0.2	5.925	4.284	4.988	6.455	4.371	5.082
0.3	7.719	6.601	6.816	8.195	6.867	7.189
0.4	9.110	8.020	8.007	9.574	8.464	8.555
0.5	10.315	9.060	8.960	10.833	9.568	9.539
1.0	13.409	12.407	12.472	14.188	13.007	13.049
1.5	14.299	13.875	13.990	15.153	14.601	14.750
2.0	14.860	14.646	14.641	15.732	15.458	15.487
3.0	15.487	15.426	15.351	16.405	16.320	16.243

Z x		18		19		
	Bu Çalışma	Lite	Literatür		Literatür	
		[1]	[2]	Du Çanşına	[1]	[2]
0.0	0.000	0.000	0.000	0.000	0.000	0.000
0.1	2.675	1.676	1.955	3.177	1.649	2.498
0.2	6.609	4.491	5.031	6.903	4.412	5.299
0.3	8.729	7.101	7.376	9.271	6.972	7.650
0.4	10.132	8.884	8.996	10.700	9.023	9.403
0.5	11.387	10.082	10.106	11.925	10.432	10.648
1.0	14.951	13.772	13.629	15.700	14.172	14.220
1.5	16.013	15.344	15.489	16.877	16.048	16.212
2.0	16.604	16.263	16.324	17.479	17.054	17.152
3.0	17.321	17.206	17.132	18.234	18.084	18.020

Z		20		21		
	Bu Çalışma	Literatür		Bu Calisma	Literatür	
		[1]	[2]	Du Çanşına	[1]	[2]
0.0	0.000	0.000	0.000	0.000	0.000	0.000
0.1	4.055	1.655	3.103	3.592	1.904	3.138
0.2	7.787	4.599	5.688	7.212	4.877	5.182
0.3	10.073	6.981	7.979	10.092	7.205	8.184
0.4	11.370	9.137	9.789	11.854	9.389	10.085
0.5	12.502	10.736	11.156	13.100	11.098	11.571
1.0	16.438	14.741	14.829	17.164	15.351	15.461
1.5	17.743	16.742	16.921	18.605	17.447	17.630
2.0	18.359	17.836	17.970	19.243	18.620	18.782
3.0	19.146	18.954	18.906	20.055	19.821	19.794

Z x		22		23		
	Bu Çalışma	Literatür		Bu Calisma	Literatür	
		[1]	[2]	Du Çanşına	[1]	[2]
0.0	0.000	0.000	0.000	0.000	0.000	0.000
0.1	3.652	2.176	3.093	3.708	2.465	3.040
0.2	7.526	5.175	5.814	7.816	5.490	5.803
0.3	10.594	7.466	8.270	11.101	7.756	8.324
0.4	10.594	9.652	10.280	13.063	9.930	10.423
0.5	13.630	11.447	11.893	14.311	11.786	12.143
1.0	17.874	15.968	16.098	18.563	16.585	16.726
1.5	19.463	18.152	18.334	20.313	18.857	19.033
2.0	20.132	19.400	19.586	21.025	20.177	20.379
3.0	20.964	20.685	20.682	21.872	21.545	21.569

Z		24		25			
	Bu Çahşma	Lite	Literatür		Literatür		
		[1]	[2]	Du Çanşına	[1]	[2]	
0.0	0.000	0.000	0.000	0.000	0.000	0.000	
0.1	3.684	3.140	2.526	3.513	3.043	2.912	
0.2	7.987	5.842	5.497	7.734	6.143	5.716	
0.3	11.571	8.163	8.152	11.528	8.388	8.318	
0.4	13.707	10.356	10.377	14.018	10.523	10.559	
0.5	14.947	12.242	12.235	15.489	12.451	12.451	
1.0	19.230	17.232	17.319	19.906	17.808	17.900	
1.5	21.155	19.578	19.730	21.988	20.265	20.410	
2.0	21.920	20.960	21.168	22.816	21.723	21.939	
3.0	22.781	22.404	22.456	23.690	23.255	23.337	

Z		26		27		
	Bu Çahşma	Lite	ratür	Bu Çalışma	Literatür	
		[1]	[2]		[1]	[2]
0.0	0.000	0.000	0.000	0.000	0.000	0.000
0.1	3.367	3.349	2.871	3.336	3.642	2.820
0.2	7.504	6.488	5.744	7.586	6.832	5.727
0.3	11.435	8.729	8.408	11.732	9.076	8.421
0.4	14.232	10.842	10.723	14.764	11.259	10.799
0.5	15.955	12.787	12.684	16.602	13.124	12.831
1.0	20.582	18.408	18.488	21.192	18.998	19.042
1.5	22.813	20.965	21.097	23.622	21.664	21.779
2.0	23.711	22.491	22.705	24.603	23.257	23.463
3.0	24.601	24.106	24.217	25.515	24.955	25.092

Z		28		29			
	Bu Çahşma	Lite	ratür	Bu Çalışma	Lite	eratür	
		[1]	[2]		[1]	[2]	
0.0	0.000	0.000	0.000	0.000	0.000	0.000	
0.1	3.325	3.934	2.765	2.513	4.918	2.343	
0.2	7.696	7.181	5.704	6.880	7.644	5.450	
0.3	12.021	9.431	8.429	11.551	9.901	8.305	
0.4	15.266	11.510	10.861	15.228	12.006	10.773	
0.5	17.263	13.466	12.954	17.566	13.970	12.937	
1.0	21.855	19.577	19.552	22.424	20.199	20.002	
1.5	24.413	22.359	22.451	25.188	23.074	23.107	
2.0	25.490	24.020	24.213	26.373	24.793	24.957	
3.0	26.430	25.802	25.963	27.348	26.650	26.830	

Z		30		31			
	Bu Çahşma	Literatür		Bu Calisma	Literatür		
		[1]	[2]	Du Çanşına	[1]	[2]	
0.0	0.000	0.000	0.000	0.000	0.000	0.000	
0.1	3.148	4.533	2.652	3.260	3.989	2.820	
0.2	7.452	7.901	5.627	7.816	7.949	5.954	
0.3	11.958	10.167	8.384	12.102	10.387	8.596	
0.4	15.681	12.221	10.897	15.858	12.416	11.078	
0.5	18.163	14.169	13.090	18.549	14.335	13.287	
1.0	23.114	20.701	20.426	23.771	21.156	20.830	
1.5	25.968	23.736	23.745	26.706	24.378	24.370	
2.0	27.251	25.536	25.683	28.115	26.267	26.400	
3.0	28.269	27.487	27.687	29.192	28.319	28.536	

Z		32		33			
	Bu Çalışma	Literatür		Bu Calisma	Literatür		
		[1]	[2]	Du Çanşına	[1]	[2]	
0.0	0.000	0.000	0.000	0.000	0.000	0.000	
0.1	3.798	3.586	2.823	3.832	3.238	2.747	
0.2	8.080	7.938	6.226	8.492	7.867	6.337	
0.3	12.288	10.642	8.908	12.570	10.891	9.223	
0.4	16.074	12.686	11.334	16.321	13.007	11.653	
0.5	18.915	14.566	13.532	19.266	14.859	13.823	
1.0	24.465	21.590	21.222	25.184	22.010	21.611	
1.5	27.436	25.008	24.983	28.161	25.627	25.583	
2.0	28.968	26.991	27.109	29.809	27.706	27.810	
3.0	30.116	29.145	29.377	31.041	29.967	30.209	

