Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Turk J Math
(2015) 39: $527-537$
(c) TÜBİTAK
doi:10.3906/mat-1410-46

Random process generated by the incomplete Gauss sums

Emek DEMİRCİ AKARSU*
Department of Mathematics, Faculty of Arts and Sciences, Recep Tayyip Erdoğan University, Rize, Turkey

| Received: 21.10 .2014 | Accepted/Published Online: 26.01 .2015 | Printed: 30.07 .2015 |
| :--- | :--- | :--- | :--- | :--- |

Abstract

In this paper we explore a random process generated by the incomplete Gauss sums and establish an analogue of weak invariance principle for these sums. We focus our attention exclusively on a generalization of the limit distribution of the long incomplete Gauss sums given by the family of periodic functions analyzed by the author and Marklof.

Key words: Gauss sums, random process

1. Introduction

In the present paper we deal with the curves

$$
\begin{align*}
{[0,1] } & \rightarrow \mathbb{C} \\
t & \mapsto \mathcal{X}_{q}(t)=\sum_{h=1}^{[q t]} e_{q}\left(p h^{2}\right)+\left.(q t-[q t]) e_{q}\left(p h^{2}\right)\right|_{h=[q t]+1} \tag{1.1}
\end{align*}
$$

where $q \in \mathbb{N}, p \in \mathbb{Z}_{q}^{\times}=\{p \leq q \mid \operatorname{gcd}(p, q)=1\}$, and $e_{q}(x)=\mathrm{e}^{2 \pi \mathrm{i} x / q}$. We consider p random uniformly distributed in $\mathbb{Z}_{q}^{\times} \cap q \mathcal{D}$ for some fixed $\mathcal{D} \subset \mathbb{T}$ with boundary of measure zero. It is more convenient to normalize the above curves by considering instead the map $\left\{t \mapsto \frac{\mathcal{X}_{q}(t)}{\mathcal{X}_{q}(1)}\right\}$. Our main aim is in this article to study the ensemble of these curves obtained by the incomplete Gauss sums as $q \rightarrow \infty$. The last term is added to make $\mathcal{X}_{q}(t)$ a continuous curve. When $t=1$, this sum corresponds to the classical Gauss sum $\mathcal{X}_{q}(1)$.

This study extends the author and Marklof's [2] work on the value distribution of long incomplete Gauss sums. The above-mentioned work is later extended to the short interval case of incomplete Gauss sums by the author [3]. The classical examples of incomplete Gauss sums were also studied in the literature for many others $[5,9,12,13,14]$. For the higher power case, see [4, 11].

Cellarosi [1] has studied the analogous setting for theta sums $S_{N}(x)=\sum_{h=1}^{[t N]} e\left(x h^{2}\right)$ with x uniformly distributed with respect to Lebesgue measure, generalizing the limit theorems for theta sums investigated by Marklof [10] and earlier by Jurkat and van Horne [6, 7, 8]. Cellarosi's proof relies on a renormalization procedure established by means of continued fraction expansion of x and renewal-type limit theorem for the denominators of continued fraction expansion of x.

We investigate a random process generated by the values of the normalized Gauss sums $\mathcal{X}_{q}(t)$. We will prove a limit law for finite-dimensional distributions of such sums as $q \rightarrow \infty$. To describe the limit process let

[^0]us define
\[

$$
\begin{equation*}
\mathcal{J}^{*}(t)=\sum_{n \in \mathbb{Z}_{\neq 0}} \frac{e\left(n^{2} x+n t\right)}{2 \pi \mathrm{i} n}, \tag{1.2}
\end{equation*}
$$

\]

and

$$
\begin{gather*}
\mathcal{J}(t)=t+\mathcal{J}^{*}(t), \tag{1.3}\\
\mathcal{J}^{+}(t)=t+\frac{1}{2} \mathcal{J}^{*}(t), \tag{1.4}\\
\mathcal{J}^{-}(t)=\frac{1}{2} \mathcal{J}^{*}(t) . \tag{1.5}
\end{gather*}
$$

Our main result in the paper is the following theorem. We define the following random variables. The random variable X takes the values $\pm 1 \pm \mathrm{i}$ with equal probability and the random variable Y takes the values ± 1 with equal probability. Z takes the values $1 \pm \mathrm{i}$ with equal probability.

We define $\epsilon_{a}=1$ if $a \equiv 1 \bmod 4$, and $\epsilon_{a}=\mathrm{i}$ if $a \equiv 3 \bmod 4$.
The symbol \xrightarrow{D} here denotes convergence with respect to finite-dimensional distributions. See Remark 1.1 for explanation.

Theorem 1 For each $q \in \mathbb{N}$ with a bounded number of divisors and $t \in[0,1]$ as $q \rightarrow \infty$ we have

	q is not a square	q is a square
$q \equiv 0 \bmod 4$	$\left(\frac{\mathcal{X}_{q}(1)}{\sqrt{q}}, \frac{\mathcal{X}_{q}(t)}{\mathcal{X}_{q}(1)}\right) \xrightarrow{D}\left(X, \mathcal{J}^{+}(t)\right)$	$\left(\frac{\mathcal{X}_{q}(1)}{\sqrt{q}}, \frac{\mathcal{X}_{q}(t)}{\mathcal{X}_{q}(1)}\right) \xrightarrow{D}\left(Z, \mathcal{J}^{+}(t)\right)$
$q \equiv 1 \bmod 2$	$\left(\frac{\mathcal{X}_{q}(1)}{\epsilon_{q} \sqrt{q}}, \frac{\mathcal{X}_{\chi}(t)}{\mathcal{X}_{q}(1)}\right) \xrightarrow{D}(Y, \mathcal{J}(t))$	$\frac{\mathcal{X}_{q}(t)}{\epsilon_{q} \sqrt{q}} \xrightarrow{D} \mathcal{J}(t)$
	$q / 2$ is not a square	$q / 2$ is a square
$q \equiv 2 \bmod 4$	$\left(\frac{\mathcal{X}_{q}(1)}{\epsilon_{q / 2} \sqrt{q / 2}}, \frac{\mathcal{X}_{q}(t)}{2 \mathcal{X}_{q}(1)}\right) \xrightarrow{D}\left(Y, \mathcal{J}^{-}(t)\right)$	$\frac{\mathcal{X}_{q}(t)}{\epsilon_{q / 2} \sqrt{2 q}} \xrightarrow{D} \mathcal{J}^{-}(t)$

