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Latent covariates, effects of covariates on item parameters yielded smaller standard errors for
Mixture Rasch model item parameter estimates. A significant interaction term also had an effect

on the coefficients for predicting and explaining latent class membership.

1. INTRODUCTION

A mixture Rasch model (MRM; Rost, 1990) assumes the examinee population is comprised of
a finite number of discrete latent classes and a Rasch model with different item parameters
possible within each class. The latent class portion of the model accounts for qualitative
differences among examinees by detecting latent classes. The Rasch model part of the model
accounts for quantitative differences among examinees both within and between latent classes.
The MRM by itself detects the latent classes, but it does not explain why these classes form.
This is necessary in order to understand why examinees are classified into different latent
classes. Once latent classes are detected, therefore, a next step is to characterize each class to
better understand the differences between classes. One method used for providing more
information about these differences is addition of a covariate to the model in order to improve
modeling of the association between the covariate and the latent class membership (Bilir, 2009;
Cho, Cohen, & Kim, 2013; Choi, Alexeev, & Cohen, 2015; Dai, 2013; Smit, Kelderman, & van
der Flier, 1999).
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Different approaches can be adopted for inclusion of a covariate in amixture model depending
on the type (e.g., item specific covariates that refer to items) and level of the covariate (e.g.,
within level latent class covariates that are used to predict the latent class membership for a
specificlevel inamultilevel model), or the parameter of interest to be predicted by the covariate
(e.g., latent class membership, ability). The approach of extending mixtureitem responsetheory
(IRT) models to include amultinomial logistic regression model with a covariateis adopted in
this study to predict the latent class membership by using the covariate (Cho et a., 2013; Dai,
2013). The covariate in these models can be used as prior information (e.g., as an auxiliary
variable) to predict the posterior probabilities of latent class membership.

Incorporation of acovariate in amixture IRT model has been shown to be useful for detection
of the latent classes and al so for characterizing differences between thelatent classes (e.g., Bilir,
2009; Choi et al., 2015; Dai, 2013; Smit et al., 1999). Previous research has included a single
manifest categorical variable as a covariate in the model. Manifest covariates are not aways
sufficiently informative, however, they tend to be only moderately related to the variable
causing the latent classesto form. In adifferentia item functioning (DIF) context, for example,
manifest grouping variables were not very helpful for explaining causes of between group
differences (Cohen & Bolt, 2005). In this study, we compare the effects of manifest and latent
covariates with and without interactions on latent class membership. As an exploratory
investigation, we tried to accomplish the purpose by presenting an application to data from the
Program for International Assessment (PISA; OECD, 2013) mathematics literacy test.

In this paper, a finite mixture multinomial logistic regression structure with covariates was
incorporated intoaMRM for this purpose (cf. Cho et d ., 2013). Latent covariates were expected
to yield higher relationships with the latent class variable, because they were both obtained
from examinee response data, albeit not from the same measures. Thiswas expected to enhance
the impact of the covariates on detection and subsequent characterization of the latent classes.

2.METHOD

2.1. Mixture Rasch Model (MRM) and Mixture Rasch Model with a Covariate (MRM -
Cov)

Rost (1990) defined the probability of a correct response to item i by examinee | given that the
examinee belongsto latent class g as:

_ _ exp(e}'j - bis)

P(Xii = 1|6;,g) = (1 +exp(8;, — by, : (1)
where Bjq is the examinee’s ability in class g, big is the class specific item difficulty parameter,
and X is the observed response of examinee j to an item i. For model identification,

!_.bi, = 0 holds within each class. Bolt, Cohen, and Wollack (2002) noted that this norming

constraint also makes 6g comparable across classes and that the differences between the 6
distributions can quantitatively explain the differences between the latent classes.

The MRM with a covariate (MRM-Cov) can incorporate a multinomia logistic regression
model for mjg in Equation 1 as follows:

logit(m;, ) = Bo +B1 Y, )
or similarly,

o= exp(Bo +B1Yj)
8 Zg_l exp(By +B1Y)

3)
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with the covariate y; as the predictor, where Bog is the intercept, and Big is the covariate effect
in latent class g. The intercept and covariate effects in one of the latent classes were both fixed
to zero for model identification (Cho et a., 2013).

2.2. Selection of Covariates

Smit et a. (1999) describe use of collateral information that has strong association with the
latent class variable resulting in smaller standard errors on parameter estimates, when an equal
or even fivefold smaller sample size was used in a MRM. Selection of a covariate that has
strong association with the latent class membership, however, also requires theoretical as well
as statistical justification. In most testing situations, manifest collateral information (e.g.,
demographic or contextual information) is available, since this type of information can easily
be obtained through simple questionnaires or reference to institutional records.