Z		34		35			
	Bu Çalışma	Literatür		Bu Calisma	Literatür		
		[1]	[2]	Du Çanşına	[1]	[2]	
0.0	0.000	0.000	0.000	0.000	0.000	0.000	
0.1	3.767	2.996	2.796	4.111	2.771	2.770	
0.2	8.842	7.788	6.616	9.276	7.689	6.754	
0.3	12.889	11.113	9.612	13.090	11.299	9.942	
0.4	16.598	13.346	12.032	16.840	13.695	12.438	
0.5	19.615	15.194	4.164	19.961	15.567	14.549	
1.0	25.922	22.417	22.002	26.673	22.822	22.398	
1.5	28.886	26.234	26.172	29.613	26.831	26.747	
2.0	30.640	28.414	28.503	31.461	29.115	29.190	
3.0	31.967	30.784	31.034	32.891	31.597	31.850	

Z x		36		37			
	Bu Çahşma	Literatür		Bu Calisma	Literatür		
		[1]	[2]	Du Çanşına	[1]	[2]	
0.0	0.000	0.000	0.000	0.000	0.000	0.000	
0.1	3.982	2.597	2.700	4.449	2.301	3.221	
0.2	9.558	7.603	6.755	9.933	7.136	7.056	
0.3	13.476	11.453	10.152	13.905	11.138	10.425	
0.4	17.147	14.037	12.824	17.447	14.070	13.201	
0.5	20.316	15.965	14.966	20.651	16.176	15.404	
1.0	27.430	23.227	22.803	28.188	23.553	23.219	
1.5	30.347	27.417	27.313	31.089	27.960	27.873	
2.0	32.273	29.809	29.870	33.079	30.480	30.545	
3.0	33.814	32.405	32.659	34.734	33.202	33.460	

Z		38		39			
	Bu Çahşma	Literatür		Bu Calisma	Literatür		
		[1]	[2]	Du Çanşına	[1]	[2]	
0.0	0.000	0.000	0.000	0.000	0.000	0.000	
0.1	4.999	2.170	3.827	4.741	2.284	4.001	
0.2	10.318	6.961	7.459	9.964	6.960	7.715	
0.3	14.374	10.910	10.720	14.159	10.904	11.019	
0.4	17.806	14.074	13.571	17.592	14.196	13.901	
0.5	20.988	16.376	15.584	20.788	16.649	16.278	
1.0	28.942	23.884	23.651	29.544	24.261	24.108	
1.5	31.842	28.488	28.423	32.546	29.019	28.972	
2.0	33.881	31.141	31.212	34.597	31.799	31.872	
3.0	35.652	33.994	34.255	36.538	34.784	35.043	

Z		40		41			
	Bu Çalışma	Liter	ratür	Bu Çalışma	Liter	Literatür	
		[1]	[2]		[1]	[2]	
0.0	0.000	0.000	0.000	0.000	0.000	0.000	
0.1	4.905	2.478	3.641	4.568	2.956	3.615	
0.2	10.586	7.016	7.600	11.078	7.152	7.660	
0.3	15.022	10.955	11.096	15.644	11.171	11.203	
0.4	18.326	14.339	14.124	18.795	14.628	14.305	
0.5	21.389	16.930	16.633	21.779	17.310	16.938	
1.0	30.355	24.666	24.585	31.098	25.130	25.075	
1.5	33.358	29.546	29.520	34.153	30.085	30.068	
2.0	35.440	32.451	32.523	36.251	33.102	33.170	
3.0	37.461	35.569	35.825	38.370	36.351	36.601	

Z x		42		43			
	Bu Çahşma	Lite	Literatür		Literatür		
		[1]	[2]	Du Çanşına	[1]	[2]	
0.0	0.000	0.000	0.000	0.000	0.000	0.000	
0.1	4.478	3.254	3.542	5.151	3.189	3.938	
0.2	11.081	7.296	7.626	11.584	7.410	7.924	
0.3	15.941	11.290	11.223	16.492	11.287	11.465	
0.4	19.249	14.798	14.410	19.815	14.810	14.614	
0.5	22.229	17.592	17.175	22.717	17.734	17.426	
1.0	31.813	25.582	25.579	32.509	26.011	26.089	
1.5	34.948	30.611	30.621	35.749	31.118	31.173	
2.0	37.052	33.742	33.812	37.855	34.366	34.449	
3.0	39.271	37.127	37.370	40.167	37.894	38.134	

Z		44		45			
	Bu Çahşma	Literatür		Bu Calisma	Literatür		
		[1]	[2]	Du Çanşına	[1]	[2]	
0.0	0.000	0.000	0.000	0.000	0.000	0.000	
0.1	4.423	3.822	3.520	4.449	4.100	3.468	
0.2	11.359	7.651	7.800	9.933	7.866	7.818	
0.3	16.718	11.580	11.484	13.905	11.754	11.550	
0.4	20.159	15.154	14.760	17.447	15.342	14.865	
0.5	23.031	18.136	17.681	20.651	18.397	17.860	
1.0	33.184	26.543	26.619	28.188	27.044	27.149	
1.5	36.552	31.317	31.739	31.089	32.204	32.308	
2.0	38.656	35.005	35.083	33.079	35.630	35.717	
3.0	41.057	38.664	38.892	34.734	39.424	39.644	

Z x		46		47			
	Bu Çalışma	Literatür		Bu Calisma	Literatür		
		[1]	[2]	Du Çanşına	[1]	[2]	
0.0	0.000	0.000	0.000	0.000	0.000	0.000	
0.1	3.735	4.855	3.073	4.354	4.642	3.355	
0.2	11.276	8.234	7.709	11.704	8.359	7.775	
0.3	17.354	12.147	11.426	17.833	12.153	11.588	
0.4	21.086	15.756	14.813	21.683	15.745	14.960	
0.5	23.896	18.838	17.933	24.474	18.909	18.074	
1.0	34.469	27.605	27.676	35.096	28.073	28.194	
1.5	38.173	32.770	32.887	38.985	33.291	33.465	
2.0	40.273	36.264	36.352	41.089	36.870	36.986	
3.0	42.825	40.185	40.391	43.704	40.931	41.133	

Z x		48		49			
	Bu Çahşma	Literatür		Bu Calisma	Lite	Literatür	
		[1]	[2]	Du Çanşına	[1]	[2]	
0.0	0.000	0.000	0.000	0.000	0.000	0.000	
0.1	4.972	4.287	3.700	5.097	3.755	3.883	
0.2	12.159	8.533	7.972	12.425	8.556	8.300	
0.3	18.310	12.227	11.800	18.596	12.263	12.073	
0.4	22.281	15.763	15.177	22.792	15.735	15.434	
0.5	25.076	18.967	18.262	25.662	18.953	18.480	
1.0	35.711	28.533	28.717	36.282	28.966	29.200	
1.5	39.797	33.810	34.059	40.606	34.322	34.632	
2.0	41.911	37.470	37.637	42.738	38.060	38.256	
3.0	44.580	41.672	41.879	45.453	42.405	42.607	

Z		50		51			
	Bu Çahşma	Lite	Literatür		Literatür		
		[1]	[2]	Du Çanşına	[1]	[2]	
0.0	0.000	0.000	0.000	0.000	0.000	0.000	
0.1	5.610	3.379	3.902	5.673	3.105	3.827	
0.2	12.543	8.570	8.606	12.863	8.563	8.781	
0.3	18.883	12.380	12.404	19.171	12.553	12.763	
0.4	23.287	15.791	15.735	23.760	15.934	16.075	
0.5	26.261	18.984	18.749	26.858	19.080	19.056	
1.0	36.842	29.390	29.684	37.394	29.806	30.154	
1.5	41.411	34.837	35.224	42.209	35.357	35.820	
2.0	43.569	38.648	38.894	44.405	39.235	39.536	
3.0	46.324	43.133	43.340	47.194	43.855	44.071	