Remark 1.1 The random process $\frac{\mathcal{X}_{q}(t)}{\mathcal{X}_{q}(1)}$ converges in finite dimensional distribution to the process $\mathcal{J}^{*}(t)$ if

$$
\begin{equation*}
\frac{1}{\#\left(\mathbb{Z}_{q}^{\times} \cap q \mathcal{D}\right)} \sum_{p \in \mathbb{Z}_{q}^{\times} \cap q \mathcal{D}} F\left(\frac{\mathcal{X}_{q}\left(t_{1}\right)}{\mathcal{X}_{q}(1)}, \ldots, \frac{\mathcal{X}_{q}\left(t_{k}\right)}{\mathcal{X}_{q}(1)}\right) \rightarrow \int_{\mathbb{T}} F\left(\mathcal{J}^{*}\left(t_{1}\right), \ldots, \mathcal{J}^{*}\left(t_{k}\right)\right) d x \tag{1.6}
\end{equation*}
$$

for every bounded continuous function $F: \mathbb{C}^{k} \rightarrow \mathbb{R}$.
We plot the function $\mathcal{J}^{*}(t)=\sum_{n \in \mathbb{Z}_{\neq 0}} \frac{e\left(n^{2} x+n t\right)}{2 \pi i n}$ for different values of x, see Figures 1 and 2, to show how the random process generated by $\mathcal{X}_{q}(t)$ looks.

We now examine the vector-valued incomplete Gauss sum

$$
\begin{equation*}
g_{\varphi}(p, q)=\sum_{h=1}^{q-1} \varphi\left(\frac{h}{q}\right) e_{q}\left(p h^{2}\right), \tag{1.7}
\end{equation*}
$$

where $\boldsymbol{\varphi}(x)=\left(\varphi_{1}(x), \ldots, \varphi_{k}(x)\right)$ with $k \in \mathbb{Z}$ is a periodic function with period one.

DEMİRCİ AKARSU/Turk J Math

Figure 1. The plot shows the process given by the function $\mathcal{J}^{*}(t)$ for $x=\sqrt{2}, t$ uniformly over the period $[0,1]$, and truncated at $n=20000$.

Figure 2. The plots illustrate the same as Figure 1; however, this time for $x=\pi$ on the left and for $x=\frac{\sqrt{5}+1}{2}$ (golden ratio) on the right.

We define the Fourier series of $\boldsymbol{\varphi}$ with the $\operatorname{sum} \sum_{n \in \mathbb{Z}} \hat{\boldsymbol{\varphi}}_{n} e(n x)$ with Fourier coefficient $\hat{\boldsymbol{\varphi}}_{n}$. Random variables are given by the limiting distribution of the incomplete Gauss sum

$$
\begin{equation*}
G_{\boldsymbol{\varphi}}(x)=\sum_{n \in \mathbb{Z}} \hat{\boldsymbol{\varphi}}_{n} e\left(x n^{2}\right) \tag{1.8}
\end{equation*}
$$

$$
\begin{align*}
G_{\boldsymbol{\varphi}}^{+}(x) & =\sum_{n \in \mathbb{Z}} \hat{\boldsymbol{\varphi}}_{2 n} e\left(x n^{2}\right), \tag{1.9}\\
G_{\boldsymbol{\varphi}}^{-}(x) & =\sum_{n \in 2 \mathbb{Z}+1} \hat{\boldsymbol{\varphi}}_{n} e\left(x n^{2}\right), \tag{1.10}
\end{align*}
$$

with x uniformly distributed on \mathbb{T}. For our application to the joint distribution of incomplete Gauss sums in (1.1) at different t_{1}, \ldots, t_{k}, when φ is a characteristic function we then have

$$
\begin{equation*}
\varphi_{i}(x)=\sum_{n \in \mathbb{Z}} \chi_{\left(0, t_{i}\right]}(x+n) \tag{1.11}
\end{equation*}
$$

The Fourier coefficient $\hat{\boldsymbol{\varphi}}_{n}$ is therefore calculated as

$$
\begin{align*}
\hat{\varphi}_{i}(n) & =\int \varphi(x) e(-n x) d x \\
& =\int \sum_{n \in \mathbb{Z}} \chi_{\left(0, t_{i}\right]}(x+n) e(-n x) d x \tag{1.12}\\
& =\int_{0}^{t_{i}} \mathrm{e}^{-2 \pi \mathrm{i} n x} d x \\
& =\frac{\left[1-\mathrm{e}^{-2 \pi \mathrm{in} n t_{i}}\right]}{2 \pi \mathrm{i} n}
\end{align*}
$$