Manifest variables, unfortunately, are not necessarily very useful predictors of latent class
membership as the association between a manifest variable and the variable causing latent
classes to form is typically modest at best (Cohen & Bolt, 2005). Further, the proportions of
variance explained by these manifest variables are usually small even though they might be
significant. Cohen and Bolt (2005) noted that latent variables, on the other hand, often have
stronger relationships with the latent classes, thus providing more useful information regarding
formation of the latent classes. Latent variables, however, typically require more complex
substantive theories or statistical models for detection. In this study, we discuss using manifest
and latent variables as covariates in the MRM analysis of PISA (OECD, 2013) mathematics
literacy data. The student questionnaires from PISA provided collateral variables that were
assessed for selection of latent as well as manifest covariates.

Strength of association between the covariates and the latent classes can be defined using
bivariate probabilities of classification (Smit et al., 1999), or by using exponents of the
coefficients (Dai, 2013). Two steps were used in the present study to determine appropriate
latent covariates for incorporating in Equation 3: (1) the covariate selection, and (2) the MRM -
Cov analysiswith the selected covariates. In the covariate sel ection step, correlation coefficients
were examined between candidate covariates and the latent variable of interest in order to
determine the strength of association. In the second step, the exponents of the coefficients were
determined as a measure of the association between the covariates and the latent classes in a
MRM-Cov model. An empirical example is provided to demonstrate the two-step procedure
for fitting aMRM-Cov model.

2.3. Empirical Example: Use of Latent Covariatesto Predict Latent ClassMembershipin
a Mixture Rasch M odel

We illustrate this two-step procedure for selection and inclusion of covariates for predicting
latent class membership in a MRM with two examples. The two examples included two
different MRM-Cov models each including different combinations of latent and manifest
covariates. The model in Study A included two covariates which did not have a significant
interaction. The model in Study B included two covariates which did have a significant
interaction. The purpose in these two studies was to gain insight about the effects of including
more than one covariate in aMRM-Cov model on class membership in the presence of and in
the absence of an interaction between the covariates. In addition, each study included amanifest
and alatent covariate in order to compare their influence on the latent class membership.

2.3.1. Data

Data for the studies were taken from the 2012 edition of PISA (OECD, 2014) that assessed
mathematics literacy as the main domain. Data from six English speaking countries (N=1,372)
were used to mitigate differences due to trandlations (e.g., Bonnet, 2002): Australia (n1 = 312),
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Canada (n2 = 447), United Kingdom (n3= 289), Ireland (ns= 117), New Zealand (ns = 88), and
the United States (ns=119). PISA 2012 provided non-cognitive measuresfor studentsincluding
manifest (e.g., demographic information, number of books at home) and latent variables (e.g.,
attitudes). Mathematics-related variables (e.g., attitudes towards math, beliefs about math) were
considered for use as latent covariates. Booklet 5 was used for this example from the 13
booklets used for PISA 2012, because it included only mathematics items and most of itsitems
required higher levels of cognitive process (e.g., employ, interpret) (OECD, 2014).

2.3.2. Selection of Manifest Covariates

A mathematics achievement score was calculated by summing the dichotomous item scores
from the mathematics literacy test for each student. Among the manifest variables available
with the PISA 2012 data, 31 were evaluated for possible use as covariates. These candidate
variables were regressed on the raw mathematics achievement scores to find the most
significant manifest variable that explained the largest proportion of variance. The purpose of
this analysis was to find the manifest variable that was the best predictor of the mathematics
achievement given the data. Regression analysis suggested that number of books at home was
the best predictor of the mathematics achievement score (R-sgquare = .124). Average hours a
student spend each week on homework predicted the second highest proportion of variance
explained (R-sguare change = .031).

2.3.3. Selection of Latent Covariates

PISA 2012 included four non-cognitive measures considered to be outcomes of mathematics
education: (1) mathematics-related attitudes, beliefs and motivation; (2) general school-related
attitudes and behaviors; (3) motivation to learn; and (4) educational expectations (OECD,
2013). Of these variables, those specifically dealing with mathematics-related attitudes, beliefs
and motivation were considered as potential covariates. The mathematics-related attitudes
included student interest in mathematics and student willingness to engage in mathematics.
Student interest in mathematics included interest in mathematics at school, and intentions for
further study in mathematics and in mathematics related careers. The willingness to be engaged
was measured as “emotions of enjoyment, confidence and (lack of) mathematics anxiety, and
the self-related beliefs of self-concept and self-efficacy” (OECD, 2013, p. 42). A mathematics-
related attitude variable was considered as a potential covariate by combining the scales of the
variables that comprised the mathematics-related attitudes. However, the scales of these
variables were quite different for some of the variables, such as intentions and anxiety. As a
result, two latent covariates were constructed: (1) self-related beliefs and (2) motivation. Items
on these two latent covariates were scored on a four-point scale and were estimated using a
partial credit IRT model (PCM; Masters, 1982).

