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Received: 21.10.2014 • Accepted/Published Online: 26.01.2015 • Printed: 30.07.2015

Abstract: In this paper we explore a random process generated by the incomplete Gauss sums and establish an analogue

of weak invariance principle for these sums. We focus our attention exclusively on a generalization of the limit distribution

of the long incomplete Gauss sums given by the family of periodic functions analyzed by the author and Marklof.
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1. Introduction

In the present paper we deal with the curves

[0, 1] → C

t 7→ Xq(t) =
∑[qt]
h=1 eq(ph

2) + (qt− [qt])eq(ph
2)
∣∣
h=[qt]+1

(1.1)

where q ∈ N , p ∈ Z×
q = {p ≤ q | gcd(p, q) = 1} , and eq(x) = e2πix/q . We consider p random uniformly

distributed in Z×
q ∩ qD for some fixed D ⊂ T with boundary of measure zero. It is more convenient to

normalize the above curves by considering instead the map {t 7→ Xq(t)
Xq(1)

} . Our main aim is in this article to

study the ensemble of these curves obtained by the incomplete Gauss sums as q → ∞ . The last term is added

to make Xq(t) a continuous curve. When t = 1, this sum corresponds to the classical Gauss sum Xq(1).
This study extends the author and Marklof’s [2] work on the value distribution of long incomplete Gauss

sums. The above-mentioned work is later extended to the short interval case of incomplete Gauss sums by the

author [3]. The classical examples of incomplete Gauss sums were also studied in the literature for many others

[5, 9, 12, 13, 14]. For the higher power case, see [4, 11].

Cellarosi [1] has studied the analogous setting for theta sums SN (x) =
∑[tN ]
h=1 e(xh

2) with x uniformly

distributed with respect to Lebesgue measure, generalizing the limit theorems for theta sums investigated by

Marklof [10] and earlier by Jurkat and van Horne [6, 7, 8]. Cellarosi’s proof relies on a renormalization procedure

established by means of continued fraction expansion of x and renewal-type limit theorem for the denominators

of continued fraction expansion of x .

We investigate a random process generated by the values of the normalized Gauss sums Xq(t). We will

prove a limit law for finite-dimensional distributions of such sums as q → ∞ . To describe the limit process let
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us define

J ∗(t) =
∑
n∈Z ̸=0

e(n2x+ nt)

2πin
, (1.2)

and
J (t) = t+ J ∗(t), (1.3)

J +(t) = t+
1

2
J ∗(t), (1.4)

J−(t) =
1

2
J ∗(t). (1.5)

Our main result in the paper is the following theorem. We define the following random variables. The

random variable X takes the values ±1± i with equal probability and the random variable Y takes the values

±1 with equal probability. Z takes the values 1± i with equal probability.

We define ϵa = 1 if a ≡ 1 mod 4, and ϵa = i if a ≡ 3 mod 4.

The symbol
D−→ here denotes convergence with respect to finite-dimensional distributions. See Remark

1.1 for explanation.

Theorem 1 For each q ∈ N with a bounded number of divisors and t ∈ [0, 1] as q → ∞ we have

q is not a square q is a square

q ≡ 0 mod 4

(
Xq(1)√

q
,
Xq(t)
Xq(1)

)
D−→ (X,J +(t))

(
Xq(1)√

q
,
Xq(t)
Xq(1)

)
D−→ (Z,J +(t))

q ≡ 1 mod 2

(
Xq(1)
ϵq
√
q
,
Xq(t)
Xq(1)

)
D−→ (Y,J (t))

Xq(t)
ϵq

√
q

D−→ J (t)

q/2 is not a square q/2 is a square

q ≡ 2 mod 4

(
Xq(1)

ϵq/2
√
q/2

,
Xq(t)
2Xq(1)

)
D−→ (Y,J−(t))

Xq(t)
ϵq/2

√
2q

D−→ J−(t)

Remark 1.1 The random process
Xq(t)
Xq(1)

converges in finite dimensional distribution to the process J ∗(t) if

1

#(Z×
q ∩ qD)

∑
p∈Z×

q ∩qD

F

(
Xq(t1)
Xq(1)

, . . . ,
Xq(tk)
Xq(1)

)
→

∫
T
F (J ∗(t1), . . . ,J ∗(tk)) dx (1.6)

for every bounded continuous function F : Ck → R .