The theorem below is a generalization of Theorem 1 in [2]. We will take the differentiable weight function $\varphi=\left(\varphi_{1}, \ldots, \varphi_{k}\right)$ in the space of

$$
\begin{equation*}
\mathcal{B}(\mathbb{T})=\left\{\varphi: \sum_{k \in \mathbb{Z}} k^{2}\left|\hat{\boldsymbol{\varphi}}_{k}\right|<\infty\right\} \tag{1.13}
\end{equation*}
$$

so that G_{φ} are differentiable and continuous.
The Jacobi symbol is defined for odd integers b by

$$
\left(\frac{a}{b}\right)= \begin{cases}+1 & \text { if } b \nmid a \text { and } a \text { is a quadratic residue } \tag{1.14}\\ 0 & \text { if } b \mid a \\ -1 & \text { if } b \nmid a \text { and } a \text { is a quadratic nonresidue. }\end{cases}
$$

This is an extension of Legendre's symbol to arbitrary odd integers b multiplicatively.
Remark that the classical Gauss sum $g_{1}(p, q)=\sum_{h \bmod q} e_{q}\left(p h^{2}\right)$ can be evaluated in terms of Jacobi symbol

$$
g_{1}(p, q)= \begin{cases}(1+\mathrm{i}) \epsilon_{p}^{-1}\left(\frac{q}{p}\right) \sqrt{q} & \text { if } q \equiv 0 \bmod 4 \tag{1.15}\\ \epsilon_{q}\left(\frac{p}{q}\right) \sqrt{q} & \text { if } q \equiv 1 \bmod 2 \\ 0 & \text { if } q \equiv 2 \bmod 4\end{cases}
$$

and corresponds to $\chi_{q}(1)$ in our case.
Theorem 2 Fix a $k \in \mathbb{Z}$ and $0<t_{1}<\ldots<t_{k} \leq 1$. Fix a subset $\mathcal{D} \subset \mathbb{T}$ with boundary of measure zero and let each $\varphi_{i} \in \mathcal{B}(\mathbb{T})$. For each $q \in \mathbb{N}$ choose $p \in \mathbb{Z}_{q}^{\times} \cap q \mathcal{D}$ at random with uniform probability. Then as $q \rightarrow \infty$ along an appropriate subsequence as specified below, for any bounded continuous function $F: \mathbb{C}^{k} \rightarrow \mathbb{R}$ we have

DEMİRCİ AKARSU/Turk J Math

(i) If $q \equiv 0 \bmod 4$ is not a square, for every $\sigma \in\{ \pm 1 \pm \mathrm{i}\}$ then

$$
\begin{align*}
& \frac{1}{\#\left(\mathbb{Z}_{q}^{\times} \cap q \mathcal{D}\right)} \sum_{\substack{p \in \mathbb{Z}_{q}^{\times} \cap q \mathcal{D} \\
g_{1}(p, q)=\sqrt{q} \sigma}} F\left(\frac{g_{\varphi_{1}}(p, q)}{g_{1}(p, q)}, \ldots, \frac{g_{\varphi_{k}}(p, q)}{g_{1}(p, q)}\right) \tag{1.16}\\
& \rightarrow \frac{1}{4} \int_{\mathbb{T}} F\left(G_{\varphi_{1}}^{+}(x), \ldots, G_{\varphi_{k}}^{+}(x)\right) d x .
\end{align*}
$$

(ii) If $q \equiv 1 \bmod 2$ is not a square, for every $\sigma \in\{ \pm 1\}$ then

$$
\begin{align*}
& \frac{1}{\#\left(\mathbb{Z}_{q}^{\times} \cap q \mathcal{D}\right)} \sum_{\substack{\left.p \in \mathbb{Z}_{q}^{\times} \cap q \mathcal{D} \\
g_{1}(p, q)\right)=\epsilon_{q} \sqrt{q} \sigma}} F\left(\frac{g_{\varphi_{1}}(p, q)}{g_{1}(p, q)}, \ldots, \frac{g_{\varphi_{k}}(p, q)}{g_{1}(p, q)}\right) \tag{1.17}\\
& \rightarrow \frac{1}{2} \int_{\mathbb{T}} F\left(G_{\varphi_{1}}(x), \ldots, G_{\varphi_{k}}(x)\right) d x .
\end{align*}
$$

(iii) If $q \equiv 2 \bmod 4$ and $q / 2$ is not a square, for every $\sigma \in\{ \pm 1\}$ then

$$
\begin{align*}
& \frac{1}{\#\left(\mathbb{Z}_{q}^{\times} \cap q \mathcal{D}\right)} \sum_{\substack{p \in \mathbb{Z}_{q}^{\times} \cap \mathcal{D} \\
g_{1}(p, q)=\epsilon_{q / 2} \sqrt{q / 2} \sigma}} F\left(\frac{g_{\varphi_{1}}(p, q)}{2 g_{1}(p, q)}, \ldots, \frac{g_{\varphi_{k}}(p, q)}{2 g_{1}(p, q)}\right) \tag{1.18}\\
& \rightarrow \frac{1}{2} \int_{\mathbb{T}} F\left(G_{\varphi_{1}}^{-}(x), \ldots, G_{\varphi_{k}}^{-}(x)\right) d x .
\end{align*}
$$

(iv) If $q \equiv 0 \bmod 4$ is a square, for every $\sigma \in\{1 \pm \mathrm{i}\}$ then

$$
\begin{align*}
& \frac{1}{\#\left(\mathbb{Z}_{q}^{\times} \cap q \mathcal{D}\right)} \sum_{\substack{p \in \mathbb{Z}_{q}^{\times} \cap q \mathcal{D} \\
g_{1}(p, q)=\sqrt{q} \sigma}} F\left(\frac{g_{\varphi_{1}}(p, q)}{g_{1}(p, q)}, \ldots, \frac{g_{\varphi_{k}}(p, q)}{\left.g_{1}(p, q)\right)}\right) \tag{1.19}\\
& \rightarrow \frac{1}{4} \int_{\mathbb{T}} F\left(G_{\varphi_{1}}^{+}(x), \ldots, G_{\varphi_{k}}^{+}(x)\right) d x .
\end{align*}
$$