2.3.4. Student Motivation as a Latent Covariate

PISA 2012 included scal es measuring intrinsic and instrumental motivation, and short-term and
long-term intentions to address the student motivation for mathematics (OECD, 2013). In this
study, the eight-item intrinsic and instrumental motivation scale was used as an indicator of
student motivation. The mathematics intentions measure was not included in the analyses since
its scale did not combine meaningfully with the intrinsic and instrumental motivation scale. The
coefficient apha values for the four-item intrinsic motivation subscale and the four-item
instrumental motivation subscale were both .90. The coefficient alphafor the eight-item student
motivation scale was .92. Principal axis factoring yielded two factors that correlated .65. The
two factors explained 62% and 15% of the variance, respectively. The factor loadings from an
oblimin rotation with Kaiser normalization indicated that items on the instrumental motivation
scale loaded on the first factor, and items on the intrinsic motivation scale loaded on the second
factor.
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2.3.5. Salf-Related Beliefs as a Latent Covariate

Self-efficacy and self-concept are commonly used measures of self-beliefs in academic
motivation research (Pgjares & Schunk, 2001). Self-efficacy is described as a conviction or
belief about one’s ability to cope with certain tasks and self-concept is described as one’s
overal perception of his or her personal attributes evaluated by using continuous self-
evaluation (OECD, 2013). A composite scale of self-beliefs was created by combining these
two scales. The self-efficacy scale included eight items; the self-concept scale had five items.
The coeffcieint alphafor the eight-item self-efficacy subscale was .86, and the coefficient alpha
for thefive-item self-concept subscale was .90. The coefficient alphafor the 13-item self-beliefs
scale was .90. Principal axis factoring indicated two factors. The correlation between the two
factors was .60. The factors explained 46% and 12% of the variance, respectively. Factor
loadings from an oblimin rotation with Kaiser normalization indicated that the items of the self-
efficacy scaleloaded on thefirst factor, and items of the self-concept scale loaded on the second
factor.

2.3.5. Association between Covariates and Mathematics Achievement

The association between the covariates and the mathematics achievement is shown in Table 1.
The manifest variables of PISA 2012 (i.e., 31 manifest variables) together explained only 26%
of the variability in the mathematics achievement scores. Self-beliefs, on the other hand,
explained 29% of the variance in mathematics achievement by itself.

Table 1. Association between the Covariates and the M athematics Achievement.
Mathematics  Index for the number M otivation Self-beliefs

achievement of books at home
M athemati cs achievement 1.000 .359" 253" 535"
Index for the number of 1.000 .065™ 158"
books at home
Motivation 1.000 576"
Self-beliefs 1.000

** Correlation is significant at the 0.01 level (2-tailed).

Two linear regression analyses were done to predict mathematics achievement score. In Study
A (i.e, covariates that did not have a significant interaction), the index of the number of books
and self-beliefs were used as predictors. In Study B, motivation and self-beliefs were used as
predictors. The regression for Study A did not yield a significant interaction between number
of books and self-beliefs (f = -0.028, p = .639). The variables together explained 36% of the
variance in mathematics achievement. In Study B, the covariates did have a significant
interaction. The additive regression model, that is, the model with no interaction term for
prediction of mathematics achievement using the self-belief and motivation scores, yielded a
negative coefficient for motivation (f = -0.138, p < .001) and a positive coefficient for self-
beliefs (B = 0.611, p <.001). Adding motivation to the model along with self-beliefs improved
the relationship between self-beliefs and mathematics achievement but changed the sign of the
coefficient for motivation indicating a suppression effect and, therefore, collinearity (Cohen,
Cohen, West, & Aiken, 2003) between the variables. In this instance, motivation acted like a
suppressor variable, as it had a weak positive correlation with mathematics achievement (r
=.21) but arelatively strong correlation with self-beliefs (r = .57). In addition, as suggested by
Cohen et a. (2003), this resulted as the correlation between mathematics achievement and
motivation was less than the product of the correlation between mathematics achievement and
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self-beliefs, and the correlation between the motivation and the self-beliefs (e.g., .21 <.53 x .57
=.30).

Sequential regression analysis (also known asresidual regression analysis) was used to account
for the shared variance between the variables in the context of collinearity in the data. In this
analysis, motivation was determined to be the important variable. Thus, self-beliefs was
regressed against motivation. Self-beliefs was replaced with the residuals from this regression
since the residuals represent the independent contribution of self-beliefs after accounting for
motivation (Graham, 2003). In study B, therefore, motivation, the residuals that represented
self-beliefs and the interaction of these two were used to predict mathematics achievement.

Theinitial analysesfor covariate selection anal yses showed that the effect sizes for motivation
(B =0.197, p <.001) and number of books at home ( = 0.292, p <.001) were smaller than that
for self-beliefs ( = 0.506, p < .001). The interaction between the index of the number of books
at home and self-beliefs was not significant (B = -0.028, p = .639). The interaction between
motivation and self-beliefs was significant, although it had only arelatively small effect size (8
= 0.062, p = .026) using Cohen’s (1988) rules of thumb. Therefore, the anticipated effects of
the motivation and number of books at home on latent class membership were also smaller
relative to the self-beliefs. Small coefficients (e.g., approximately zero) from MRM-Cov were
expected for the number of books at home and self-beliefs interaction given that it was
insignificant.