We plot the function J ∗(t) =
∑
n∈Z ̸=0

e(n2x+nt)
2πin for different values of x , see Figures 1 and 2, to show

how the random process generated by Xq(t) looks.

We now examine the vector-valued incomplete Gauss sum

gφ (p, q) =

q−1∑
h=1

φ

(
h

q

)
eq(ph

2), (1.7)

where φ(x) = (φ1(x), . . . , φk(x)) with k ∈ Z is a periodic function with period one.
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Figure 1. The plot shows the process given by the function J ∗(t) for x =
√
2, t uniformly over the period [0, 1] , and

truncated at n = 20000.
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Figure 2. The plots illustrate the same as Figure 1; however, this time for x = π on the left and for x =
√
5+1
2

(golden

ratio) on the right.

We define the Fourier series of φ with the sum
∑
n∈Z φ̂n e(nx) with Fourier coefficient φ̂n . Random

variables are given by the limiting distribution of the incomplete Gauss sum

Gφ (x) =
∑
n∈Z

φ̂n e(xn
2), (1.8)
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G+
φ (x) =

∑
n∈Z

φ̂2n e(xn
2), (1.9)

G−
φ (x) =

∑
n∈2Z+1

φ̂n e(xn
2), (1.10)

with x uniformly distributed on T . For our application to the joint distribution of incomplete Gauss sums in

(1.1) at different t1, . . . , tk , when φ is a characteristic function we then have

φi(x) =
∑
n∈Z

χ(0,ti](x+ n). (1.11)

The Fourier coefficient φ̂n is therefore calculated as

φ̂i(n) =

∫
φ(x) e(−nx) dx

=

∫ ∑
n∈Z

χ(0,ti](x+ n) e(−nx)dx

=

∫ ti

0

e−2πinx dx

=
[1− e−2πinti ]

2πin
.

(1.12)

The theorem below is a generalization of Theorem 1 in [2]. We will take the differentiable weight function

φ = (φ1, . . . , φk) in the space of

B(T) = {φ :
∑
k∈Z

k2|φ̂k| <∞}, (1.13)

so that Gφ are differentiable and continuous.

The Jacobi symbol is defined for odd integers b by

(a
b

)
=


+1 if b ∤ a and a is a quadratic residue

0 if b | a
−1 if b ∤ a and a is a quadratic nonresidue.

(1.14)

This is an extension of Legendre’s symbol to arbitrary odd integers b multiplicatively.

Remark that the classical Gauss sum g1(p, q) =
∑
h mod q eq(ph

2) can be evaluated in terms of Jacobi

symbol

g1(p, q) =


(1 + i) ϵ−1

p ( qp )
√
q if q ≡ 0 mod 4

ϵq(
p
q )

√
q if q ≡ 1 mod 2

0 if q ≡ 2 mod 4,

(1.15)

and corresponds to χq(1) in our case.

Theorem 2 Fix a k ∈ Z and 0 < t1 < . . . < tk ≤ 1 . Fix a subset D ⊂ T with boundary of measure zero and

let each φi ∈ B(T) . For each q ∈ N choose p ∈ Z×
q ∩ qD at random with uniform probability. Then as q → ∞

along an appropriate subsequence as specified below, for any bounded continuous function F : Ck → R we have
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(i) If q ≡ 0 mod 4 is not a square, for every σ ∈ {±1± i} then

1

#(Z×
q ∩ qD)

∑
p∈Z×

q ∩qD
g1(p,q)=

√
q σ

F

(
gφ1(p, q)

g1(p, q)
, . . . ,

gφk
(p, q)

g1(p, q)

)

→ 1

4

∫
T
F (G+

φ1
(x), . . . , G+

φk
(x))dx.