(v) If $q \equiv 1 \bmod 2$ is a square, then

$$
\begin{align*}
\frac{1}{\#\left(\mathbb{Z}_{q}^{\times} \cap q \mathcal{D}\right)} & \sum_{p \in \mathbb{Z}_{q}^{\times} \cap q \mathcal{D}} F\left(\frac{g_{\varphi_{1}}(p, q)}{\epsilon_{q} \sqrt{q}}, \ldots, \frac{g_{\varphi_{k}}(p, q)}{\epsilon_{q} \sqrt{q}}\right) \tag{1.20}\\
& \rightarrow \frac{1}{2} \int_{\mathbb{T}} F\left(G_{\varphi_{1}}(x), \ldots, G_{\varphi_{k}}(x)\right) d x
\end{align*}
$$

(vi) If $q \equiv 2 \bmod 4$ and $q / 2$ is a square, then

$$
\begin{align*}
& \frac{1}{\#\left(\mathbb{Z}_{q}^{\times} \cap q \mathcal{D}\right)} \sum_{p \in \mathbb{Z}_{q}^{\times} \cap q \mathcal{D}} F\left(\frac{g_{\varphi_{1}}(p, q)}{\epsilon_{q / 2} \sqrt{2 q}}, \ldots, \frac{g_{\varphi_{k}}(p, q)}{\epsilon_{q / 2} \sqrt{2 q}}\right) \tag{1.21}\\
& \rightarrow \frac{1}{2} \int_{\mathbb{T}} F\left(G_{\varphi_{1}}^{-}(x), \ldots, G_{\varphi_{k}}^{-}(x)\right) d x
\end{align*}
$$

We are able to extend the statements of Theorem 2 to the Riemann integrable case, with the condition that q has a bounded number of divisors. In order to do this we need to estimate mean square

$$
\begin{equation*}
M_{2, \varphi}(q)=\frac{1}{\phi(q)|\mathcal{D}|} \sum_{p \in \mathbb{Z}_{q}^{\times} \cap q \mathcal{D}}\left\|g_{\varphi}(p, q)\right\|^{2} \tag{1.22}
\end{equation*}
$$

where $\varphi=\left(\varphi_{1}, \ldots, \varphi_{k}\right)$.
Theorem 3 Fix a $k \in \mathbb{Z}$ and $0<t_{1}<\ldots<t_{k} \leq 1$. Fix a subset $\mathcal{D} \subset \mathbb{T}$ with boundary of measure zero and let each φ_{i} be Riemann integrable. Theorem 2 holds for any sequence of $q \rightarrow \infty$ as long as q has a bounded number of divisors.

Note that this is an extension of Theorem 2 in the paper [2].

2. Proof of Theorem 2

Before going through the proof of the theorem we need to state two theorems from [2], which are used in the proof.

Theorem 4 (Demirci Akarsu-Marklof [2]) For each $\varphi_{i} \in \mathcal{B}(\mathbb{T})$,

$$
g_{\varphi_{i}}(p, q)= \begin{cases}g_{1}(p, q) G_{\varphi_{i}}^{+}\left(-\frac{\bar{p}}{q}\right) & \text { if } q \equiv 0 \bmod 4 \tag{2.1}\\ g_{1}(p, q) G_{\varphi_{i}}\left(-\frac{\overline{4 p}}{q}\right) & \text { if } q \equiv 1 \bmod 2 \\ 2 g_{1}(2 p, q / 2) G_{\varphi_{i}}^{-}\left(-\frac{\overline{8 p}}{q / 2}\right) & \text { if } q \equiv 2 \bmod 4\end{cases}
$$

In the first and second case, \bar{x} denotes the inverse of $x \bmod q$, in the third the inverse $\bmod q / 2$.
The order of \mathbb{Z}_{q}^{\times}is denoted by Euler's totient function $\phi(q)$.
Theorem 5 (Demirci Akarsu-Marklof [2]) Let $f \in \mathrm{C}\left(\mathbb{T}^{2}\right)$. Then the following convergence holds uniformly in $t \in \mathbb{Z}_{q}^{\times}$as $q \rightarrow \infty$:
(i) For any sequence of q,

$$
\begin{equation*}
\frac{1}{\phi(q)} \sum_{p \in \mathbb{Z}_{q}^{\times}} f\left(\frac{p}{q}, \frac{t \bar{p}}{q}\right) \rightarrow \int_{\mathbb{T}^{2}} f(x) d x \tag{2.2}
\end{equation*}
$$

(ii) If $q \equiv 0 \bmod 4$ is not a square then, for every $\sigma \in\{ \pm 1, \pm \mathrm{i}\}$,

$$
\begin{equation*}
\frac{1}{\phi(q)} \sum_{\substack{p \in \mathbb{Z}_{q}^{\times} \\ \epsilon_{p}\left(\frac{q}{p}\right)=\sigma}} f\left(\frac{p}{q}, \frac{t \bar{p}}{q}\right) \rightarrow \frac{1}{4} \int_{\mathbb{T}^{2}} f(x) d x . \tag{2.3}
\end{equation*}
$$

(iii) If $q \equiv 0 \bmod 4$ then, for every $\sigma \in\{ \pm 1\}$,

$$
\begin{equation*}
\frac{1}{\phi(q)} \sum_{\substack{p \in \mathbb{Z}_{q}^{\times} \\ p \equiv \sigma \bmod 4}} f\left(\frac{p}{q}, \frac{t \bar{p}}{q}\right) \rightarrow \frac{1}{2} \int_{\mathbb{T}^{2}} f(x) d x \tag{2.4}
\end{equation*}
$$