2.3.6. Estimation of the Model Parameters

Estimation of the model parameters for each model was done using Markov chain Monte Carlo
(MCMC) asimplemented in the computer software OpenBUGS (Lunn, Spiegelhalter, Thomas,
& Best, 2009) (see Appendix A). The convergence of the model parameter estimates was
assessed using three indices. Auto-correlations were examined as one indicator of MCMC
convergence. In addition, the Monte Carlo error (MC error) for each posterior estimate was
examined to determine if it was less than or equal to 5% of the standard deviation. Finaly, the
Heidelberger and Welch (1983) convergence diagnostic was used. Based on theseindices, burn-
in was determined to be 10% of the total of 30,000 iterations for each model except for the
model with the number of books at home and the model with number of books at home and
beliefs as covariates. History plots suggested aburn-in period of 5,000 and 4,000 for these | atter
two models, respectively.

2.3.6. Estimation of the Salf-Beliefs and Motivation Scale Scores

The PCM was used for estimating self-beliefs and motivation. MC errors, Heidelberger and
Welch (1983) and Geweke (1992) convergence diagnostics were used to inform convergence.
The burn-in for the PCM was 30,000 iterations with atotal of 150,000 post-burn-in iterations
for estimation of self-beliefs. As some parameters had high autocorrelations, the chain was
thinned to every 10th iteration resulting in 12,000 post-burn-in iterations used to obtain the
posterior estimates. For motivation, the burn-in was 45,000 of atotal of 225,000 iterations. The
chain was thinned to every 10th iteration to reduce autocorrelations, resulting in 18,000 post-
burn-in iterations.

3. RESULT / FINDINGS
3.1. MRM Analysisof the Mathematics Achievement Data

Schwarz's (1978) Bayesian information criterion (BIC) and Akaike’s (1974) information
criterion (AIC) were used to inform determining the number of latent classes in the models.
BIC and AIC both suggested three latent classes for all modelsin both Study A (see Appendix
B) and in Study B (see Appendix C).
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To compare item parameter estimates between different models, mean and sigma equating
(Marco, 1977) was used to transform the scale of models with a covariate to the scale of the
model without a covariate. Additional transformation was not required for comparisons of the
latent classes within the same model since the item parameters were mean centered within each
class (e.g., Choi, 2014).

3.2. Results from Study A--Non-Interacting Covariates

In Study A (i.e., covariates that did not have a significant interaction), MRM model with the
index of the number of books as a covariate (MRM-Cov-Books), MRM model with self-beliefs
as a covariate (MRM-Cov-Self-Beliefs), and MRM models with the index of the number of
books and self-beliefs as covariates with and without an interaction term (MRM-Cov-Self-
Beliefs& Books) were estimated.

Squared errors within each class were calculated for comparing item parameter estimates from
the model with a covariate (MRM-Cov) to the model without acovariate (MRM). In this study,
the MRM was the baseline model. Squared errors were compared by taking square of
differences between item parameter estimates from MRM model and item parameter estimates
from MRM-Cov models for each latent class.

A factorial ANOVA was done to compare the log-transformed squared errors for item
parameter estimates between the MRM-Cov models. The equal variances assumption was met
using Levene’s test (F(11, 420) = 0.827, p = .613). ANOVA results yielded a significant
interaction between model type and latent class (F(6, 420) = 5.924, p < .001), with asmall to
moderate size eta-squared value of .065 based on Cohen’s (1988) rules of thumb.

Pairwise comparisons of log-transformed squared errors for item parameter estimates between
MRM-Cov models using Tukey’s HSD procedure did not yield differences in mean squared
error (M SE) values between the modelsfor Class 1. Thisindicated the item parameter estimates
from MRM-Cov models were similar to each other for Class 1. For Class 2 and Class 3, MSE
values from MRM-Cov-Books were similar to the M SE values from MRM model, and smaller
than the MSE values from the remaining MRM-Cov models. The MSE values from these
remaining MRM-Cov models, on the other hand, were not different than each other. Similarly,
the item parameter estimates from MRM-Cov-Books model were different than the item
parameter estimates from the remaining MRM-Cov models, and the item parameter estimates
from these remaining MRM-Cov models were similar to each other. This pattern was more
evident in Class 3 than in Class 2. For al classes, the additive model without interaction and
the model with interaction resulted in similar item parameter estimates.

A factorid ANOVA was conducted on the posterior standard deviations of item parameter
estimates from different models to investigate whether a particular pattern existed for standard
errors of item parameter estimates. A Box-Cox transformation (A = -0.656) was applied to the
standard deviations, as implemented in the R package MASS (Venables & Ripley, 2002).
Levene’s test (F(14, 525) = 0.996, p = .456) suggested equa variances. ANOVA results
indicated a significant interaction between model type and latent class (F(8, 525) = 7.695, p
<.001, n% = .050).