(1.16)

(ii) If q ≡ 1 mod 2 is not a square, for every σ ∈ {±1} then

1

#(Z×
q ∩ qD)

∑
p∈Z×

q ∩qD
g1(p,q))=ϵq

√
q σ

F

(
gφ1(p, q)

g1(p, q)
, . . . ,

gφk
(p, q)

g1(p, q)

)

→ 1

2

∫
T
F (Gφ1(x), . . . , Gφk

(x))dx.

(1.17)

(iii) If q ≡ 2 mod 4 and q/2 is not a square, for every σ ∈ {±1} then

1

#(Z×
q ∩ qD)

∑
p∈Z×

q ∩qD
g1(p,q)=ϵq/2

√
q/2σ

F

(
gφ1(p, q)

2g1(p, q)
, . . . ,

gφk
(p, q)

2g1(p, q)

)

→ 1

2

∫
T
F (G−

φ1
(x), . . . , G−

φk
(x))dx.

(1.18)

(iv) If q ≡ 0 mod 4 is a square, for every σ ∈ {1± i} then

1

#(Z×
q ∩ qD)

∑
p∈Z×

q ∩qD
g1(p,q)=

√
q σ

F

(
gφ1(p, q)

g1(p, q)
, . . . ,

gφk
(p, q)

g1(p, q))

)

→ 1

4

∫
T
F (G+

φ1
(x), . . . , G+

φk
(x))dx.

(1.19)

(v) If q ≡ 1 mod 2 is a square, then

1

#(Z×
q ∩ qD)

∑
p∈Z×

q ∩qD

F

(
gφ1(p, q)

ϵq
√
q
, . . . ,

gφk
(p, q)

ϵq
√
q

)

→ 1

2

∫
T
F (Gφ1(x), . . . , Gφk

(x))dx.

(1.20)

(vi) If q ≡ 2 mod 4 and q/2 is a square, then

1

#(Z×
q ∩ qD)

∑
p∈Z×

q ∩qD

F

(
gφ1(p, q)

ϵq/2
√
2q
, . . . ,

gφk
(p, q)

ϵq/2
√
2q

)

→ 1

2

∫
T
F (G−

φ1
(x), . . . , G−

φk
(x))dx.

(1.21)
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We are able to extend the statements of Theorem 2 to the Riemann integrable case, with the condition

that q has a bounded number of divisors. In order to do this we need to estimate mean square

M2,φ (q) =
1

ϕ(q) |D|
∑

p∈Z×
q ∩qD

∥gφ (p, q)∥2 (1.22)

where φ = (φ1, . . . , φk).

Theorem 3 Fix a k ∈ Z and 0 < t1 < . . . < tk ≤ 1 . Fix a subset D ⊂ T with boundary of measure zero and

let each φi be Riemann integrable. Theorem 2 holds for any sequence of q → ∞ as long as q has a bounded

number of divisors.

Note that this is an extension of Theorem 2 in the paper [2].

2. Proof of Theorem 2

Before going through the proof of the theorem we need to state two theorems from [2], which are used in the

proof.

Theorem 4 (Demirci Akarsu-Marklof [2]) For each φi ∈ B(T) ,

gφi(p, q) =


g1(p, q)G

+
φi

(
− p

q

)
if q ≡ 0 mod 4

g1(p, q)Gφi

(
− 4p

q

)
if q ≡ 1 mod 2

2g1(2p, q/2)G
−
φi

(
− 8p

q/2

)
if q ≡ 2 mod 4.

(2.1)

In the first and second case, x denotes the inverse of x mod q , in the third the inverse mod q/2 .

The order of Z×
q is denoted by Euler’s totient function ϕ(q).