DEMİRCİ AKARSU/Turk J Math

(iv) If $q \equiv 1 \bmod 2$ is not a square then, for every $\sigma \in\{ \pm 1\}$,

$$
\begin{equation*}
\frac{1}{\phi(q)} \sum_{\substack{p \in \mathbb{Z}_{q}^{\times} \\\left(\frac{p}{q}\right)=\sigma}} f\left(\frac{p}{q}, \frac{t \bar{p}}{q}\right) \rightarrow \frac{1}{2} \int_{\mathbb{T}^{2}} f(x) d x \tag{2.5}
\end{equation*}
$$

Proof

Case (i): $q \equiv 0 \bmod 4$, not a square. We need to show that for any bounded continuous $F: \mathbb{C}^{k} \rightarrow \mathbb{R}$ we have

$$
\begin{align*}
\frac{1}{\phi(q)} \sum_{\substack{p \in \mathbb{Z}_{q}^{\times} \\
\epsilon_{p}\left(\frac{q}{p}\right)=\sigma}} & \chi_{\mathcal{D}}\left(\frac{p}{q}\right) F\left(\frac{g_{\varphi_{1}}(p, q)}{g_{1}(p, q)}, \ldots, \frac{g_{\varphi_{k}}(p, q)}{g_{1}(p, q)}\right) \tag{2.6}\\
& \rightarrow \frac{|\mathcal{D}|}{4} \int_{\mathbb{T}} F\left(G_{\varphi_{1}}^{+}(x), \ldots, G_{\varphi_{k}}^{+}(x)\right) d x .
\end{align*}
$$

By Theorem 4 (i), (2.6) equals

$$
\begin{align*}
& \frac{1}{\phi(q)} \sum_{\substack{p \in \mathbb{Z}_{q}^{\times} \\
\epsilon_{p}\left(\frac{q}{p}\right)=\sigma}} \chi_{\mathcal{D}}\left(\frac{p}{q}\right) F\left(G_{\varphi_{1}}^{+}\left(-\frac{\bar{p}}{q}\right), \ldots, G_{\varphi_{k}}^{+}\left(-\frac{\bar{p}}{q}\right)\right) \tag{2.7}\\
& \rightarrow \frac{|\mathcal{D}|}{4} \int_{\mathbb{T}} F\left(G_{\varphi_{1}}^{+}(x), \ldots, G_{\varphi_{k}}^{+}(x)\right) d x
\end{align*}
$$

If we choose the test function

$$
\begin{equation*}
f\left(x_{1}, x_{2}\right)=\chi_{\mathcal{D}}\left(x_{1}\right) F\left(G_{\varphi_{1}}^{+}\left(-x_{2}\right), \ldots, G_{\varphi_{k}}^{+}\left(-x_{2}\right)\right) \tag{2.8}
\end{equation*}
$$

the proof then uses the approximation argument in which $\chi_{\mathcal{D}}$ is approximated by a continuous function (see Remark 5 in [2] for more details). As $G_{\varphi_{1}}^{+}, \ldots, G_{\varphi_{k}}^{+}$and F are continuous, the result then follows by Case (ii) of Theorem 5 .

Case (ii): $q \equiv 1 \bmod 2$ and not a square. We in this case have

$$
\begin{align*}
& \frac{1}{\phi(q)} \sum_{\substack{p \in \mathbb{Z}_{q}^{\times} \\
\left(\frac{p}{q}\right)=\sigma}} \chi_{\mathcal{D}}\left(\frac{p}{q}\right) F\left(\frac{g_{\varphi_{1}}(p, q)}{g_{1}(p, q)}, \ldots, \frac{g_{\varphi_{k}}(p, q)}{g_{1}(p, q)}\right) \tag{2.9}\\
& \rightarrow \frac{|\mathcal{D}|}{2} \int_{\mathbb{T}} F\left(G_{\varphi_{1}}(x), \ldots, G_{\varphi_{k}}(x)\right) d x
\end{align*}
$$

In view of Theorem 4 (ii), this statement reduces to

$$
\begin{align*}
\frac{1}{\phi(q)} \sum_{\substack{p \in \mathbb{Z}_{q}^{\times} \\
\left(\frac{p}{q}\right)=\sigma}} \chi_{\mathcal{D}}\left(\frac{p}{q}\right) & F\left(G_{\varphi_{1}}\left(-\frac{\overline{4 p}}{q}\right), \ldots, G_{\varphi_{k}}\left(-\frac{\overline{4 p}}{q}\right)\right) \tag{2.10}\\
& \rightarrow \frac{|\mathcal{D}|}{2} \int_{\mathbb{T}} F\left(G_{\varphi_{1}}(x), \ldots, G_{\varphi_{k}}(x)\right) d x .
\end{align*}
$$

DEMİRCİ AKARSU/Turk J Math

We conclude this by Theorem 5 (iv).
Case (iii): $q \equiv 2 \bmod 4, q / 2$ is not a square. Following the same strategy as above, we deduce that the claim of the theorem is equivalent to

$$
\begin{align*}
\frac{1}{\phi(q)} \sum_{\substack{p \in \mathbb{Z}_{q}^{\times} \\
\left(\frac{2 p}{q / 2}\right)=\sigma}} \chi_{\mathcal{D}}\left(\frac{p}{q}\right) & F\left(G_{\varphi_{1}}^{-}\left(-\frac{\overline{8 p}}{q / 2}\right), \ldots, G_{\varphi_{k}}^{-}\left(\frac{\overline{8 p}}{q / 2}\right)\right) \tag{2.11}\\
& \rightarrow \frac{|\mathcal{D}|}{2} \int_{\mathbb{T}} F\left(G_{\varphi_{1}}^{-}(x), \ldots, G_{\varphi_{k}}^{-}(x)\right) d x
\end{align*}
$$