Z		52		53			
	Bu Çalışma	Literatür		Bu Calisma	Lite	Literatür	
		[1]	[2]	Du Çanşına	[1]	[2]	
0.0	0.000	0.000	0.000	0.000	0.000	0.000	
0.1	5.678	2.897	3.910	6.101	2.755	3.902	
0.2	13.188	8.520	9.098	13.427	8.464	9.287	
0.3	19.471	12.725	13.167	19.649	12.899	13.557	
0.4	24.216	16.114	16.455	24.646	16.333	16.866	
0.5	27.448	19.211	19.396	28.026	19.389	19.767	
1.0	37.944	30.207	30.610	38.492	30.595	31.053	
1.5	43.001	35.877	36.420	43.782	36.401	37.022	
2.0	45.245	39.819	40.180	46.086	40.402	40.827	
3.0	48.063	44.573	44.800	48.931	45.287	45.528	

Z	54						
	Ru Calisma	Lite	ratür				
x	Du Şanşına	[1]	[2]				
0.0	0.000	0.000	0.000				
0.1	5.019	2.660	3.835				
0.2	12.768	8.409	9.328				
0.3	18.944	13.064	13.881				
0.4	24.059	16.580	17.296				
0.5	27.593	19.610	20.164				
1.0	38.047	30.972	31.483				
1.5	43.554	36.927	37.626				
2.0	45.931	40.984	41.476				
3.0	48.799	45.996	46.255				

- [1] Kahane S. 1998. Relativistic Dirac-Hartree-Fock photon inkoherent scattering functions, Atomic Data and Nucleer Data Tables, 68:323-347.
- [2] Wang J, Sagar R P, Schmider H and Smith VH. 1993. X-Ray elastic and inelastic scattering factors for neutral atoms Z=2-92, Atomic Data and Nuclear Data Tables, 53:233-269.

3.3. 29≤Z≤50 Aralığındaki Atomların Hesaplanan İnelastik Saçılma Diferansiyel Tesir Kesitleri ve Literatür ile Karşılaştırma

Burada atomların inelastik saçılma diferansiyel tesir kesitleri için HFR teorisi ile Bölüm 2.3'de elde edilen formüller ve bu formüllerin Maple 15 sembolik programlama dilinde hazırlanan programları kullanılarak, $29 \le Z \le 50$ aralığındaki bazı atomların inelastik saçılma diferansiyel tesir kesitleri hesaplanmış ve literatürdeki değerler ile karşılaştırılmıştır.

Tablo 2. Bazı atomların inelastik saçılma diferansiyel tesir kesitlerinin farklı saçılma açıları için hesaplanan sonuçları ve literatür ile karşılaştırma (E=59.54 keV).

	$\theta = 90^{\circ}$		$\theta = 60^{\circ}$		$\theta = 45^{\circ}$		$\theta = 30^{\circ}$	
Element	$x = 3.395 (A^{\circ})^{-1}$		$x = 2.4 \left(\mathbf{A}^{\circ} \right)^{-1}$		$x = 1.84 (A^{\circ})^{-1}$		$x = 1.242 (A^{\circ})^{-1}$	
	D G 1	Literatür	D 01	Literatür	5 6 1	Literatür	D G 1	Literatür
	Bu Çalışma	[3]	Bu Çalışma	[3]	Bu Çalışma	[3]	Bu Çalışma	[3]
Cu	0.935	0.935	1.362	1.289	1.694	1.616	2.006	1.954
Мо	1.354	1.354	1.973	1.866	2.453	2.341	2.906	2.830
Ag	1.515	1.515	2.208	2.133	2.746	2.619	3.252	3.122
Cd	1.547	1.548	2.255	2.135	2.804	2.675	3.321	3.234
Sn	1.612	1.612	2.349	2.222	2.921	2.787	3.460	3.369

[3] Nayak NG., Pinto G and Siddappa K. 2001. Incoherent scattering of 59.54 keV γ -rays at small momentum transfers, Radiation Physics and Chemistry, 60:555-564.

3.4. İnelastik Saçılma Fonksiyonlarının Foton Momentum Transfer Vektörüne Göre Değişimi

Denklem (2.11)'den görüldüğü gibi; atomların inelastik saçılma fonksiyonları elektron sayısı ve foton-momentum transfer vektörünün büyüklüğüne bağlıdır. $2 \le Z \le 54$ aralığındaki atomların inelastik saçılma fonksiyonlarının foton-momentum transfer vektörünün büyüklüğüne göre değişimi aşağıda şekiller halinde verilmiştir.

Şekil 6. He, Li, Be, B, C, N, O, F, Ne, Na, Mg ve Al atomlarının inelastik saçılma fonksiyonlarının foton momentum transfer vektörüne göre değişimleri

Şekil 7. Si, P, S, Cl, Ar, K, Ca, Sc, Ti, V, Cr ve Mn atomlarının inelastik saçılma fonksiyonlarının foton momentum transfer vektörüne göre değişimleri

Şekil 8. Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Br, Kr ve Rb atomlarının inelastik saçılma fonksiyonlarının foton momentum transfer vektörüne göre değişimleri

Şekil 9. Sr, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd ve In atomlarının inelastik saçılma fonksiyonlarının foton momentum transfer vektörüne göre değişimleri

Şekil 10. Sn, Sb, Te, I ve Xe atomlarının inelastik saçılma fonksiyonlarının foton momentum transfer vektörüne göre değişimleri

3.5. İnelastik Saçılma Diferansiyel Tesir Kesitlerinin Saçılma Açısına Göre Değişimi

Denklem (2.3)'ten görüldüğü gibi; atomların inelastik saçılma diferansiyel tesir kesitleri x değerlerine ve saçılma açısına bağlıdır. $29 \le Z \le 50$ aralığındaki atomların inelastik saçılma diferansiyel tesir kesitlerinin saçılma açısına göre değişimi aşağıda şekiller halinde verilmiştir.

Şekil 11. He, Li, Be, B, C, N, O, F, Ne, Na, Mg ve Al atomlarının inelastik saçılma diferansiyel tesir kesitlerinin saçılma açısına göre değişimleri

Şekil 12. Si, P, S, Cl, Ar, K, Ca, Sc, Ti, V, Cr ve Mn atomlarının inelastik saçılma diferansiyel tesir kesitlerinin saçılma açısına göre değişimleri

Şekil 13. Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Br, Kr ve Rb atomlarının inelastik saçılma diferansiyel tesir kesitlerinin saçılma açısına göre değişimleri

Şekil 14. Sr, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd ve In atomlarının inelastik saçılma diferansiyel tesir kesitlerinin saçılma açısına göre değişimleri

Şekil 15. Sn, Sb, Te, I ve Xe atomlarının inelastik saçılma diferansiyel tesir kesitlerinin saçılma açısına göre değişimleri

4. TARTIŞMA VE SONUÇLAR

Bu çalışmada; atomların inelastik saçılma fonksiyonları ve inelastik saçılma diferansiyel tesir kesitleri için Hartree-Fock-Roothaan metodu kullanılarak genel ve analitik ifadeler elde edilmiştir. Elde edilen bu ifadeler; $D_{nl}(\alpha,q)$ yardımcı moleküler integrali ve Gaunt katsayılarını içermektedir. İnelastik saçılma fonksiyonları ve inelastik saçılma diferansiyel tesir kesitleri için elde edilen ifadelerin hassas bir şekilde hesaplanabilmesi için $D_{nl}(\alpha,q)$ yardımcı moleküler integralleri ve Gaunt katsayılarının çok dikkatli bir şekilde hesaplanabilmesi gerekir. Bu amaçla; inelastik saçılma fonksiyonları, inelastik saçılma diferansiyel tesir kesitleri, $D_{nl}(\alpha,q)$ yardımcı moleküler integralleri ve Gaunt katsayılarının Maple sembolik programlama dilinde programları yapılmıştır.