Theorem 5 (Demirci Akarsu-Marklof [2]) Let f ∈ C(T2) . Then the following convergence holds uniformly

in t ∈ Z×
q as q → ∞ :

(i) For any sequence of q ,

1

ϕ(q)

∑
p∈Z×

q

f

(
p

q
,
tp

q

)
→

∫
T2

f(x)dx. (2.2)

(ii) If q ≡ 0 mod 4 is not a square then, for every σ ∈ {±1,±i} ,

1

ϕ(q)

∑
p∈Z×

q

ϵp(
q
p )=σ

f

(
p

q
,
tp

q

)
→ 1

4

∫
T2

f(x)dx. (2.3)

(iii) If q ≡ 0 mod 4 then, for every σ ∈ {±1} ,

1

ϕ(q)

∑
p∈Z×

q

p≡σ mod 4

f

(
p

q
,
tp

q

)
→ 1

2

∫
T2

f(x)dx. (2.4)
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(iv) If q ≡ 1 mod 2 is not a square then, for every σ ∈ {±1} ,

1

ϕ(q)

∑
p∈Z×

q

( p
q )=σ

f

(
p

q
,
tp

q

)
→ 1

2

∫
T2

f(x)dx. (2.5)

Proof

Case (i): q ≡ 0 mod 4, not a square. We need to show that for any bounded continuous F : Ck → R
we have

1

ϕ(q)

∑
p∈Z×

q

ϵp(
q
p )=σ

χD

(
p

q

)
F

(
gφ1(p, q)

g1(p, q)
, . . . ,

gφk
(p, q)

g1(p, q)

)

→ |D|
4

∫
T
F (G+

φ1
(x), . . . , G+

φk
(x))dx.

(2.6)

By Theorem 4 (i), (2.6) equals

1

ϕ(q)

∑
p∈Z×

q

ϵp(
q
p )=σ

χD

(
p

q

)
F

(
G+
φ1

(
− p

q

)
, . . . , G+

φk

(
− p

q

))

→ |D|
4

∫
T
F (G+

φ1
(x), . . . , G+

φk
(x))dx.

(2.7)

If we choose the test function

f(x1, x2) = χD(x1)F (G
+
φ1
(−x2), . . . , G+

φk
(−x2)), (2.8)

the proof then uses the approximation argument in which χD is approximated by a continuous function (see

Remark 5 in [2] for more details). As G+
φ1
, . . . , G+

φk
and F are continuous, the result then follows by Case (ii)

of Theorem 5.

Case (ii): q ≡ 1 mod 2 and not a square. We in this case have

1

ϕ(q)

∑
p∈Z×

q

( p
q )=σ

χD

(
p

q

)
F

(
gφ1(p, q)

g1(p, q)
, . . . ,

gφk
(p, q)

g1(p, q)

)

→ |D|
2

∫
T
F (Gφ1(x), . . . , Gφk

(x))dx.

(2.9)

In view of Theorem 4 (ii), this statement reduces to

1

ϕ(q)

∑
p∈Z×

q

( p
q )=σ

χD

(
p

q

)
F

(
Gφ1

(
− 4p

q

)
, . . . , Gφk

(
− 4p

q

))

→ |D|
2

∫
T
F (Gφ1(x), . . . , Gφk

(x))dx.

(2.10)
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We conclude this by Theorem 5 (iv).

Case (iii): q ≡ 2 mod 4, q/2 is not a square. Following the same strategy as above, we deduce that the

claim of the theorem is equivalent to

1

ϕ(q)

∑
p∈Z×

q

( 2p
q/2

)=σ

χD

(
p

q

)
F

(
G−
φ1

(
− 8p

q/2

)
, . . . , G−

φk

(
8p

q/2

))

→ |D|
2

∫
T
F (G−

φ1
(x), . . . , G−

φk
(x))dx.

(2.11)

We substitute q = 2q0 and p = 2p0 + q0 , i.e., q0 = q/2 and p0 = 1
4 (2p − q). Hence (2.11) is equivalent

to

1

ϕ(q)

∑
p∈Z×

q0

(
p0
q0

)=σ

χD

(
p0
q0

+
1

2

)
F

(
G−
φ1

(
− 16p0

q0

)
, . . . , G−

φk

(
− 16p0

q0

))

→ |D|
2

∫
T
F (G−

φ1
(x), . . . , G−

φk
(x))dx,

(2.12)

which then follows by Theorem 5 (iv).

Case (iv): q ≡ 0 mod 4, is a square. We use the same process as in Case (i), and note that the condition

ϵp = 1 (ϵp = i) is equivalent to p ≡ 1 mod 4 (p ≡ −1 mod 4). The statement follows from Theorem 5 (iii).