We substitute $q=2 q_{0}$ and $p=2 p_{0}+q_{0}$, i.e., $q_{0}=q / 2$ and $p_{0}=\frac{1}{4}(2 p-q)$. Hence (2.11) is equivalent to

$$
\begin{align*}
& \frac{1}{\phi(q)} \sum_{\substack{p \in \mathbb{Z}_{q_{0}}^{\times} \\
\left(\frac{p_{0}}{q_{0}}\right)=\sigma}} \chi_{\mathcal{D}}\left(\frac{p_{0}}{q_{0}}+\frac{1}{2}\right) F\left(G_{\varphi_{1}}^{-}\left(-\frac{\overline{16 p_{0}}}{q_{0}}\right), \ldots, G_{\varphi_{k}}^{-}\left(-\frac{\overline{16 p_{0}}}{q_{0}}\right)\right) \tag{2.12}\\
& \rightarrow \frac{|\mathcal{D}|}{2} \int_{\mathbb{T}} F\left(G_{\varphi_{1}}^{-}(x), \ldots, G_{\varphi_{k}}^{-}(x)\right) d x
\end{align*}
$$

which then follows by Theorem 5 (iv).
Case (iv): $q \equiv 0 \bmod 4$, is a square. We use the same process as in Case (i), and note that the condition $\epsilon_{p}=1\left(\epsilon_{p}=\mathrm{i}\right)$ is equivalent to $p \equiv 1 \bmod 4(p \equiv-1 \bmod 4)$. The statement follows from Theorem 5 (iii).

Case (v): $q \equiv 1 \bmod 2$, a square. Analogous to Case (ii), but this time we employ Theorem 5 (i).
Case (vi): $q \equiv 2 \bmod 4, q / 2$ is a square. This is analogous to Case (iii), except that we use Theorem 5 (i).

3. Proof of Theorem 3

The lemma below is the key tool to be used in the proof of Theorem 3 for Riemann integrable weight $\boldsymbol{\varphi}$. We estimate the second moment of $M_{2, \varphi}(q)$ (recall Equation (1.22)).

Lemma 1 Fix a positive integer N. Then there exists a constant $C_{N}>0$ such that any subsequences of $q \rightarrow \infty$ as long as q has a bounded number of divisors, for Riemann integrable function φ, we have

$$
\begin{equation*}
\limsup _{\substack{q \rightarrow \infty \\ d(q) \leq N}} \frac{M_{2, \varphi}(q)}{q} \leq \frac{C_{N}}{|\mathcal{D}|}\|\boldsymbol{\varphi}\|_{2}^{2} \tag{3.1}
\end{equation*}
$$

where $\|\boldsymbol{\varphi}\|_{2}^{2}=\left\|\varphi_{1}\right\|_{2}^{2}+\ldots+\left\|\varphi_{k}\right\|_{2}^{2}$.
Proof [Proof of Lemma 1] We have

$$
\begin{align*}
M_{2, \boldsymbol{\varphi}}(q) & \leq \frac{1}{|\mathcal{D}| \phi(q)} \sum_{p \in \mathbb{Z}_{q}^{\times}}\left\|g_{\boldsymbol{\varphi}}(p, q)\right\|^{2} \tag{3.2}\\
& \leq \frac{q}{|\mathcal{D}| \phi(q)} \sum_{p \in \mathbb{Z}_{q}^{\times}}\left(\left|g_{\varphi_{1}}(p, q)\right|^{2}+\ldots+\left|g_{\varphi_{k}}(p, q)\right|^{2}\right)
\end{align*}
$$

DEMİRCİ AKARSU/Turk J Math

By Lemma 1 in [2] we simply get

$$
\begin{equation*}
\limsup _{\substack{q \rightarrow \infty \\ d(q) \leq N}} \frac{M_{2, \varphi}(q)}{q} \leq \frac{C_{N}}{|\mathcal{D}|}\|\varphi\|_{2}^{2} \tag{3.3}
\end{equation*}
$$

In the below lemma, we use the tightness argument, which is as follows: the sequence probability measures defined by the value distribution of incomplete Gauss sums is tight. Following the Helly-Prokhorov theorem, this means that every sequence contains a convergent subsequence. In other words, the sequence is relatively compact.

Lemma 2 Let φ be a Riemann integrable function. Then, for every $\epsilon>0, \delta>0$ there exists a smooth function $\boldsymbol{\psi}$ such that for the subsequence of q specified in Lemma 1,

$$
\begin{equation*}
\limsup _{\substack{q \rightarrow \infty \\ d(q) \leq N}} \frac{1}{\phi(q)}\left|\left\{p \in \mathbb{Z}_{q}^{\times}: q^{-1 / 2}\left\|g_{\varphi}(p, q)-g_{\psi}(p, q)\right\|>\delta\right\}\right|<\epsilon . \tag{3.4}
\end{equation*}
$$

Proof

By Chebyshev's inequality we have

$$
\begin{equation*}
\limsup _{\substack{q \rightarrow \infty \\ d(q) \leq N}} \frac{1}{\phi(q)}\left|\left\{p \in \mathbb{Z}_{q}^{\times}: q^{-1 / 2}\left\|\left(g_{\varphi_{1}}(p, q), \ldots, g_{\varphi_{k}}(p, q)\right)\right\|>\delta\right\}\right|<\frac{M_{2, \varphi}(q)}{\delta^{2} q} \tag{3.5}
\end{equation*}
$$

By Lemma 1, there exists $R_{\epsilon}>0$ such that

$$
\begin{equation*}
\limsup _{\substack{q \rightarrow \infty \\ d(q) \leq N}} \frac{1}{\phi(q)}\left|\left\{p \in \mathbb{Z}_{q}^{\times}: q^{-1 / 2}\left\|\left(g_{\varphi_{1}}(p, q), \ldots, g_{\varphi_{k}}(p, q)\right)\right\|>R_{\epsilon}\right\}\right|<\epsilon\|\varphi\|_{2}^{2} \tag{3.6}
\end{equation*}
$$