Yazılan bilgisayar programı kullanılarak, $2 \le Z \le 54$ aralığındaki atomların inelastik saçılma fonksiyonları foton-momentum transfer vektörünün $0 \le q \le 3$ aralığındaki değerleri için hesaplanmış ve literatürde varolan sonuçlarla karşılaştırılmıştır (Tablo 1). Tablo 1'den görüldüğü gibi, bu çalışmada verilen algoritma ile atomların inelastik saçılma fonksiyonları foton momentum transfer vektörünün küçük değerlerinde literatür ile az bir uyum sağlamasına rağmen, büyük foton-momentum transfer değerlerinde literatür ile uyum artmaktadır.

5. ÖNERİLER

Bu çalışmada atomların inelastik saçılma fonksiyonlarının hesaplanması için sunulan algoritma kullanılarak yapılabilecek olan çalışmalar aşağıda sıralanmıştır:

i. Moleküllerin inelastik saçılma fonksiyonları hesaplanabilir,

ii. İmplus yaklaşımına göre atom ve moleküllerin Compton saçılması diferansiyel tesir kesitleri inelastik saçılma fonksiyonları cinsinden

$$\left(\frac{d\sigma}{d\Omega}\right)_{Compton} = X(w_1, w_2)S(q, Z)$$
(5.1)

şeklinde ifade edilmektedir. Buna göre; moleküllerin Compton saçılması diferansiyel tesir kesitleri (5.1) denkleminden faydalanılarak hesaplanabilir (Cooper vd., 1984).

- iii. Atomların inelastik saçılma fonksiyonları ve diferansiyel tesir kesitleri relativistik kuantum mekaniği kullanılarak hesaplanabilir.
- **iv.** Atomların inelastik saçılma fonksiyonları ve diferansiyel tesir kesitlerine korelasyon katkısı incelenebilir.
- v. Moleküllerin inelastik saçılma parametreleri hesaplanarak kimyasal etki çalışılabilir.

6. KAYNAKLAR

- Benesch R and Malli G. 1968. X-Ray and electron scattering factor many-electron atomic systems, Int. J. Quantum Chem., 2:371-389.
- Boys S.F. 1950. Electronic wave functions. I. A general method of calculation for the stationary states of any molecular systems, Proc. Roy. Soc. London, A 200:542-554
- Cooper M.J. 2004. Mijnarends P.E, Shiotani N, Sakai N and Bansil A. X-Ray Compton Scattering, Oxford Univ. Press, USA.
- Cromer D. T. 1969. Compton scattering factors for aspherical free atoms, J. Chem Phys., 50:4857-4859.
- Cromer, D. T. and Mann, J.B. 1967. Compton scattering factors for spherically symmetric free atoms, J. Chem. Phys. 47:1892-1983.
- Gaunt J. A. 1929. The triplets of Helium, Phil. Trans. Roy. Soc., A 228:151-196
- Geller M. 1963. Two-center integrals over solid spherical harmonics, J. Chem. Phys., 39:84-89.
- Griffiths D. 2008. Introduction to Elementary Particles, Wiley-VCH Pub., Germany.
- Helgaker T., Jorgensen P and Olsen J. 2000. Molecular Elektronik Structure Theory, John Wiley & Sons Ltd., England.
- Hubbell, J.H., Veigele, Wm.J., Briggs, E.A., Brown, R.T., Cromer, D.T. and Howerton, R.J. 1975. Atomic form factors, incoherent scattering functions, and photon scattering cross sections, J. Phys. Chem. Ref. Data 4:471-538; erratum in 6:615-616.
- Jeffery A and Hui Dai H. 2008. Handbook of Mathematical Formulas and Tables, Academic Press, London.
- Kahane S. 1998. Relativistic Dirac-Hartree-Fock photon inkoherent scattering functions, Atomic Data and Nucleer Data Tables, 68:323-347.
- Nayak NG., Pinto G and Siddappa K. 2001. Incoherent scattering of 59.54 keV γ -rays at small momentum transfers, Radiation Physics and Chemistry, 60:555-564.
- Özdoğan T and Ruiz M.B. 2008. Molecular Integrals Over Slater Orbitals, Recent Advances in Computational Chemistry, Transworld Res., Kerela.
- Roothaan C.C.J. 1951. New developments in molecular orbital theory, Rev. Mod. Phys., 23:69-89.

- Roothaan C. C. J. 1960. Self-consistent field theory for open shells of electronic systems, Rev. Mod. Phys., 32:179-185.
- Slater J. C. 1930. Atomic shielding constants, Phys. Rev., 36:57-64.
- Schuelke W. 2007. Electron Dynamics by Inelastic X-Ray Scattering, Oxford Univ. Press., New York.
- Tannoudji C. C., Dypond J, Grynberg G. 1998. Atom-Photon Interactions, Wiley-VCH, USA.
- Waller I., Hartree D.R. 1929. On the Intensity of Total Scattering of X-Rays, Proc. Roy. Soc. London, Ser. A 124: 119-142.
- Wang J., Sagar R.P., Schmider H and Smith VH. 1993. X-Ray elastic and inelastic scattering factors for neutral atoms Z=2-92, Atomic Data and Nuclear Data Tables, 53:233-269.
- Yong-Ki Kim and Milito Inokuti. 1968. Atomic form factor and incoherent-scattering function of the Helium atom, Phys. Rev., 165:39-43.

Zener C. 1930. Analytic atomic wave functions, Phys. Rev., 36:51-56.

7. EKLER

Ek A. Küresel Bessel Fonksiyonları

Küresel Bessel fonksiyonları

$$j_n(y) = (-y)^n \left(\frac{1}{y} \frac{d}{dy}\right)^n \left(\frac{\sin y}{y}\right)$$
(A.1)

şeklinde tanımlanır. Keyfi mertebeden türevler için Leibnitz kuralı kullanılarak küresel Bessel fonksiyonları için aşağıdaki analitik ifade yazılabilir:

$$j_n(x) = \sum_{k=0}^{n-1} \sum_{m=0}^{n-k} \left\{ A_{n;km} \frac{\cos x}{x^{k+m+1}} + B_{n;km} \frac{\sin x}{x^{k+m+1}} \right\}$$
(A.2)

Burada $A_{n;km}$ ve $B_{n;km}$ katsayılarını

$$A_{n;km} = (-1)^{(3n-k+m-1)/2} a_{nk} \frac{(n-k)!}{(n-k-m)!} \eta_{n-k-m}^{(-)}$$
(A.3)

$$B_{n;km} = (-1)^{(3n-k+m)/2} a_{nk} \frac{(n-k)!}{(n-k-m)!} \eta_{n-k-m}^{(+)}$$
(A.4)

şeklinde tanımlarız. (A.3) ve (A.4) denklemlerindeki $\eta_n^{(\pm)}$ katsayıları

$$\eta_n^{(\mp)} = \frac{1}{2} \left[1 \mp (-1)^n \right]$$
(A.5)

ile verilir. (A.3) ve (A.4) denklemlerindeki a_{nk} katsayıları

$$a_{nk} = -(n+k-2)a_{n-1,k-1} + a_{n-1,k}$$
(A.6)

olarak bulunabilir. Burada tekrarlama bağıntısının başlangıç değeri

$$a_{n0} = 1$$
 (A.7)

ile tanımlanır. Küresel Bessel fonksiyonları için burada verilen ifadeden yararlanarak elde edilen bazı değerler sembolik olarak Tablo 3'te verilmiştir.