Case (v): q ≡ 1 mod 2, a square. Analogous to Case (ii), but this time we employ Theorem 5 (i).

Case (vi): q ≡ 2 mod 4, q/2 is a square. This is analogous to Case (iii), except that we use Theorem 5

(i).

2

3. Proof of Theorem 3

The lemma below is the key tool to be used in the proof of Theorem 3 for Riemann integrable weight φ . We

estimate the second moment of M2,φ (q) (recall Equation (1.22)).

Lemma 1 Fix a positive integer N . Then there exists a constant CN > 0 such that any subsequences of

q → ∞ as long as q has a bounded number of divisors, for Riemann integrable function φ , we have

lim sup
q→∞
d(q)≤N

M2,φ (q)

q
≤ CN

|D|
∥φ∥22, (3.1)

where ∥φ∥22 = ∥φ1∥22 + . . .+ ∥φk∥22 .

Proof [Proof of Lemma 1] We have

M2,φ(q) ≤
1

|D|ϕ(q)
∑
p∈Z×

q

∥gφ(p, q)∥2

≤ q

|D|ϕ(q)
∑
p∈Z×

q

(|gφ1(p, q)|2 + . . .+ |gφk
(p, q)|2).

(3.2)
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By Lemma 1 in [2] we simply get

lim sup
q→∞
d(q)≤N

M2,φ (q)

q
≤ CN

|D|
∥φ∥22. (3.3)

2

In the below lemma, we use the tightness argument, which is as follows: the sequence probability measures

defined by the value distribution of incomplete Gauss sums is tight. Following the Helly–Prokhorov theorem,

this means that every sequence contains a convergent subsequence. In other words, the sequence is relatively

compact.

Lemma 2 Let φ be a Riemann integrable function. Then, for every ϵ > 0 , δ > 0 there exists a smooth

function ψ such that for the subsequence of q specified in Lemma 1,

lim sup
q→∞
d(q)≤N

1

ϕ(q)

∣∣{p ∈ Z×
q : q−1/2∥gφ (p, q)− gψ (p, q)∥ > δ}

∣∣ < ϵ. (3.4)

Proof

By Chebyshev’s inequality we have

lim sup
q→∞
d(q)≤N

1

ϕ(q)

∣∣{p ∈ Z×
q : q−1/2∥(gφ1(p, q), . . . , gφk

(p, q))∥ > δ}
∣∣ < M2,φ (q)

δ2 q
. (3.5)

By Lemma 1, there exists Rϵ > 0 such that

lim sup
q→∞
d(q)≤N

1

ϕ(q)

∣∣{p ∈ Z×
q : q−1/2∥(gφ1(p, q), . . . , gφk

(p, q))∥ > Rϵ}
∣∣ < ϵ ∥φ∥22. (3.6)

Since

(gφ1(p, q), . . . , gφk
(p, q))− (gψ1(p, q), . . . , gψk

(p, q))

= (gφ1−ψ1(p, q), . . . , gφk−ψk
(p, q)) (3.7)

and each φ1 − ψ1, . . . , φk − ψk is Riemann integrable, we get

lim sup
q→∞
d(q)≤N

1

ϕ(q)

∣∣{p ∈ Z×
q :

q−1/2∥(gφ1(p, q)− gψ1(p, q)), . . . , (gφk
(p, q)− gψk

(p, q))∥ > δ}
∣∣ < M2,φ−ψ(q)

δ2 q
. (3.8)

We then have via (3.7)

lim sup
q→∞
d(q)≤N

1

ϕ(q)

∣∣{p ∈ Z×
q : q−1/2∥(gφ1−ψ1(p, q), . . . , gφk−ψk

(p, q))∥ > δ}
∣∣

<
M2,φ−ψ(q)

δ2 q
. (3.9)
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The proof then follows by Equations (3.5) and (3.6). 2

Proof [The proof of Theorem 3]

We only go through the case q ≡ 0 mod 4; the other cases are similar.