Since

$$
\begin{align*}
\left(g_{\varphi_{1}}(p, q), \ldots, g_{\varphi_{k}}(p, q)\right)-\left(g_{\psi_{1}}(p, q), \ldots, g_{\psi_{k}}(p, q)\right) & \\
& =\left(g_{\varphi_{1}-\psi_{1}}(p, q), \ldots, g_{\varphi_{k}-\psi_{k}}(p, q)\right) \tag{3.7}
\end{align*}
$$

and each $\varphi_{1}-\psi_{1}, \ldots, \varphi_{k}-\psi_{k}$ is Riemann integrable, we get

$$
\begin{align*}
& \left.\limsup _{\substack{q \rightarrow \infty \\
d(q) \leq N}} \frac{1}{\phi(q)} \right\rvert\,\left\{p \in \mathbb{Z}_{q}^{\times}:\right. \\
& \tag{3.8}\\
& \left.\qquad q^{-1 / 2}\left\|\left(g_{\varphi_{1}}(p, q)-g_{\psi_{1}}(p, q)\right), \ldots,\left(g_{\varphi_{k}}(p, q)-g_{\psi_{k}}(p, q)\right)\right\|>\delta\right\} \left\lvert\,<\frac{M_{2, \varphi-\boldsymbol{\psi}}(q)}{\delta^{2} q} .\right.
\end{align*}
$$

We then have via (3.7)

$$
\limsup _{\substack{q \rightarrow \infty \\
d(q) \leq N}} \frac{1}{\phi(q)}\left|\left\{p \in \mathbb{Z}_{q}^{\times}: q^{-1 / 2}\left\|\left(g_{\varphi_{1}-\psi_{1}}(p, q), \ldots, g_{\varphi_{k}-\psi_{k}}(p, q)\right)\right\|>\delta\right\}\right| \quad \begin{align*}
& \tag{3.9}\\
& \hline
\end{align*}
$$

DEMİRCİ AKARSU/Turk J Math

The proof then follows by Equations (3.5) and (3.6).

Proof [The proof of Theorem 3]
We only go through the case $q \equiv 0 \bmod 4$; the other cases are similar.
Lemma 2 tells us that any sequence of $q \rightarrow \infty$ with $d(q) \leq N$ contains a subsequence $\left\{q_{j}\right\}$ with the property: there is a probability measure ν (depending on the sequence chosen, φ and \mathcal{D}) on $\{ \pm 1 \pm \mathrm{i}\} \times \mathbb{C}$ such that for any $\sigma \in\{ \pm 1 \pm \mathrm{i}\}$ and any bounded continuous function $F: \mathbb{C}^{k} \rightarrow \mathbb{R}$ we have

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \frac{1}{|\mathcal{D}| \phi\left(q_{j}\right)} \sum_{\substack{p \in \mathbb{Z}_{q_{j}}^{\times} q_{j} \mathcal{D} \\ \epsilon_{p}\left(\frac{q_{j}}{p}\right)=\sigma}} F\left(\frac{g_{\varphi_{1}}\left(p, q_{j}\right)}{g_{1}(p, q)}, \ldots, \frac{g_{\varphi_{k}}\left(p, q_{j}\right)}{g_{1}(p, q)}\right)=\int_{\mathbb{C}} F(z) \nu_{\varphi}(\sigma, d z) . \tag{3.10}
\end{equation*}
$$

We claim that for every $F \in \mathrm{C}_{0}^{\infty}\left(\mathbb{C}^{k}\right)$

$$
\begin{equation*}
\lim _{\substack{q \rightarrow \infty \\ d(q) \leq N}} \frac{1}{|\mathcal{D}| \phi(q)} \sum_{\substack{p \in \mathbb{Z}_{q}^{\times} \cap q \mathcal{D} \\ \epsilon_{p}\left(\frac{q}{p}\right)=\sigma}} F\left(\frac{g_{\varphi_{1}}(p, q)}{g_{1}(p, q)}, \ldots, \frac{g_{\varphi_{k}}(p, q)}{g_{1}(p, q)}\right)=\int_{\mathbb{C}} F(z) \nu_{\varphi}(\sigma, d z) \tag{3.11}
\end{equation*}
$$

holds and it thus implies that ν is unique and the full sequence of q converges.
To prove the existence of limit (3.11), notice that since $F \in \mathrm{C}_{0}^{\infty}\left(\mathbb{C}^{k}\right)$ we have $|F(\mathbf{w})-F(\mathbf{z})| \leq$ $C \min \{1,\|\mathbf{w}-\mathbf{z}\|\}$ for some constant $C>0$. Therefore, we have

