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AN ALMOST ORTHOSYMMETRIC BILINEAR MAP

RUSEN YILMAZ

ABSTRACT. In this paper, as a generalization of the concept of pseudo-almost
f-algebra, we define a new concept of almost orthosymmetric bilinear map
on a vector lattice and prove that the Arens triadjoint of a positive almost
orthosymmetric bilinear map is positive almost orthosymmetric. This also
extends results on the order bidual of pseudo-almost f-algebras.

1. INTRODUCTION

We studied in [I6] a new class of pseudo-almost f-algebra (a lattice ordered
algebra A in which a Ab = 0 in A implies ab A ba = 0) and presented its relation
with the certain lattice ordered algebras; f-algebras [3], almost f-algebras [6] and
d-algebras [12].

In [I7], concentrating on the Arens multiplications |2}, 3] in the algebraic bidual
of pseudo-almost f-algebras (so-called r-algebra in [I7]), we prove that the order
continuous bidual of an Archimedean pseudo-almost f-algebra is again a Dedekind
complete (and hence Archimedean) pseudo-almost f-algebra. This is a generaliza-
tion of a result of Bernau and Huijsmans in [4] in which they prove that the order
continuous bidual of an almost f-algebra (respectively d-algebra) is again an almost
f-algebra (respectively d-algebra).

In this paper, as an extension of the notion of pseudo-almost f-algebra, we
introduce a new concept of almost orthosymmetric bilinear map and prove that if
A, B are vector lattices and T': A x A — B is a positive almost orthosymmetric
bilinear map, then the triadjoint T#** : (A’)! x (A"),, — (B’)!, is a positive almost
orthosymmetric bilinear map. This also generalizes results on the order bidual of
pseudo-almost f-algebras in [17].

The Arens multiplication introduced in [3] on the bidual of various lattice ordered
algebras has been well documented (see, e.g., [4]). The more general question about
Arens triadjoints of bilinear maps on products of vector lattices has recently aroused
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considerable interest (see, e.g., [7]). In this direction, as the extensions of the notions
of classes of almost f-algebra, f-algebra, d-algebra and pseudo-almost f-algebra,
we have studied the Arens triadjoints of some classes of bilinear maps on vector
lattices; mainly, orthosymmetric bilinear maps, bi-orthomorphisms, d-bimorphisms
and almost orthomorphism bilinear maps (see [15] [14]):

Definition 1. Let A and B be vector lattices. A bilinear map T': A x A — B is
said to be

(1) orthosymmetric if x Ay = 0 implies T'(z,y) = 0 for all z,y € A (first appeared
in a paper by G. Buskes and A. van Rooij in [9] in 2000).

(2) a bi-orthomorphism if it is a separately order bounded bilinear map such that
xAy=0in A implies T(z,z) Ay =0 for all 2 € AT, when A = B (first appears a
paper by G. Buskes, R. Page Jr and R. Yilmaz in [10] in 2009).

(3) a d-bimorphism if x Ay =0 in A implies T'(z,2) AT (z,y) =0 for all z € AT
(first appears in a paper R. Yilmaz in [I4] in 2017).

(4) almost orthosymmetric if x Ay = 0 implies T'(z,y) AT (y,xz) =0 for all z,y € A.

The following theorem is obvious from the above definitions.

Theorem 2. (1) Every bi-orthomorphism is both orthosymmetric and a d-
bimorphism.
(2) Every orthosymmetric bilinear map is almost orthosymmetric.

From here on, let A, B, and C be Archimedean vector lattices and A’, B',C’ be
their respective duals.

A bilinear map T : A x B — C' can be extended in a natural way to the bilinear
map T%** : A” x B"” — C"” constructed in the following stages:

T*:C'x A— B, T (f, 2)(y) = f(T(x,y))
T+ :B"x (' — A, (G, f)(z) = G(I™(f.x))
T*** :AI/ X B/I N C,/, T***(F, G)(f) — F(T**(G7f))

forallz € A,y e B,f € C'")F € A”,G € B” (so-called the first Arens adjoint of
T).
Another extension of a bilinear map T : Ax B — C'is the map ***T : A" x B —
C" constructed in the following stages:

“T:BxC — A, “T(y, f)(x) = f(T(x,y))
“T.C' x A" — B, “T(f, F)(y) = F(T(y. f))
sk A// X B// N 0117 ***T(F, G)(f) — G(**T(f’ F))
forallz € A,ye B, f € C',F € A”,G € B” (so-called the second Arens adjoint of

In this work we shall concentrate on the first Arens adjoint; that is, we prove
that 7% : (A" x (A")), — (B’)), is positive almost orthosymmetric whenever
T:AXx A — Bisso. Similar results hold for the second.