п	$j_n(x)$
0	$\frac{\sin(x)}{x}$
1	$-\frac{x\cos(x)-\sin(x)}{x^2}$
2	$-\frac{x^2\sin(x) + 3\cos(x) - 3\sin(x)}{x^3}$
3	$\frac{\cos(x)x^3 - 6x^2\sin(x) - 15x\cos(x) + 15\sin(x)}{x^4}$
4	$\frac{x^4 \sin(x) + 10x^3 \cos(x) - 45x^2 \sin(x) - 105x \cos(x) + 105 \sin(x)}{x^5}$
5	$-\frac{x^5\cos(x) - 15x^4\sin(x) - 105x^3\cos(x) + 42x^2\sin(x) + 945x\cos(x) - 945\sin(x)}{x^6}$
6	$\frac{x^{6}\sin(x) + 21x^{5}\cos(x) - 210x^{4}\sin(x) - 1260x^{3}\cos(x) + 4725x^{2}\sin(x) + 10395x\cos(x) - 10395\sin(x)}{x^{7}}$

Tablo 3. $0 \le n \le 6$ aralığındaki küresel Bessel fonksiyonları

Ek B. $D_{nl}(\alpha,q)$ Yardımcı Moleküler İntegrali

 $D_{nl}(\alpha,q)$ yardımcı moleküler integrali

$$D_{nl}(\alpha,q) = \int_{0}^{\infty} x^{n} e^{-\alpha x} j_{l}(qx) dx$$
(B.1)

ile verilir. Burada $j_l(y)$ Ek A'da tanımlanan küresel Bessel fonksiyonudur. Küresel Bessel fonksiyonları için (A.2) ile tanımlanan ifade (B.1) denkleminde yazılırsa

$$D_{nl}(\alpha,q) = \sum_{k=0}^{l-1} \sum_{m=0}^{l-k} \frac{1}{q^{k+m+1}} \left\{ A_{l;km} C_{n-k-m-1}(\alpha,q) + B_{l;km} S_{n-k-m-1}(\alpha,q) \right\}$$
(B.2)

ifadesi elde edilir. Burada $C_n(\alpha,q)$ ve $S_n(\alpha,q)$ fonksiyonları

$$C_n(\alpha, q) = \int_0^\infty x^n e^{-\alpha x} \cos(qx) dx$$
(B.3)

$$S_n(\alpha,q) = \int_0^\infty x^n e^{-\alpha x} \sin(qx) dx$$
(B.4)

şeklinde tanımlanan yardımcı moleküler integrallerdir. $C_n(\alpha,q)$ ve $S_n(\alpha,q)$ yardımcı moleküler integral tanımlarını içeren

$$H_n(\alpha,q) = \int_0^\infty x^n e^{-\alpha x} e^{iqx} dx$$
(B.5)

şeklinde bir yardımcı moleküler integral tanımlayalım. e^{iqx} için Euler formülü kullanılırsa, $H_n(\alpha, q)$ moleküler integralinin

$$H_n(\alpha, q) = C_n(\alpha, q) + iS_n(\alpha, q)$$
(B.6)

şeklinde yazılabileceği kolayca görülebilir. Yani $H_n(\alpha, q)$ yardımcı moleküler integralinin reel kısmı $C_n(\alpha, q)$ yardımcı moleküler integrali ve kompleks kısmı ise $S_n(\alpha, q)$ yardımcı moleküler integralidir. Basit integrasyon yöntemleriyle $H_n(\alpha, q)$ yardımcı moleküler integrali için aşağıdaki ifadeyi kolayca elde edebiliriz:

$$H_{n}(\alpha,q) = \frac{n!}{(q^{2} + \alpha^{2})^{n+1}} \sum_{k=0}^{n+1} F_{k}(n+1)\alpha^{n+1-k} i^{k} q^{k} .$$
(B.7)

Bu ifadenin reel ve kompleks kısımları düzenlenirse, $C_n(\alpha, q)$ ve $S_n(\alpha, q)$ yardımcı moleküler integralleri için aşağıdaki analitik ifadeler elde edilir:

$$C_{n}(\alpha,q) = \frac{n!}{\left(q^{2} + \alpha^{2}\right)^{n+1}} \sum_{k=0}^{n+\eta_{n}^{(-)}} {}^{(2)}(-1)^{k/2} F_{k}(n+1)\alpha^{n-k+1}q^{k}$$
(B.8)

$$S_{n}(\alpha,q) = \frac{n!}{(\alpha^{2}+q^{2})^{n+1}} \sum_{k=0}^{n+\eta_{n}^{(+)}} {}^{(2)}(-1)^{k-1/2} F_{k}(n+1)\alpha^{n-k+1}q^{k}$$
(B.9)

 $C_n(\alpha,q)$ ve $S_n(\alpha,q)$ yardımcı moleküler integrallerinin $1 \le n \le 5$ değerlerindeki sembolik ifadeleri Tablo 4.a'da ve Tablo 4.b'de, $D_{nl}(\alpha,q)$ yardımcı moleküler integralinin bazı sembolik ifadeleri ise Tablo 5'te verilmiştir. (B.7), (B.8) ve (B.9) denklemlerinde $F_m(n)$

$$F_m(n) = \frac{n!}{m!(n-m)!}$$
(B.10)

ile tanımlanan binom katsayılarıdır.

п	$C_{_n}(lpha,q)$
0	$\frac{lpha}{q^2+lpha^2}$
1	$\frac{\alpha^2-q^2}{\left(q^2+\alpha^2\right)^2}$
2	$\frac{2 \alpha \left(\alpha^2 - 3q^2 \right)}{\left(q^2 + \alpha^2 \right)^3}$
3	$\frac{6(\alpha^{4}-6\alpha^{2} q^{2}+q^{4})}{(q^{2}+\alpha^{2})^{4}}$
4	$\frac{24 \alpha \left(\alpha ^4 -10 \alpha ^2 q ^2 +5 q ^4 \right)}{\left(q ^2 +\alpha ^2 \right)^5}$
5	$\frac{120 \left(\alpha^{6} - 15 \alpha^{4} q^{2} + 15 \alpha^{2} q^{4} + q^{6} \right)}{\left(q^{2} + \alpha^{2} \right)^{6}}$

Tablo 4.a. $C_n(\alpha, q)$ Yardımcı Moleküler İntegralinin Bazı Sembolik Değerleri

Tablo 4.b. $S_n(\alpha, q)$ Yardımcı Moleküler İntegralinin Bazı Sembolik Değerleri

п	$S_{_n}(lpha,q)$
0	$rac{q}{q^2+lpha^2}$
1	$\frac{2\alphaq}{\left(q^2+\alpha^2\right)^2}$
2	$\frac{2 q \left(3 \alpha^2 - q^2\right)}{\left(q^2 + \alpha^2\right)^3}$
3	$\frac{24\alphaq\left(\alpha^2-q^2\right)}{\left(q^2+\alpha^2\right)^4}$
4	$\frac{24q(5\alpha^4 - 10\alpha^2q^2 + q^4)}{(q^2 + \alpha^2)^5}$
5	$\frac{240 \alpha q \left(3 \alpha ^{4} -10 \alpha ^{2} q ^{2} +3 q ^{4}\right)}{\left(q^{2} +\alpha ^{2}\right)^{6}}$

п	l	$D_{_{nl}}\!\left(lpha,q ight)$
1	0	$\frac{1}{\left(q^2+lpha^2 ight)}$
	0	$\frac{2\alpha}{\left(q^2+\alpha^2\right)^2}$
2	1	$\frac{2q}{\left(q^2+\alpha^2\right)^2}$
	0	$-\frac{2(q^2-3\alpha^2)}{(q^2+\alpha^2)^3}$
3	1	$\frac{8q\alpha}{\left(q^2+\alpha^2\right)^3}$
	2	$\frac{8q^2}{\left(q^2+\alpha^2\right)^3}$
	0	$-rac{24lpha \left(q^2-lpha^2 ight)}{\left(q^2+lpha^2 ight)^4}$
	1	$-\frac{8q(q^2-5\alpha^2)}{(q^2+\alpha^2)^4}$
4	2	$\frac{48\alpha q^2}{\left(q^2+\alpha^2\right)^4}$
	3	$\frac{48q^3}{\left(q^2+\alpha^2\right)^4}$
	0	$\frac{24(5\alpha^{4} - 10\alpha^{2}q^{2} + q^{4})}{(q^{2} + \alpha^{2})^{5}}$
	1	$\frac{-48\alpha q \left(-5\alpha^2+3 q^2\right)}{\left(q^2+\alpha^2\right)^5}$
5	2	$\frac{-48q^{2}(-7\alpha^{2}+q^{2})}{(q^{2}+\alpha^{2})^{5}}$
	3	$\frac{384\alpha q^3}{\left(q^2+\alpha^2\right)^5}$
	4	$\frac{384q^4}{\left(q^2+\alpha^2\right)^5}$