Pairwise comparisons of the posterior standard deviations of item parameter estimates were
done using bootstrapping method with 10,000 samples because the cell means after Box-Cox
transformation were not interpretable. For Class 1 and Class 2, the standard errors of item
parameter estimates were similar from the different models. In Class 3, the standard errors of
item parameter estimates were similar for the MRM and MRM-Cov-Books models. The
standard errors of item parameter estimateswere similar for the remaining models. The standard
errors from the latter group of models were smaller than the standard errors from the former
group of models.
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The mean ability for Class 2 was fixed to zero for model identification, for each model. Class
means for the different models were similar for Class 1. For Class 3, the class means from
MRM and MRM-Cov-Books were similar to each other, and the class means from the rest of
the models were similar to each other, although the differencesin class means were trivial.

The mixing proportions did not exhibit a substantial covariate effect on the proportion of
examinees in different classes for Class 1 as the mixing proportions from the different models
were similar to each other. On the other hand, there was a clear pattern of effect for Class 2 and
Class 3. This was similar to the effect observed for the mean ability estimates of Class 3.
Specificaly, the proportions of students in each class were similar for MRM and MRM-Cov-
Books, and the proportions of students in each class were similar for the remaining three
models. Incorporating self-beliefs in the MRM model as a covariate, or incorporating self-
beliefs and the index of the number of books at home together with or without interaction
resulted in an approximately 12% decrease in Class 2 membership and a 12% increase in the
Class 3 membership. However, this did not result in a considerable change in membership to
Class 1.

Coefficients from different models indicated that covariates did provide information for
describing the latent classes (see Table 2). That is, the positive coefficients from MRM-Cov-
Books showed that the students were more likely to belong to Class 1 and Class 3 as the number
of books at home increased. The smaller coefficient for Class 1 indicated a smaller probability
of being a member in this class as the number of books increase, compared to Class 3. Smaller
coefficients also indicated that the number of books had a smaller effect size for predicting the
class membership. The coefficients from the MRM-Cov-Self-Beliefs model also indicate that
the students with higher self-related beliefs scores were less likely to belong to Class 1, and
more likely to belong to Class 3. The exponents of the coefficients provide a measure of effect
sizein terms of odds ratios to indicate the effect of covariates on the latent class membership.
The effect size for belonging to Class 3 (exp(2.908)) was higher relative to belonging to Class
1 (exp(-0.719)).

Inclusion of number of books at home and self-beliefs as the covariates in MRM without an
interaction term yielded negative coefficients for both covariates for Class 1 and positive
coefficients for Class 3. In other words, controlling for the number of books at home, the
students with higher self-beliefs were less likely to be member of the Class 1 and more likely
to belong to Class 3. Similarly, controlling for self-beliefs, students possessing higher number
of books at homewere lesslikely to belong Class 1 and morelikely to belong Class 3. For Class
1, the coefficients for number of books at home and self-beliefs were similar to each other,
which implieslacking of adifferential covariate effect for this class. For Class 3, the effect size
for self-beliefs controlling for number of books at home was 11.393 (=exp(2.958)/exp(0.525))
times the effect size for number of books at home controlling for self-beliefs. This exhibited a
differential covariate effect for this class. Controlling for the effects of number of books did not
cause a substantial changein coefficients of self-beliefsfor both Class 1 and Class 3, compared
to MRM-Cov-Self-Beliefs model. On the other hand, controlling for the self-beliefs caused a
decrease in the coefficients of number of books at home for both Class 1 and Class3, compared
to the MRM-Cov-Books model. This was consistent with results indicating smaller effect size
for the number of books (B = 0.292) and a larger effect size for self-beliefs (B = 0.506) for
predicting the mathematics achievement. Adding an interaction term to the MRM-Cov model
with number of books at home and the self-beliefs did not result in a substantial change in the
coefficients compared to the model without interaction. Further, the coefficient for the
interaction term was approximately zero, consistent with the non-significant interaction term
for predicting mathematics raw scores (f =-0.028, p = .639).
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Table 2A. Coefficients from Different Models for Study A.

MRM-Cov-Books MRM-Cov-Self-Beliefs
Class Intercept Books Intercept Beliefs
1 -0.288 0.904 -0.804 -0.719
2 0.000 0.000 0.000 0.000
3 -2.813 1.400 -3.804 2.908

Table 2B. Coefficients from Different Models for Study A.

MRM-Cov-Self-Beliefs& Books MRM-Cov-Self-Beliefs& Books
(No Interaction) (Interaction)
Class Intercept Books Beliefs Intercept Books  Beliefs  Books*Beliefs
1 0.720 -0.793  -0.742 0.679 -0.791 -0.674 -0.041
2 0.000 0.000  0.000 0.000 0.000 0.000 0.000
3 -5.252 0525 2958  -5574 0.631 3.231 -0.094

The MRM and MRM-Cov-Books had a high agreement of 93% for latent class assignment. The
agreement between MRM and MRM-Cov-Self-Beliefs was 85%, and the agreement between
MRM and MRM-Cov-Self-Beliefs& Books was 84% and 84% with and without interaction
terms, respectively. The agreementsin class membership for these pairs of modelswere similar
to each other and smaller than the agreement between the classifications from the MRM and
MRM-Cov-Books models. Overal, the results suggest that the covariates exhibited a
considerable effect on class membership as the agreement between the MRM and MRM-Cov
models changed considerably, depending on the covariate in the model.