For the elementary theory of vector lattices and terminology not explained here

we refer to [T}, T3], [18].
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2. THE TRIADJOINT OF AN ALMOST ORTHOSYMMETRIC BILINEAR MAP

In this section we prove that the extension T*** of a positive almost orthosym-
metric bilinear map T : A x A — B is again positive almost orthosymmetric. We
first recall some relevant notions. The canonical mapping a — @ of a vector lattice
A into its order bidual A” is defined by a(f) = f(a) for all f € A’. For each
a € A, a defines an order continuous algebraic lattice homomorphism on A’ and
the canonical image A of A is a subalgebra of (A’)... Moreover the band

I;={F € (A),:|F| <% for some z € A"}

generated by A is order dense in (A").; i.e., for each F € (A"), there exists an
upwards directed net {Gx : A € A} in 17 such that 0 < Gy T F.

A bilinear operator T': A x B — C'is said to be order bounded if for all (z,y) €
AT x BT we have

{T(a,b):0<a<z0<b<y}

is order bounded. T is positive if for all z € AT and y € BT we have T'(x,y) € C*.
Clearly every positive bilinear map is order bounded. Moreover if T is positive,
then so is T™.

Let 0 < f € B’ and x € AT. Then the positive linear functional *T'(z, f) in A’
defined by, for all y € A,

T(, f)ly) = f(T(y, z))
satisfies
(@, f) =" T(x, f).
Indeed, for all y € A,

(2, )y) = (T (f,9) =T"(f,9)(=) = f(T(y,z)) =" T(z, [)(y)-

Proposition 3. Let A, B be vector lattices and T : Ax A — B be a positive almost
orthosymmetric bilinear map. If v € A and 0 < G, H € (A)], satisfy G,H < T
and G ANH =0, then T***(G,H) NT***(H,G) = 0.

Proof. Let T be positive almost orthosymmetric. Then clearly T*** is positive.

Let 0 < f € B and z € AT. Then 0 < *T'(z, f) + T*(f,z) € A’, and so, by
Corollary 1.2 of [4], there exist g,h € A’ with gAh =0, and G(g9) = 0 = H(h) such
that

Tz, f)+T"(f,z) =g +h.
By the Riesz-Kontorovi¢ Theorem ([I, Theorem 1.13]),
inf{g(y) + h(z) 1o =y +z y,2 € AT} = (g A h)(x) =0,

which implies that, for € > 0, there exist y, 2 € AT such that © = y+2 and g(y) < €

and h(z) < e.
We now define the linear functionals G and H; on A’ by

—

G1:G/\(y—/y\/\z) and Hy=HA(z—yA2).
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Clearly, 0 < Gy, H; € (A’)!, and the following inequalities hold.

0<H-H (H—(z—yA2) < @—(z—yA2)*
= (+z-(-yn2) =@y Tyra)" <27, (1)
and similarly
0<G -G, <25 2)

Since T*** is positive and T***(Zi,g) = T/(a,\b) for all a,b € A, it follows that
0 < T"*(Gi,Hy) NT**(Hy,Gq)
< Ty =—yAzz—yA) AT (z=yAzy—yAz) =0
Le., T (Gy, Hy) AT (Hy,G1) = 0. (3)
We next consider the elements
0<T"(G—-G1,H), T (G1,H — Hy), T""*(H — H1,Q), T*"*(H.,G — G1)
of (A’),,. Then, by the positivity of 7*** and (1)),
(G -G H)(f) < TG = Gy2)(f) = (G- G)(T(, f))
= (G=G)("T(x,f)) <(G=G)(T(z, f) +T"(f,x))
(G-Gi)lg+h)=(G- Gl)( )+ (G = G1)(h)

< G(9) + (G —=Gi)(h) <0+ 2z(h) = 2h(2) (4)
and, by ,
(G, H—H\)(f) < TG, H—-H)(f) <T"(z,H — Hi)(f)

= (T**(H— Hy, f)) =T"(H — Hy, f)(z)

= (H—-H)(T"(f )

< (H-H)(T*(f,2)+"T(x, f)) = (H — H1)(g + h)
= (H-H)(g ) (H — Hy)(h) < H(g) + (H — Hy)(h)
< 0+2y( ) =29(y)- (5)