Tablo 5. $D_{nl}(\alpha,q)$ Yardımcı Moleküler İntegralinin Bazı Sembolik İfadeleri

Ek C. Slater Tipli Atomik Orbitallerin Fourier Dönüşümü

Slater tipli atomik orbitallerin Fourier dönüşümü

$$U_{nlm}(\alpha, \vec{q}) = (-i)^l f_{nl}(\alpha, q) S_{lm}(\theta, \varphi)$$
(C.1)

ile verilir. Burada $f_{nl}(\alpha,q)$ Slater tipli orbitallerin Fourier dönüşümünün radyal kısmıdır ve

$$f_{nl}(\alpha,q) = \frac{1}{(q^2 + \alpha^2)^{n+1}} \sum_{s=0}^{E\left(\frac{n-l}{2}\right)} B_{nl}^s(\alpha) q^{l+s}$$
(C.2)

ile ifade edilir. Burada $B^{s}_{nl}(\alpha)$

$$B_{nl}^{s}(\alpha) = \frac{(-1)^{s}}{\sqrt{\pi}} 2^{n+l+1} \alpha^{2n-l-2s+\frac{1}{2}} \frac{F_{2l+2s+1}(n+l+1)F_{s}(l+s)}{\sqrt{F_{l}(2l)F_{n-l}(2n)F_{n-l}(n+l)}}$$
(C.3)

olarak verilir. $f_{nl}(\alpha,q)$ fonksiyonlarının bazı sembolik değerleri Tablo 6'da verilmiştir. (C.1) denkleminde $S_{lm}(\theta,\varphi)$ ise küresel harmonikleri temsil eder. STO'ların Fourier dönüşümü olan $U_{nlm}(\alpha,\vec{q})$ fonksiyonlarının bazı sembolik ifadeleri Tablo 7'de verilmiştir.

п	l	$f_{_{nl}}(lpha,q)$						
1	0	$\frac{4\alpha^{\frac{5}{2}}\sqrt{2}}{\left(q^2+\alpha^2\right)^2\sqrt{\pi}}$						
	0	$-\frac{4}{3}\frac{\alpha^{\frac{5}{2}}\sqrt{6}(-3\alpha^{2}+q^{2})}{(q^{2}+\alpha^{2})^{3}\sqrt{\pi}}$						
2	1	$\frac{16}{3} \frac{\alpha^{\frac{7}{2}}\sqrt{6} q}{\left(q^2 + \alpha^2\right)^3 \sqrt{\pi}}$						
	0	$-\frac{32}{5}\frac{\alpha^{\frac{9}{2}}\sqrt{5}(q^2-\alpha^2)}{(q^2+\alpha^2)^4\sqrt{\pi}}$						
3	1	$-\frac{32}{15} \frac{\alpha^{\frac{7}{2}} \sqrt{5} q (q^2 - 5\alpha^2)}{(q^2 + \alpha^2)^4 \sqrt{\pi}}$ $\frac{64}{5} \frac{\alpha^{\frac{9}{2}} \sqrt{5} q^2}{(q^2 + \alpha^2)^4 \sqrt{\pi}}$						
	2							
	0	$\frac{16}{35} \frac{\alpha^{\frac{9}{2}} \sqrt{70} q \left(5 \alpha^4 - 10 \alpha^2 q^2 + q^4\right)}{\left(q^2 + \alpha^2\right)^5 \sqrt{\pi}}$						
4	1	$-\frac{32}{35}\frac{\alpha^{\frac{11}{2}}\sqrt{70}q\left(q^2-7\alpha^2\right)}{\left(q^2+\alpha^2\right)^5\sqrt{\pi}}$						
	2	$-\frac{32}{35}\frac{\alpha^{\frac{9}{2}}\sqrt{70}q\left(3q^{2}-5\alpha^{2}\right)}{\left(q^{2}+\alpha^{2}\right)^{5}\sqrt{\pi}}$						
	3	$\frac{256}{35} \frac{\alpha^{\frac{11}{2}} \sqrt{70} q^3}{(q^2 + \alpha^2)^5 \sqrt{\pi}}$						

Tablo 6. STO'ların Fourier Dönüşümünün Radyal Kısımlarının Sembolik İfadeleri

Tablo 7. Bazı STO'ların Fourier Dönüşümleri

n	l	т	$U_{{\scriptscriptstyle nlm}}\!\!\left(lpha,ec{q} ight)$		
1	0	0	$rac{4lpha^{rac{5}{2}}\sqrt{2}}{\left(q^2+lpha^2 ight)^2\sqrt{\pi}}S_{00}ig(heta,arphiig)$		
2	0	0	$-rac{4}{3}rac{lpha^{rac{5}{2}}\sqrt{6}igg(-3lpha^2+q^2igg)}{igg(q^2+lpha^2igg)^3\sqrt{\pi}}S_{00}(heta,arphi)$		
		-1	$-\frac{16}{3}\frac{i \ \alpha^{\frac{7}{2}}\sqrt{6} \ q}{\left(q^{2}+\alpha^{2}\right)^{3}\sqrt{\pi}}S_{1-1}(\theta,\varphi)$		
2	1	0	$-\frac{16}{3}\frac{i \ \alpha^{\frac{7}{2}}\sqrt{6} \ q}{\left(q^{2}+\alpha^{2}\right)^{3}\sqrt{\pi}}S_{10}(\theta,\varphi)$		
		1	$-\frac{16}{3}\frac{i \ \alpha^{\frac{7}{2}}\sqrt{6} \ q}{\left(q^{2}+\alpha^{2}\right)^{3}\sqrt{\pi}}S_{11}(\theta,\varphi)$		
3	0	0	$-rac{32}{5}rac{lpha^{rac{9}{2}}\sqrt{5}\left(q^{2}-lpha^{2} ight)}{\left(q^{2}+lpha^{2} ight)^{4}\sqrt{\pi}}S_{00}ig(heta,arphiig)$		
	1	-1	$\frac{32}{15} \frac{i \; \alpha^{\frac{7}{2}} \sqrt{5} \; q \; \left(q^2 - 5 \alpha^2\right)}{\left(q^2 + \alpha^2\right)^4 \sqrt{\pi}} S_{1-1}(\theta, \varphi)$		
3		1	1	0	$\frac{32}{15}\frac{i\;\alpha^{\frac{7}{2}}\sqrt{5}q\;\left(q^{2}-5\alpha^{2}\right)}{\left(q^{2}+\alpha^{2}\right)^{4}\sqrt{\pi}}S_{10}(\theta,\varphi)$
			1	$\frac{32}{15}\frac{i\;\alpha^{\frac{7}{2}}\sqrt{5}q\;\left(q^2-5\alpha^2\right)}{\left(q^2+\alpha^2\right)^4\sqrt{\pi}}S_{11}(\theta,\varphi)$	
		-2	$-\frac{64}{5}\frac{\alpha^{\frac{9}{2}}\sqrt{5} q^{2}}{\left(q^{2}+\alpha^{2}\right)^{4}\sqrt{\pi}}S_{2-2}(\theta,\varphi)$		
		-1	$-\frac{64}{5}\frac{\alpha^{\frac{9}{2}}\sqrt{5} q^{2}}{\left(q^{2}+\alpha^{2}\right)^{4}\sqrt{\pi}} S_{2-1}(\theta,\varphi)$		
3	2	0	$-rac{64}{5} rac{lpha^{rac{9}{2}} \sqrt{5} q^2}{\left(q^2+lpha^2 ight)^4 \sqrt{\pi}} S_{20}(heta, arphi)$		
		1	$-\frac{64}{5}\frac{\alpha^{\frac{9}{2}}\sqrt{5}q^{2}}{\left(q^{2}+\alpha^{2}\right)^{4}\sqrt{\pi}}S_{21}(\theta,\varphi)$		
		2	$-\frac{64}{5}\frac{\alpha^{\frac{9}{2}}\sqrt{5}}{(q^{2}+\alpha^{2})^{4}\sqrt{\pi}}S_{22}(\theta,\varphi)$		