Lemma 2 tells us that any sequence of q → ∞ with d(q) ≤ N contains a subsequence {qj} with the

property: there is a probability measure ν (depending on the sequence chosen, φ and D ) on {±1 ± i} × C
such that for any σ ∈ {±1± i} and any bounded continuous function F : Ck → R we have

lim
j→∞

1

|D|ϕ(qj)
∑

p∈Z×
qj

∩qjD

ϵp(
qj
p )=σ

F

(
gφ1(p, qj)

g1(p, q)
, . . . ,

gφk
(p, qj)

g1(p, q)

)
=

∫
C
F (z) νφ (σ, dz). (3.10)

We claim that for every F ∈ C∞
0 (Ck)

lim
q→∞
d(q)≤N

1

|D|ϕ(q)
∑

p∈Z×
q ∩qD

ϵp(
q
p )=σ

F

(
gφ1(p, q)

g1(p, q)
, . . . ,

gφk
(p, q)

g1(p, q)

)
=

∫
C
F (z) νφ (σ, dz) (3.11)

holds and it thus implies that ν is unique and the full sequence of q converges.

To prove the existence of limit (3.11), notice that since F ∈ C∞
0 (Ck) we have |F (w) − F (z)| ≤

Cmin{1, ∥w− z∥} for some constant C > 0. Therefore, we have

1

|D|ϕ(q)
∑

p∈Z×
q ∩qD

ϵp(
q
p )=σ

∣∣∣∣F(gφ1(p, q)

g1(p, q)
, . . . ,

gφk
(p, q)

g1(p, q)

)
− F

(
gψ1(p, q)

g1(p, q)
, . . . ,

gψk
(p, q)

g1(p, q)

)∣∣∣∣

≤ C

|D|ϕ(q)
∑

p∈Z×
q ∩qD

ϵp(
q
p )=σ

min

{
1,

∥∥∥∥(gφ1(p, q)

g1(p, q)
, . . . ,

gφk
(p, q)

g1(p, q)

)
−
(
gψ1(p, q)

g1(p, q)
, . . . ,

gψk
(p, q)

g1(p, q)

)∥∥∥∥}

≤ C

|D|ϕ(q)
∑
p∈Z×

q

min

{
1,

∥∥∥∥(gφ1(p, q)

g1(p, q)
, . . . ,

gφk
(p, q)

g1(p, q)

)
−
(
gψ1(p, q)

g1(p, q)
, . . . ,

gψk
(p, q)

g1(p, q)

)∥∥∥∥}

≤ C

|D|ϕ(q)
∑
p∈Z×

q

min

{
1,

∥∥∥∥gφ1−ψ1(p, q)

g1(p, q)
, . . . ,

gφk−ψk
(p, q)

g1(p, q)

∥∥∥∥}

≤ C

|D|
(21/2δ + ϵ).

(3.12)

The sequence

lim
q→∞

1

|D|ϕ(q)
∑

p∈Z×
q ∩qD

ϵp(
q
p )=σ

F

(
gψ1(p, q)

g1(p, q)
, . . . ,

gψk
(p, q)

g1(p, q)

)
(3.13)

536
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defines a Cauchy sequence, as (3.11) is satisfied for the smooth function ψ by Theorem 2. By the upper bound

(3.12), the triangle inequality and the fact that (3.13) is a Cauchy sequence, it is now observed that the sequence

lim
q→∞

1

|D|ϕ(q)
∑

p∈Z×
q ∩qD

ϵp(
q
p )=σ

F

(
gφ1

(p, q)

g1(p, q)
, . . . ,

gφk
(p, q)

g1(p, q)

)
(3.14)

is also a Cauchy sequence; therefore the claim is proved. We have thus shown that νφ is unique and the full

sequence of q converges for every bounded continuous F .

Since ψ converges to φ , (3.13)→(3.14) holds by the bound (3.12). This concludes the proof of Theorem

3 for the Riemann integrable case. 2

The proof of Theorem 1

In particular, if we take φ = (χ(0,t1], . . . , χ(0,tk]) above, it proves Theorem 1.
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