It follows by symmetry that
T*"(H — Hy, G)(f) <29(y) and  T77(Hy, G—G)(f) <2h(2).  (6)

Using the fact that (a+b) Ac<aAc+bAc<a+bAcin vector lattices and (3),
we find

T"*(G,H)ANT""(H,G) = (T"" (G- G1,H)+T"*(G1,H — H1,) + T (G1, H1))
ANT*(H — H1,G)+ T (Hy,G — Gy,) + T (Hy,Gh))
<TG -G, H) + T (G, H — Hy)
+T*(G1, Hy) N(T™(H — Hy,G,) + T (G1,G — Gy)
YT (Hy, Gh))
<TG -Gy, H) +T7(Gy, H — Hy)
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+T**(G1, Hi) NT™(H — H1,G) + T (H1,G — G1)
+T***(Gy, Hy) NT** (H1,G1)
<T"*(G-G1,H)+T"*(Gy,H — Hy)
+T"*(H — H1,G) + T**(H1,G — Gy).
Hence, by (4), and (6],
0< TG, H)NT™(H,G)(f) < T™(G = G1, H)(f) + T (G1, H — H1)(f)
+T***(H — Hy, G)(f) + T (H1,G — G1)(f)
< 2h(z) +29(y) + 2g9(y) + 2h(z) < 8e.

Since this holds for an arbitrary e > 0, we have T***(G, H) A T**(H,G)(f) = 0
for all 0 < f € B’. It now follows that for all f € B’

T*(G,H)ANT**(H,G)(f) = T**(G,H)ANT**(H,G)(f")
—T"*(G,H)ANT*"*(H,G)(f7)
= 0,
and so T***(G, H) ANT***(H,G) = 0, as required. O

We are in a position to prove the main result of this paper.

Theorem 4. Let A, B be vector lattices and T : A x A — B be a positive almost
orthosymmetric bilinear map. Then the bilinear map T*** : (A")) x (A")! — (B"),
is positive almost orthosymmetric.
Proof. In the preceding proposition we have proved that the restriction map
T+ I;xIz is positive almost orthosymmetric whenever T': A x A — B is so. We
now extend the result to the whole (A")), x A"),. To do this, let 0 < G, H € (A"),
such that G A H = 0. We have to show that T***(G, H) A T***(H,G)(f) = 0.
Since the band I3 is order dense in (A’);,, there exist G, Hg € I3 such that
0<Gy1Gand0< Hz T H with0 <G, <7, and 0 < Hg < yg for some
Ta,ys € AT. It follows from GAH = 0 that G, A Hg = 0 for all «, 8. Furthermore,
0< Gy, Hg < mﬁ. Hence, by above, we see that

T (G, Hg) NT*(Hg,Go) =0 (7)
for all @ and 5. Now let 0 < f € B’. It follows from 0 < Hg T H that 0 <
Hg (T (f,2)) T H(T™(f,2));

Le., 0 <T*(Hg, f)(z) 1 T (H, f)(x)
for all 0 < x € A. This shows that 0 < T**(Hg, f) T T**(H, f). Hence, by the
order continuity of G, for each o, 0 < Go(T**(Hg, f)) 1 Go(T**(H, f));
Le., 0 ST (Go, Hg)(f) 1T (Ga, H)(f)

which implies that, for each «,

0<T"*(Gu,Hg) 1 T (Gq, H). (8)
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Similarly, since 0 < G, T G, we have 0 < G (T**(H, f)) T G(T**(H, f));

ie., 0 <T*(Ga, H)(f) 1 T (G, H)(f)
forall 0 < f € B’, and so

0<T"(Gy,H) 1T (G, H) (9)
In the same way, by the order continuity of Hg for each 3, we obtain
0<T"*(Hg,Gu) 1 T (Hp,G) (10)
leading to
0<T**(Hp,Gy) 1 T (H,G). (11)

Now it follows from and that
0 < T (G, Hy) AT (Hg, Go) 1 T (Gy H) AT (Hp, G),

and so, by ,
T (G, H) NT™(Hg,G) =0 (12)
for all ., 3. On the other hand, from (9 and we have
0<T"(Gu,H)NT*™(Hg,G) 1 T (G, H) NT***(H,G).
It follows from that
T*(G,H)ANT*™(H,G) =0,

as required. 0

As the Arens multiplications are separately order continuous and in a commu-
tative algebra a pseudo-almost f-algebra and almost f-algebra coincide, we imme-
diately obtain the following corollary.