3.3. Resultsfrom Study B--Interacting L atent Covariates

In Study B (i.e., covariates did have a significant interaction), MRM model with motivation as
acovariate (MRM-Cov-Motivation), MRM model with self-beliefs as a covariate (MRM-Cov-
Self-Beliefs), and MRM models with motivation and self-beliefs as covariates with and without
an interaction term (MRM-Cov-Self-Beliefs& Motivation) were estimated.

Squared errors for item parameter estimates from the MRM model and the MRM -Cov models
were calculated for each latent class as the square of the difference between item parameter
estimates from the MRM model and from each of the MRM-Cov models. Factorial ANOVA
analysis of natura log-transformed squared errors was conducted for comparing the item
parameter estimates from MRM-Cov models. Homogeneity of variances assumption was met
based on Levene’s test (F(11, 420) = 1.042, p = .408). Results indicated a non-significant
interaction between type of model and latent class (F(6, 420) = 0.810, p = .562). The main
effects, however, were significant for both model type (F(3, 420) = 20.020, p < .001, % = .107)
and latent class (F(2, 420) = 38.270, p < .001, n? = .136), albeit with only moderate effect sizes.

Pairwise comparisons of MRM-Cov models using Tukey’s HSD procedure did not yield
significant differencesin M SE val ues between the models for Class 1. For Class 2 and Class 3,
MSE vaues between the MRM and the MRM-Cov-Mativation models were different than
those between the MRM and the remaining MRM-Cov models. The MSE values from the
remaining MRM-Cov models, however, were not different and were larger than those between
the MRM and the MRM-Cov-Motivation model.
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In other words, the item parameter estimates from MRM-Cov modelswere similar to each other
for Class 1. For Class 2 and Class 3, however, the item parameter estimates from MRM -Cov-
Motivation were more similar to those from the MRM model than they were to the remaining
MRM-Cov models. Similarly, the item parameter estimates from these three remaining MRM -
Cov models were similar to each other. For all classes, the additive model (i.e., without
interaction) and the model with interaction resulted in similar item parameter estimates.

An ANOVA analysis was conducted on the posterior standard deviations of item parameter
estimates from different models. A Box-Cox transformation (A = -0.667) was applied to the
standard deviations. Levene’s test indicated that the equal variance assumption was met (F(14,
525) = 0.943, p = .511). Results indicated a significant interaction between model type and
latent class (F(8, 525) = 6.224, p < .001, n? = .041). Pairwise comparisons between posterior
standard deviations of item parameter estimates were done using bootstrapping with 10,000
samples. For Class 1 and Class 2, the standard errors of item parameter estimates were similar
from the different models. In Class 3, the standard errors of item parameter estimates were
similar for MRM and MRM-Cov-Mativation models. Likewise, the standard errors of item
parameter estimates were similar for the three remaining models. The standard errors from the
latter group of models were smaller than the standard errors from the former group of models.

The mean ability for Class 2 was fixed to zero for model identification, for each model. The
class means from the different models were similar for Class 1. For Class 3, class means for
ability appeared to be more alike for the MRM and MRM-Cov-Motivation models compared
to class means for rest of the models, athough the differences in class means were negligible.

The mixing proportions suggest that the proportion of students were similar across the models
for Class 1. For Class 2 and Class 3, the mixing proportions were similar for MRM and MRM -
Cov-Moativation and for the three remaining models. All three of these remaining models
assigned more than half of the students to the second class. The inclusion of motivation as a
covariate in the model classified roughly 4% of the students from Class 1 and Class 2 into Class
3 compared to the MRM. Incorporating self-beliefsin the MRM shifted approximately 12% of
the students from Class 2 to Class 3. Adding self-beliefs and motivation together to the MRM
model with or without an interaction term shifted about 12% of the students from Class 2 to
Class 3.

Coefficients from different models exhibited a covariate effect for helping to characterize the
latent classes (see Table 3). The positive coefficients from the MRM-Cov-Motivation model
indicated that students were more likely to belong to Class 3 as the motivation score increases.
The smaller coefficient for Class 1, on the other hand, indicated that the effect size for
motivation was small. The coefficients in the MRM-Cov-Self-Beliefs model were negative for
Class 1 and positive for Class 3 indicating examinees were less likely to belong to Class 1 and
more likely to belong to Class 3 as their self-beliefs score increased. The model with both
motivation and self-beliefs as covariates without an interaction term yielded a roughly zero
coefficient for motivation and a negative coefficient for self-beliefsin Class 1. In other words,
controlling for the motivation, the students with higher self-beliefs were less likely to be
members of Class 1. On the other hand, controlling for self-beliefs, motivation did not show
sufficient predictive power to estimate group membership for Class 1. The positive coefficients
for Class 3 indicated that the students were more likely to be a member of Class 3 as either
motivation or self-beliefs increased after controlling for the other variable. This tendency for
self-beliefs was 8.551 (= exp(3.284)/exp(1.138)) times the tendency for motivation in odds
ratio.