Ek D. Gaunt Katsayıları

Gaunt'un çok iyi bilinen (Gaunt, 1929) makalesinde

$$C^{L}(lm, l'm') = \sqrt{\frac{4\pi}{2L+1}} \int_{\Omega} Y^{*}_{LM}(\Omega) Y^{*}_{lm}(\Omega) Y_{l'm'}(\Omega) d\Omega$$

şeklinde tanımlanan $C^{L}(lm, l'm')$ Gaunt katsayılarının s,p,d,f elektronları için mümkün sembolik değerleri aşağıda verilmiştir. Tabloda boş bırakılan yerlerde Gaunt katsayılarının değeri sıfırdır.

Iree	1'100'	L							
ım	ı m	0	1	2	3	4	5		
00	00	1							
	1±1		$\sqrt{1/3}$						
	0		$\sqrt{1/3}$						
	2±2			$\sqrt{1/5}$					
	±1			$\sqrt{1/5}$					
	0			$\sqrt{1/5}$					
	3±3				$\sqrt{1/7}$				
	± 2				$\sqrt{1/7}$				
	±1				$\sqrt{1/7}$				
	0				$\sqrt{1/7}$				
1±1	1±1	1		$-\sqrt{1/25}$					
± 1	0	0		$\sqrt{3/25}$					
0	0	1		$\sqrt{4/25}$					
±1	Ŧ 1	0		$\sqrt{6/25}$					
1±1	2 ± 2		$\sqrt{6/15}$		$-\sqrt{3/245}$				
± 1	±1		$\sqrt{3/15}$		$-\sqrt{9/245}$				
± 1	0		$-\sqrt{1/15}$		$\sqrt{18/245}$				
0	±2		0		$\sqrt{15/245}$				
0	±1		$\sqrt{3/15}$		$\sqrt{24/245}$				
0	0		$\sqrt{4/15}$		$\sqrt{27/245}$				
± 1	7 2		0		$\sqrt{45/245}$				
0	±2		0		$\sqrt{15/245}$				
0	±1		$\sqrt{3/15}$		$\sqrt{24/245}$				
0	0		$\sqrt{4/15}$		$\sqrt{27/245}$				

Tablo 8. s,p,d,f elektronları için $C^{L}(lm, l'm')$ katsayıları

l	1//				L		
lm	l m	0	1	2	3	4	5
±1	∓ 2		0		$\sqrt{45/245}$		
±1	Ŧ1		0		$\sqrt{30/245}$		
1±1	3±3			$\sqrt{45/175}$		$-\sqrt{1/189}$	
±1	± 2			√30/175		$-\sqrt{3/189}$	
±1	±1			√ <u>18/175</u>		$-\sqrt{6/189}$	
±1	0			$-\sqrt{9/175}$		$\sqrt{10/189}$	
0	± 3			0		$\sqrt{7/189}$	
0	± 2			$\sqrt{15/175}$		$\sqrt{12/189}$	
0	±1			$\sqrt{24/175}$		$\sqrt{15/189}$	
0	0			$\sqrt{27/175}$		$\sqrt{16/189}$	
±1	∓ 3			0		$\sqrt{28/189}$	
±1	∓ 2			0		$\sqrt{21/189}$	
±1	∓1			- \sqrt{3}/175		$\sqrt{15/189}$	
2±2	2±2	1		$-\sqrt{4/49}$		$\sqrt{1/441}$	
± 2	±1	0		<u>√6/49</u>		$-\sqrt{5/441}$	
± 2	0	0		$-\sqrt{4/49}$		$\sqrt{15/441}$	
±1	±1	1		$\sqrt{1/49}$		$-\sqrt{16/441}$	
±1	0	0		$\sqrt{1/49}$		$\sqrt{30/441}$	
0	0	1		$\sqrt{4/49}$		$\sqrt{36/441}$	
± 2	∓ 2	0		0		$\sqrt{70/441}$	
2±2	2 ∓1	0		0		$\sqrt{35/441}$	
±1	∓1	0		<u>√6/49</u>		$\sqrt{40/441}$	
2±2	3±3		√15/35		- \sqrt{10/315}		$\sqrt{1/1524.6}$

l	1''	L					
lm	ı m	0	1	2	3	4	5
±2	±2		$\sqrt{5/35}$		$-\sqrt{20/315}$		$\sqrt{5/1524.6}$
± 2	±1		$-\sqrt{1/35}$		$\sqrt{24/315}$		- \sqrt{15/1524.6}
± 2	0		0		$-\sqrt{20/315}$		$\sqrt{35/1524.6}$
±1	±3		0		$\sqrt{25/315}$		$-\sqrt{7/1524.6}$
±1	± 2		$\sqrt{10/35}$		$\sqrt{15/315}$		$-\sqrt{24/1524.6}$
±1	±1		$\sqrt{8/35}$		$\sqrt{2/315}$		$-\sqrt{50/1524.6}$
±1	0		$-\sqrt{3/35}$		$\sqrt{2/315}$		√80/1524.6
0	±3		0		$-\sqrt{25/315}$		$\sqrt{28/1524.6}$
0	± 2		0		0		$\sqrt{63/1524.6}$
0	±1		$\sqrt{6/35}$		$\sqrt{9/315}$		√90/1524.6
0	0		$\sqrt{9/35}$		$\sqrt{16/315}$		\sqrt{100/1524.6}
±2	∓3		0		0		$\sqrt{210/1524.6}$
±2	∓ 2		0		0		√126/1524.6
± 2	∓1		0		$-\sqrt{10/315}$		$\sqrt{70/1524.6}$
±1	∓3		0		0		$\sqrt{84/1524.6}$
±1	∓ 2		0		$\sqrt{25/315}$		$\sqrt{112/1524.6}$
2±2	3±3		$\sqrt{15/35}$		$-\sqrt{10/315}$		$\sqrt{1/1524.6}$
± 2	± 2		$\sqrt{5/35}$		$-\sqrt{20/315}$		$\sqrt{5/1524.6}$
± 2	±1		$-\sqrt{1/35}$		$\sqrt{24/315}$		- \sqrt{15/1524.6}
± 2	0		0		$-\sqrt{20/315}$		$\sqrt{35/1524.6}$
±1	±3		0		$\sqrt{25/315}$		$-\sqrt{7/1524.6}$
±1	± 2		$\sqrt{10/35}$		$\sqrt{15/315}$		$-\sqrt{24/1524.6}$
±1	±1		$\sqrt{8/35}$		$\sqrt{2/315}$		$-\sqrt{50/1524.6}$