Corollary 5. (1) The order continuous bidual of a pseudo-almost f-algebra is
a Dedekind complete (and hence Archimedean) pseudo-almost f-algebra.
(2) The order bidual of a commutative pseudo-almost f-algebra is a Dedekind
complete pseudo-almost f-algebra.

Another way of obtaining the result of Proposition [3]is by means of the approx-
imation by components ([I1]). First we observe some notations: Let A be a vector
lattice and let a be a fixed element of A. If E := {F € (A7)}, : IA > 0, |F| < Aa}-the
ideal generated in (A’)!, by a. Consider the Boolean algebra R generated by the
set of all band projections of E onto principal bands generated by positive elements
of A in E. If we denote the band projection onto the band generated in E by the
element F' € E by Pp, then R is generated by the set G := {P; : x € A" }-the
set of all band projections onto the principal ideals generated by elements Z with
x € At. Also, Ga:={P;a:z € A"}
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Proposition 6. Let A, B be vector lattices and T : A x A — B be a positive
almost orthosymmetric bilinear map. If v € AT and 0 < G,H € (A')!, satisfy
G,H <z and GANH =0 (that is, G and H are two disjoint elements of the band
I;={F e (A, :|F| < for some x € At} generated by A, which is order dense

in (A'Y.), then T***(G, H) A T***(H,G) = 0.

Proof. Tt is sufficient to proof that T***(PgZ, Pyz) A T***(PyZ, PcT) = 0 since
0 <G < Pgr and 0 < H < PyZz. (Note that, as band projections are positive, 0 <
GANH = PeGANPgH < Pgz APy, and so P APyz = 0 implies GAH = 0. Hence
T*(G,H) NT**(H,G) < T**(PgZ, PyZ) NT**(PyZ, PoZ) by the positivity of
T***.) But, to do this, it is sufficient to proof that T***(z—F, F)AT**(F,Z—F) =0
for any component F of T; that is, 7 — F A F = 0.

The proof of this is in four steps, as follows.

Step 1. Let F' € Ga, say F' = P;Z = sup,,(na A Z). Then it follows from

T—F=7—sup(naAz)=inf(Z — na A7) = inf(z — na)"
and that for each fixed n
0 T*(Z - F,(na—2)") ANT**((na —2)",2 - F)

T*((z —na)", (na —2)") AT**((Z —na)™, (na —2)")
T((z = na)*, (na - )*) AT((x — na)*, (na - 2)*)

o —

T((x —na)*t, (na —x2)T) AT((x — na)*, (na —x)T)
Oa

INIA

as (z —na)™ A (na—2)™ =0 and T is almost orthosymmetric (where we use the

~

fact that T***(a,b) = T'(a,b) for all a,b € A). Hence
Tz — F,(na —2)") AT**((na—2)",2 - F) =0,
and so
(T (2 — F,(na —2)" AT**((na —2)*,2 - F))) = 0.
This implies that for each n

1 1
T3 - F, (@ — ~2))" AT™*((@— ~2)",3 - F) = 0.
n

n
Therefore
T*(x — F,a) N\T"™*(a,z — F) =0, as n— oo.
It follows that for each n
n(T**(Z-F,a)ANT*"(a,2—F)) =0; ie., T (z—F,na)\NT*"*(na,z—F) =0.
Hence,
0 < T (Z—F,naAZ)ANT***(naAZ,z—F) < T (Z—F,na) NT*** (na,z—F) = 0;
ie, T"*(x— F,naANZ) AT (naANZ,z — F)=0.
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Since this holds for each n, we get

sup(T**(Z — F,na AZ) AT (na A3, — F)) =0,

which leads that, by the separately order continuity of 7*** (since T is positive, T’
is of order bounded variation, and so T"** is separately order continuous (see e.g.
Theorem 2.1 in [7])),

0 < T"™@Z-FF)ANT™(F,z—F)
= T"*(Z — F,sup(na A %)) NT**(sup(na A Z),z — F)

= sup(T***(& — F,na A 7)) Asup(T*** ((nd A7), 7 — F))
= sup(T***(@ — F,na A %) AT ((nd A7),% — F))

e, T (& — F,F) N\T*™*(F,7 — F) = 0.
Step 2. Let F = /\i=1 F; where either F; € Ga or T — F; € Ga. Then

i-F=\/@-F
i=1
and so

0 < T3 FF)/\T***(FAfF)

z:l z:l =1

'MS

IA
S
*
*
*
8)

—F), ) ANT™(F;, ) (- F))