The model with motivation, self-beliefs and their interaction yielded coefficients different than
zero for theinteraction in Class 1 and Class 3. This was expected since the previous regression
analysisyielded asignificant interaction term between motivation and self-beliefsfor predicting
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mathematics raw scores (f = 0.062, p = .026). For this model, controlling for self- beliefs and
taking the interaction term into account, motivation did not show sufficient predictive power to
estimate group membership for Class 1. Controlling for motivation and taking the interaction
term into account, students with higher self-beliefs were less likely to be members of Class 1.
Controlling for self- beliefs and taking the interaction term into account for Class 3, students
with higher motivation scores were more likely to be members of this class. Similarly, students
were more likely to be members of Class 3 as the self-beliefs increased. Controlling for the
effects of motivation in the models with or without interaction, the coefficients for self-beliefs
changed compared to the MRM-Cov-Self-Beliefs model in both Classes 1 and 3. Controlling
for self-beliefs, on the other hand, did not cause a substantial change in the coefficients of
motivation for Class 1 in the model s with and without interactions compared to the MRM-Cov-
Motivation. Controlling for self-beliefs, the coefficient for motivation differed somewhat for
Class 3 both for the models with and without interactions. This suggested that using more than
one covariate in the model helped explain class membership by taking into account the effect
of the other covariate.

Table 3A. Coefficients from Different Models for Study B.

MRM-Cov-Motivation MRM-Cov-Self-Beliefs
Class Intercept Motivation Intercept Beliefs
1 -1.446 0.084 -0.804 -0.719

2 0.000 0.000 0.000 0.000

3 -1.707 0.892 -3.804 2.908

Table 3B. Coefficients from Different Models for Study B.

MRM-Cov-Self-Beliefs
(Residualized) & Motivation
(No Interaction)

Class Intercept  Motivation  Beéliefs Intercept Motivation  Beliefs  Motivation*Beliefs

MRM-Cov-Self-Beliefs (Residualized) & Motivation
(Interaction)

1 -1.642 0.049 -1.304 -1.357 0.052 -1.306 -0.879
2 0.000 0.000 0.000 0.000 0.000 0.000 0.000
3 -1.795 1.138 3.284 -1.826 1.140 3.277 -1.305

Agreement in class membership between the MRM and MRM-Cov-Motivation was as high as
94%. The agreement between the MRM and MRM-Cov-Self-Beliefs was 85% and between the
MRM and MRM-Cov-Self-Beliefs& Motivation was 84% and 84% with and without interaction
terms, respectively. The agreementsin class membership for these pairs of modelswere similar
to each other, and smaller than the agreement between the MRM and MRM -Cov-Books models.
The patterns in the class membership agreement were similar to previous results. That is, the
agreement between the MRM and MRM-Cov-M otivation models was greater than between the
MRM and the remaining models. Incorporating self-beliefs and motivation in the MRM model
together with or without interaction resulted in an approximately 13% decrease in Class 2
membership and a 13% increase in the Class 3 membership. However, this did not result in a
considerable change in membership to Class 1. Results indicated a covariate effect on class
membership causing students to shift between classes. This was likely because the agreement
between the MRM and MRM-Cov models changed considerably depending on the covariate in
the model.
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4. DISCUSSION and CONCLUSION

This study was designed to investigate effects of use of a covariate in a mixture Rasch model
(MRM) on latent class membership. In most testing situations, manifest variables such as
demographic information can be obtained easily through short surveys following the
administration of the test. The association between the manifest variables and the latent class
variable, however, is generally moderate (e.g.,, Cohen & Bolt, 2005). Similarly, manifest
variables in this study were found to account for arelatively small portion of the variance in
mathematics achievement, even though they were significant predictors. Latent variables, on
the other hand, explained a greater proportion of the variance showing the potential of the latent
variables to be the better predictors of latent class membership compared to manifest variables,
although some latent variables may be more useful than the others. Results of this study were
consistent with previous research that latent covariates were more likely to have stronger
associations with the dimension(s) along which the latent classes form. Contrary to the manifest
variables, latent variables were also useful in this study for constructing meaningful composite
scores based on previous research.

Theresults showed that the manifest and latent covariates did not have an impact on the number
of underlying latent classes extracted, however, they helped explain the characteristics of the
latent classes. The covariates changed the latent class membership proportions, however, they
did not indicate a strong effect on class ability means. Latent covariates were more useful for
explaining the characteristics of latent class membership compared to manifest covariates.
Using more than one covariate did help explain the group membership after controlling for the
other covariate. The effects of the covariates on latent class membership and on item parameters
were class specific. Substantial effects of covariates on item parameters returned smaller
standard errors for the item parameter estimates.