l	l'm'	L						
lm		0	1	2	3	4	5	
±1	0		$-\sqrt{3/35}$		$\sqrt{2/315}$		√80/1524.6	
0	±3		0		- \sqrt{25/315}		$\sqrt{28/1524.6}$	
0	± 2		0		0		√63/1524.6	
0	±1		$\sqrt{6/35}$		$\sqrt{9/315}$		√90/1524.6	
0	0		$\sqrt{9/35}$		√ <u>16/315</u>		√100/1524.6	
± 2	∓3		0		0		√210/1524.6	
± 2	∓ 2		0		0		√126/1524.6	
± 2	∓1		0		- \sqrt{10/315}		√70/1524.6	
±1	∓3		0		0		√84/1524.6	
±1	∓ 2		0		$\sqrt{25/315}$		√112/1524.6	
±1	∓1		0		$\sqrt{15/315}$		√105/1524.6	
3±3	3±3	1		$-\sqrt{25/225}$		$\sqrt{9/1089}$		
± 3	± 2	0		$\sqrt{25/225}$		$-\sqrt{30/1089}$		
±3	±1	0		$-\sqrt{10/225}$		$\sqrt{54/1089}$		
±3	0	0		0		$-\sqrt{63/1089}$		
± 2	± 2	1		0		$-\sqrt{49/1089}$		
± 2	±1	0		$-\sqrt{15/225}$		$\sqrt{32/1089}$		
± 2	0	0		$-\sqrt{20/225}$		$-\sqrt{3/1089}$		
±1	±1	1		$\sqrt{9/225}$		$\sqrt{1/1089}$		

lm	l'm'	L							
		0	1	2	3	4	5		
±1	0	0		$\sqrt{2/225}$		$\sqrt{15/1089}$			
0	0	1		$\sqrt{16/225}$					
± 3	∓3	0		0					
± 3	∓2	0		0					
± 3	∓1	0		0					
± 2	∓ 2	0		0					
± 2	Ŧ 1	0		0					
±1	∓1	0		$\sqrt{24/225}$					

Ek E. Atomik Form Faktör İntegralleri

Atomik form faktör integralleri

$$f_{nlm,n'l'm'}(\alpha,\beta;q) = \int \chi^*_{nlm}(\alpha,\vec{r}) e^{i\vec{q}\vec{r}} \chi_{n'l'm'}(\beta,\vec{r}) d^3r$$

ile verilir. Denklem (2.18)'den yararlanarak atomik form faktör integralleri için elde edilen sembolik değerler aşağıdaki Tablo 9 ve Tablo 10'da verilmiştir:
n	l	т	$f_{{\scriptstyle nlm,nlm}}(lpha,lpha;q)$
1	0	0	$16\frac{\alpha^4}{\left(4\alpha^2+q^2\right)^2}$
2	0	0	$64\frac{\alpha^6 \left(4\alpha^2 - q^2\right)}{\left(4\alpha^2 + q^2\right)^4}$
2	1	-1	$64\frac{\alpha^6}{\left(4\alpha^2+q^2\right)^3}$
		0	$64\frac{\alpha^6 \left(4\alpha^2-5q^2\right)}{\left(4\alpha^2+q^2\right)^4}$
		1	$64\frac{\alpha^6}{\left(4\alpha^2+q^2\right)^3}$
3	0	0	$\frac{256}{3} \frac{\alpha^8 \left(48 \alpha^4 - 40 q^2 \alpha^2 + 3 q^4\right)}{\left(4 \alpha^2 + q^2\right)^6}$
3	1	-1	$\frac{256}{5} \frac{\alpha^8 (20\alpha^2 - 3q^2)}{(4\alpha^2 + q^2)^5}$
		0	$\frac{256}{5} \frac{\alpha^8 \left(80 \alpha^4 - 216 q^2 \alpha^2 + 21 q^4\right)}{\left(4 \alpha^2 + q^2\right)^6}$
		1	$\frac{256}{5} \frac{\alpha^8 (20\alpha^2 - 3q^2)}{(4\alpha^2 + q^2)^5}$
3	2	-2	$256\frac{\alpha^8}{\left(4\alpha^2+q^2\right)^4}$
		-1	$256\frac{\alpha^8 \left(4\alpha^2 - 7q^2\right)}{\left(4\alpha^2 + q^2\right)^5}$
		0	$\frac{256}{3} \frac{\alpha^8 \left(48 \alpha^4 - 104 q^2 \alpha^2 + 51 q^4\right)}{\left(4 \alpha^2 + q^2\right)^6}$
		1	$256 \frac{\alpha^{8} (4\alpha^{2} - 7q^{2})}{(4\alpha^{2} + q^{2})^{5}}$
		2	$256\frac{\alpha^8}{\left(4\alpha^2+q^2\right)^4}$

Tablo 9. Atomik Form Faktör İntegralleri $f_{nlm,n'l'm'}(\alpha,\beta;q)$ $(n=n', l=l', m=m', \alpha=\beta)$

п	l	т	n'	l	т	${f}_{{nlm,n'lm}}ig(lpha,eta;qig)$
1	0	0	2	0	0	$\frac{8\sqrt{3}}{3} \frac{\alpha^{3/2} \beta^{5/2} (3(\alpha + \beta)^2 - q^2)}{(q^2 + (\alpha + \beta)^2)^3}$
			3	0	0	$\frac{35\sqrt{10}}{5} \frac{\alpha^{3/2} \beta^{7/2} \left(\left(\alpha + \beta\right)^3 - q^2 \left(\alpha + \beta\right) \right)}{\left(q^2 + \left(\alpha + \beta\right)^2\right)^4}$
			4	0	0	$\frac{32\sqrt{35}}{35} \frac{\alpha^{3/2} \beta^{9/2} \left(5(\alpha+\beta)^4 - 10q^2(\alpha+\beta)^2 + q^4\right)}{\left(q^2 + (\alpha+\beta)^2\right)^5}$
2	0	0	3	0	0	$\frac{32\sqrt{35}}{15} \frac{\alpha^{5/2} \beta^{7/2} \left(5(\alpha+\beta)^4 - 10q^2(\alpha+\beta)^2 + q^4\right)}{\left(q^2 + (\alpha+\beta)^2\right)^5}$
	U		4	0	0	$\frac{64\sqrt{105}}{21} \frac{\alpha^{5/2}\beta^{9/2} \left(3(\alpha+\beta)^5 - 10q^2(\alpha+\beta)^3 + 3q^4(\alpha+\beta)\right)}{\left(q^2 + (\alpha+\beta)^2\right)^6}$
2	1	1	3	1	1	$\frac{32\sqrt{30}}{15} \frac{\alpha^{5/2} \beta^{7/2} (5(\alpha + \beta)^2 - q^2)}{(q^2 + (\alpha + \beta)^2)^4}$
			4	1	1	$\frac{64\sqrt{105}}{35} \frac{\alpha^{5/2} \beta^{9/2} (5(\alpha+\beta)^3 - 3q^2(\alpha+\beta))}{(q^2 + (\alpha+\beta)^2)^5}$
3	0	0	4	0	0	$\frac{64\sqrt{14}}{7} \frac{\alpha^{7/2}\beta^{9/2} \left(7(\alpha+\beta)^6 - 35q^2(\alpha+\beta)^4 + 21q^4(\alpha+\beta)^2 - q^6\right)}{\left(q^2 + (\alpha+\beta)^2\right)^5}$
3	2	2	4	2	2	$\frac{64\sqrt{14}}{7} \frac{\alpha^{7/2}\beta^{9/2} (7(\alpha+\beta)^2 - q^2)}{(q^2 + (\alpha+\beta)^2)^5}$

Tablo 10. Atomik Form Faktör İntegralleri $f_{nlm,n'l'm'}(\alpha,\beta;q)$ $(n \neq n', l = l', m = m', \alpha \neq \beta)$

ÖZGEÇMİŞ

1987 yılında Adana'da doğdu. İlk ve Ortaöğrenimini Adana'da tamamladı. 2011 yılında Rize Üniversitesi Fen Edebiyat Fakültesi Fizik Bölümü'nden mezun olup aynı yıl Recep Tayyip Erdoğan Üniversitesi Fen Bilimleri Enstitüsü'nde yüksek lisansa başladı ve halen eğitimine devam etmektedir.