1

= Y T(@-F),F)NY T™(F,2 - F)
] =1

©
Il
—
-
Il

< TG - F)F) AT (F, 2 - F)

—

=0 (by Step 1);

ie, T***(& — F,F) N\T***(F,% — F) = 0.
Step 3. Let F =\/!'_, F; where each F; is of the form F had in Step 1 (that is,
Fy = N\j_, Fij,¥i=1,2,--- ,n,and so F' = \/[_; A\J_, F};). Then, in the same way
as Step 2,

m
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and so
0 < Tz FF)/\T***(FA—F)

i:l i=1

T (% — Fj, \/ F)ANT** @& - F,\/ F)
=1 =1
m m

T*(& — Fy, Y F)AT™()_F,2—F)
=1 =1

(T***(F — F;, Fy)) A Z(T***(F@—Fi))

IN

IN

|

N
Il
_

NE

(T"(x — F;, ;) NT* (Fy, @ — Fy))

|
SR
o

(by Step 2);
ie, T"*(Z - F,F)ANT"™(F,z — F) =0.
Step 4. Let F € Rz. If F =sup,, F,, or F' = inf,, F,, with each F,, is a component
of T (that is, (z — Fy) A F, = 0 for each «) having the property that
TZ — Fo, Fo ) NT™(Fy,z — F,) =0,
then using the separately order continuity of 7*** we show that F' has the same

property;
e, T (z - F,F)ANT*"(F,z — F) =0.

Indeed, suppose that F' = sup, F,. For each fixed o and for all 5 > o we have

Fg > F,, and so T — F3 < ¥ — F,. Hence, by the positivity of T*** and the

hypothesis,

0 < T (ZT—Fg, Fo) NT*"" (Fo,T— F) <T™(Z— Fo, Fo)NT™" (Fo,T— Fy) = 0;
le., T"*(x — Fg, Fo) NT™ (Fo, — F3) =0 VB>

Therefore

inf (T (& — Fp, Fo) NT™ (o & = F)) = 0,

and so, by the order continuity of lattice operations (x, | z and y, | y implies
Ty Nyr LT A y)

f T***(& — Fp, Fa) A inf T**(Fy, @ — F) = 0.
Jof T (% — Fyg, Fo) A nf T (Fa, @ — Fp)

Since T*** is a separately order continuous,
T***(ggf(i—Fg) w) AT (Fy, 1nf (m—FB)) 0;

ie., T3 — F,Fy) A T***(Fa,:? —F)=0.
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Since this holds for all «,
sup(T***(x — F, Fo,) N T (Fo, — F)) =0,

from which it follows that
Tz — F,F)YANT**(F,z — F) =0,

by the order continuity of lattice operations (if z, T = and y, 1 y, then x; Ay, T
x Ay), as above.
In exactly the same way above we now show that if F' = inf, F,, such that
(Z—Fy) ANFy =0and T"*(Z — F,, Fo) NT***(F,, T — F,) = 0 for each «, then
Tz — F,F)NT""(F, 2 — F) = 0.

Let « be fixed. Then we have Fjzg < F,, for all 8 > «. Hence, by the positivity
of T*** and the hypothesis,

0 < T**(Z— Fo, Fg) NT***(Fj, 2 — F.) < T**(Z— Fo, Fo) N\T**(F,7— F,) = 0;

ie, T™(Z — Fo, Fg) NT™(Fp, 2 — F,) =0, VG>a.
Therefore

inf (T (@ = Fay Fs) AT™(Fp, & = Fa)) = 0,

and so,

inf T***(Z — Fa, F3) A inf T**(F5,7 — F,,) = 0.
Jof T2 g) A lnf T (F, & )

Since T*** is a separately order continuous,

T""*(& = Fo, nf Fp) AT (jnf F3,@ — Fa) =0.

ie, T (z — F,, F) NT*(F,z — F,) = 0.
Since this holds for all «, we get

sup(T™*** (& — Fo, F) A T***(F, % — F,)) = 0.

Therefore
Tz — F,F)NT""(F, 2 — F) =0,

from which the result follows. O

We conclude our work with the following important remark for further research.
Remark. The triadjoints on the whole order biduals is still an open problem. One
has to obtain a way to handle the singular parts of order biduals, as the cases of
orthosymmetric bilinear maps and bi-orthomorphisms [15], in order to prove that
the triadjoint T*** : A” x A” — B of an almost orthosymmetric bilinear map
T:AXx A— Bisan almost orthosymmetric bilinear map.
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