Results of this study suggested that incorporating more than one covariate in a mixture Rasch
model should consider possible interactions between the covariates. Study A included
covariates without a significant interaction, while Study B included covariates with significant
interaction, although the interaction in Study B had arelatively small effect size. The models
with interaction terms did not exhibit an effect on latent class membership proportions that was
different from that for models without an interaction term. The significant interaction term in
Study B, however, did show an effect on the coefficients for predicting and explaining latent
class membership. It can be noted that the findings from this study are based on the two example
studies that used empirical data and, hence, may not have direct applicability to other data or
other sets of available manifested and latent covariates. More investigations, including
simulation studies for which some parameters can be fully manipulated by researchers, are in
need to check the generalizability of the findings.
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Appendix A. OpenBUGS syntax for the MRM-Cov Models.

model

{
for (j in 1:NE) {
for (kin L:NI) {
rl[j K] <-rasp[j K]
" r2[j k] <-resp[j k]

# 1group model
for (j in 1:NE) {
for (k in 1:NI) {
tt1[j k] <- exp(thetal[j] - betal[k])
pl[j K] <-tt1[j,k]/(1 + tt1]j,k])
ri[j.k]~dbern(pl[j k])
} 11[j k] <-log(p1[j.K])* r1[j K] +log(1-p1[j,K])* (1-rifj,K])
}
loglik[1]<-sum(I1[1:NE,1:NI])
for(k in L:NI){
b1[k]<-betal[k]-mean(betal[ 1:NI])

# Priorsfor 1group
for (j in 1:NE) {

thetal[j] ~ dnorm(O, 1)
}

for (k in 1:NI) {
betal[k]~dnorm(0,1)
}

# 2group model
for (j in 1:NE) {
for (k in 1:NI) {
tt2[j k] <- exp(theta2[j] - beta2[gmem?2][j],k])
p2[j K] <-tt2[j,k]/(1 + tt2[j,K])
r2[j,k]~dbern(p2[j,k])
12[j,k]<-log(p2[j K])*r2[j,K]+log(1-p2[j K])* (1-r2[] Kk])

}
gmem?2([j] ~ dcat(pi2[j,1:G2])
theta2[j] ~ dnorm(mut2[gmem?2][j]],1)

}
loglik[2]<-sum(I2[1:NE,1:NI])

for (j in 1:G2) {

for(k in 1:NI){

b2[j K] <-beta2[j,k]-mean(beta2[j,1:NI])
1}
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# Priorsfor 2group
for (j in 1.G2){
for (kin L:NI){
beta2[j,k]~dnorm(0,1)
}
}
for (j in 1:G2) {
mut2[j]~ dnorm(0.,1.)
}

#priors for coefficient
coef02[1] <- 0
coef12[1] <- 0

for (1in1:G2) {
coef02[i] ~ dnorm(0,0.01)
coef12[i] ~ dnorm(0,0.01)

}

for (j in 1:NE) {
for (i in 1:G2){
log(phi2[j,i]) <- coefO2[i]+ coef12[i]* books]j]
pi2[j,i] <- phi2[j,i]/sum(phi2[j,1:G2])
}
}

for (1in 1:G2) {
for (j in 1:NE) {
n2[j,i]<- equals(gmem2[j].i)
}
sum2[i]<- sum(n2[1:NE,i])
ppi2[i]<- sum2[i]/NE
}

}
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Appendix B1. Model Fit Indicesfor Study A.

MRM MRM-Cov-Books MRM-Cov-Self-Beliefs
Number of
Classes BIC AlC BIC AlC BIC AlC
1 44510 44320 44510 44320 44510 44320
2 43690 43300 43730 43340 43800 43410
3 43390 42800 43470 42870 43380 42790
4 43640 42850 43720 42930 43650 42860

Note. AIC = Akaike information criterion; BIC = Bayesian information criterion; the smallest
information criterion index isin bold.

Appendix B2. Model Fit Indices for Study A.

MRM-Cov-Self-Beliefs& Books MRM-Cov-Self-Beliefs& Books
(No Interaction) (Interaction)
Ngrlnagg;"f BIC AIC BIC AIC
1 44510 44320 44510 44320
2 43800 43410 43810 43410
3 43430 42840 43440 42850
4 43710 42920 44310 43520

Note. AIC = Akaike information criterion; BIC = Bayesian information criterion; the
smallest information criterion index isin bold.

Appendix C. Mode Fit Indices for Study B.

MRM-Cov-Self- MRM-Cov-Self-

. Beliefs(Residudized)-  Beliefs(Residualized)-

MRM-Cov-Motivation M otivation M otivation

(No Interaction) (Interaction)

Numberof g~ AIC BIC AIC BIC AIC
Classes

1 44510 44320 44510 44320 44510 44320
2 43730 43340 43810 43420 43810 43420
3 43380 42780 43400 42810 43400 42810
4 43630 42840 43660 42870 43680 42890

Note. AIC = Akaike information criterion; BIC = Bayesian information criterion; the smallest
information criterion index isin bold.