$$
\begin{align*}
& \frac{1}{|\mathcal{D}| \phi(q)} \sum_{\substack{p \in \mathbb{Z}_{q}^{\times} \cap q \mathcal{D} \\
\epsilon_{p}\left(\frac{q}{p}\right)=\sigma}}\left|F\left(\frac{g_{\varphi_{1}}(p, q)}{g_{1}(p, q)}, \ldots, \frac{g_{\varphi_{k}}(p, q)}{g_{1}(p, q)}\right)-F\left(\frac{g_{\psi_{1}}(p, q)}{g_{1}(p, q)}, \ldots, \frac{g_{\psi_{k}}(p, q)}{g_{1}(p, q)}\right)\right| \\
& \leq \frac{C}{|\mathcal{D}| \phi(q)} \sum_{\substack{p \in \mathbb{Z}_{q}^{\times} \cap_{q \mathcal{D}} \\
\epsilon_{p}\left(\frac{q}{p}\right)=\sigma}} \min \left\{1,\left\|\left(\frac{g_{\varphi_{1}}(p, q)}{g_{1}(p, q)}, \ldots, \frac{g_{\varphi_{k}}(p, q)}{g_{1}(p, q)}\right)-\left(\frac{g_{\psi_{1}}(p, q)}{g_{1}(p, q)}, \ldots, \frac{g_{\psi_{k}}(p, q)}{g_{1}(p, q)}\right)\right\|\right\} \\
& \leq \frac{C}{|\mathcal{D}| \phi(q)} \sum_{p \in \mathbb{Z}_{q}^{\times}} \min \left\{1,\left\|\left(\frac{g_{\varphi_{1}}(p, q)}{g_{1}(p, q)}, \ldots, \frac{g_{\varphi_{k}}(p, q)}{g_{1}(p, q)}\right)-\left(\frac{g_{\psi_{1}}(p, q)}{g_{1}(p, q)}, \ldots, \frac{g_{\psi_{k}}(p, q)}{g_{1}(p, q)}\right)\right\|\right\} \tag{3.12}\\
& \leq \frac{C}{|\mathcal{D}| \phi(q)} \sum_{p \in \mathbb{Z}_{q}^{\times}} \min \left\{1,\left\|\frac{g_{\varphi_{1}-\psi_{1}}(p, q)}{g_{1}(p, q)}, \ldots, \frac{g_{\varphi_{k}-\psi_{k}}(p, q)}{g_{1}(p, q)}\right\|\right\} \\
& \leq \frac{C}{|\mathcal{D}|}\left(2^{1 / 2} \delta+\epsilon\right) .
\end{align*}
$$

The sequence

$$
\begin{equation*}
\lim _{q \rightarrow \infty} \frac{1}{|\mathcal{D}| \phi(q)} \sum_{\substack{p \in \mathbb{Z}_{\alpha}^{\times} \cap q \mathcal{D} \\ \epsilon_{p}\left(\frac{q}{p}\right)=\sigma}} F\left(\frac{g_{\psi_{1}}(p, q)}{g_{1}(p, q)}, \ldots, \frac{g_{\psi_{k}}(p, q)}{g_{1}(p, q)}\right) \tag{3.13}
\end{equation*}
$$

defines a Cauchy sequence, as (3.11) is satisfied for the smooth function $\boldsymbol{\psi}$ by Theorem 2. By the upper bound (3.12), the triangle inequality and the fact that (3.13) is a Cauchy sequence, it is now observed that the sequence

$$
\begin{equation*}
\lim _{q \rightarrow \infty} \frac{1}{|\mathcal{D}| \phi(q)} \sum_{\substack{p \in \mathbb{Z}_{q}^{\times} \cap q \mathcal{D} \\ \epsilon_{p}\left(\frac{q}{p}\right)=\sigma}} F\left(\frac{g_{\varphi_{1}}(p, q)}{g_{1}(p, q)}, \ldots, \frac{g_{\varphi_{k}}(p, q)}{g_{1}(p, q)}\right) \tag{3.14}
\end{equation*}
$$

is also a Cauchy sequence; therefore the claim is proved. We have thus shown that ν_{φ} is unique and the full sequence of q converges for every bounded continuous F.

Since $\boldsymbol{\psi}$ converges to $\boldsymbol{\varphi},(3.13) \rightarrow(3.14)$ holds by the bound (3.12). This concludes the proof of Theorem 3 for the Riemann integrable case.

The proof of Theorem 1

In particular, if we take $\varphi=\left(\chi_{\left(0, t_{1}\right]}, \ldots, \chi_{\left(0, t_{k}\right]}\right)$ above, it proves Theorem 1 .

References

[1] Cellarosi F. Limiting curlicue measures for theta sums. Ann Inst Henri Poincaré Probab Stat 2011; 47: 466-497.
[2] Demirci Akarsu E, Marklof J. The value distribution of incomplete Gauss sums. Mathematika 2013; 59: 381-398.
[3] Demirci Akarsu E. Short incomplete Gauss sums and rational points on metaplectic horocycles. Int J Number Thr 2014; 10: 1553-1576.
[4] Evans R, Minei M, Yee B. Incomplete higher order Gauss sums. J Math Anal Appl 2003; 281: 454-476.
[5] Fiedler H, Jurkat WB, Körner O. Asymptotic expansions of finite theta series. Acta Arith 1977; 32: 129-146.
[6] Jurkat WB, van Horne JW. The proof of the central limit theorem for theta sums. Duke Math J 1981; 48: 873-885.
[7] Jurkat WB, van Horne JW. On the central limit theorem for theta series. Michigan Math J 1982; 29: 65-67.
[8] Jurkat WB, van Horne JW. The uniform central limit theorem for theta sums. Duke Math J 1983; 50: 649-666.
[9] Lehmer DH. Incomplete Gauss sums. Mathematika 1976; 23: 125-135.
[10] Marklof J. Limit theorems for Theta sums. Duke Math J 1999; 97: 127-153.
[11] Montgomery HL, Vaughan RC, Wooley TD. Some remarks on Gauss sums associated with kth powers. Math Proc Cambridge Philos Soc 1995; 118: 21-33.
[12] Oskolkov KI. On functional properties of incomplete Gaussian sums. Canadian J Math 1991; 43: 182-212.
[13] Paris RB. An asymptotic approximation for incomplete Gauss sums. J Comput Appl Math 2005; 180: 461-477.
[14] Paris RB. An asymptotic approximation for incomplete Gauss sums II. J Comput Appl Math 2008; 212: 16-30.

[^0]: *Correspondence: emek.akarsu@erdogan.edu.tr
 2010 AMS Mathematics Subject Classification: 11L05.

