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AN ALMOST ORTHOSYMMETRIC BILINEAR MAP

RUS.EN YILMAZ

Abstract. In this paper, as a generalization of the concept of pseudo-almost
f -algebra, we define a new concept of almost orthosymmetric bilinear map
on a vector lattice and prove that the Arens triadjoint of a positive almost
orthosymmetric bilinear map is positive almost orthosymmetric. This also
extends results on the order bidual of pseudo-almost f -algebras.

1. Introduction

We studied in [16] a new class of pseudo-almost f -algebra (a lattice ordered
algebra A in which a ∧ b = 0 in A implies ab ∧ ba = 0) and presented its relation
with the certain lattice ordered algebras; f -algebras [5], almost f -algebras [6] and
d-algebras [12].
In [17], concentrating on the Arens multiplications [2, 3] in the algebraic bidual

of pseudo-almost f -algebras (so-called r-algebra in [17]), we prove that the order
continuous bidual of an Archimedean pseudo-almost f -algebra is again a Dedekind
complete (and hence Archimedean) pseudo-almost f -algebra. This is a generaliza-
tion of a result of Bernau and Huijsmans in [4] in which they prove that the order
continuous bidual of an almost f -algebra (respectively d-algebra) is again an almost
f -algebra (respectively d-algebra).
In this paper, as an extension of the notion of pseudo-almost f -algebra, we

introduce a new concept of almost orthosymmetric bilinear map and prove that if
A,B are vector lattices and T : A × A → B is a positive almost orthosymmetric
bilinear map, then the triadjoint T ∗∗∗ : (A′)′n × (A′)′n → (B′)′n is a positive almost
orthosymmetric bilinear map. This also generalizes results on the order bidual of
pseudo-almost f -algebras in [17].
The Arens multiplication introduced in [3] on the bidual of various lattice ordered

algebras has been well documented (see, e.g., [4]). The more general question about
Arens triadjoints of bilinear maps on products of vector lattices has recently aroused
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considerable interest (see, e.g., [7]). In this direction, as the extensions of the notions
of classes of almost f -algebra, f -algebra, d-algebra and pseudo-almost f -algebra,
we have studied the Arens triadjoints of some classes of bilinear maps on vector
lattices; mainly, orthosymmetric bilinear maps, bi-orthomorphisms, d-bimorphisms
and almost orthomorphism bilinear maps (see [15, 14]):

Definition 1. Let A and B be vector lattices. A bilinear map T : A × A → B is
said to be
(1) orthosymmetric if x∧ y = 0 implies T (x, y) = 0 for all x, y ∈ A (first appeared
in a paper by G. Buskes and A. van Rooij in [9] in 2000).
(2) a bi-orthomorphism if it is a separately order bounded bilinear map such that
x ∧ y = 0 in A implies T (z, x) ∧ y = 0 for all z ∈ A+, when A = B (first appears a
paper by G. Buskes, R. Page Jr and R. Yilmaz in [10] in 2009).
(3) a d-bimorphism if x ∧ y = 0 in A implies T (z, x) ∧ T (z, y) = 0 for all z ∈ A+
(first appears in a paper R. Yilmaz in [14] in 2017).
(4) almost orthosymmetric if x∧y = 0 implies T (x, y)∧T (y, x) = 0 for all x, y ∈ A.
The following theorem is obvious from the above definitions.

Theorem 2. (1) Every bi-orthomorphism is both orthosymmetric and a d-
bimorphism.

(2) Every orthosymmetric bilinear map is almost orthosymmetric.

From here on, let A,B, and C be Archimedean vector lattices and A′, B′, C ′ be
their respective duals.
A bilinear map T : A×B → C can be extended in a natural way to the bilinear

map T ∗∗∗ : A′′ ×B′′ → C ′′ constructed in the following stages:

T ∗ : C ′ ×A→ B′,
T ∗∗ : B′′ × C ′ → A′,
T ∗∗∗ : A′′ ×B′′ → C ′′,

T ∗(f, x)(y) = f(T (x, y))
T ∗∗(G, f)(x) = G(T ∗(f, x))
T ∗∗∗(F,G)(f) = F (T ∗∗(G, f))

for all x ∈ A, y ∈ B, f ∈ C ′, F ∈ A′′, G ∈ B′′ (so-called the first Arens adjoint of
T ).
Another extension of a bilinear map T : A×B → C is the map ∗∗∗T : A′′×B′′ →

C ′′ constructed in the following stages:
∗T : B × C ′ → A′,
∗∗T : C ′ ×A′′ → B′,
∗∗∗T : A′′ ×B′′ → C ′′,

∗T (y, f)(x) = f(T (x, y))
∗∗T (f, F )(y) = F (∗T (y, f))
∗∗∗T (F,G)(f) = G(∗∗T (f, F ))

for all x ∈ A, y ∈ B, f ∈ C ′, F ∈ A′′, G ∈ B′′ (so-called the second Arens adjoint of
T ) [3].
In this work we shall concentrate on the first Arens adjoint; that is, we prove

that T ∗∗∗ : (A′)′n × (A′)′n → (B′)′n is positive almost orthosymmetric whenever
T : A×A→ B is so. Similar results hold for the second.
For the elementary theory of vector lattices and terminology not explained here

we refer to [1, 13, 18].
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2. The triadjoint of an almost orthosymmetric bilinear map

In this section we prove that the extension T ∗∗∗ of a positive almost orthosym-
metric bilinear map T : A × A → B is again positive almost orthosymmetric. We
first recall some relevant notions. The canonical mapping a 7→ â of a vector lattice
A into its order bidual A′′ is defined by â(f) = f(a) for all f ∈ A′. For each
a ∈ A, â defines an order continuous algebraic lattice homomorphism on A′ and
the canonical image Â of A is a subalgebra of (A′)′c. Moreover the band

IÂ = {F ∈ (A′)′c : |F | ≤ x̂ for some x ∈ A+}

generated by Â is order dense in (A′)′c; i.e., for each F ∈ (A′)′c, there exists an
upwards directed net {Gλ : λ ∈ Λ} in IÂ such that 0 < Gλ ↑ F .
A bilinear operator T : A×B → C is said to be order bounded if for all (x, y) ∈

A+ ×B+ we have
{T (a, b) : 0 ≤ a ≤ x, 0 ≤ b ≤ y}

is order bounded. T is positive if for all x ∈ A+ and y ∈ B+ we have T (x, y) ∈ C+.
Clearly every positive bilinear map is order bounded. Moreover if T is positive,
then so is T ∗.
Let 0 ≤ f ∈ B′ and x ∈ A+. Then the positive linear functional ∗T (x, f) in A′

defined by, for all y ∈ A,
∗T (x, f)(y) = f(T (y, x))

satisfies
T ∗∗(x̂, f) =∗ T (x, f).

Indeed, for all y ∈ A,
T ∗∗(x̂, f)(y) = x̂(T ∗(f, y)) = T ∗(f, y)(x) = f(T (y, x)) =∗ T (x, f)(y).

Proposition 3. Let A,B be vector lattices and T : A×A→ B be a positive almost
orthosymmetric bilinear map. If x ∈ A+ and 0 ≤ G,H ∈ (A′)′n satisfy G,H ≤ x̂
and G ∧H = 0, then T ∗∗∗(G,H) ∧ T ∗∗∗(H,G) = 0.

Proof. Let T be positive almost orthosymmetric. Then clearly T ∗∗∗ is positive.
Let 0 ≤ f ∈ B′ and x ∈ A+. Then 0 ≤ ∗T (x, f) + T ∗(f, x) ∈ A′, and so, by

Corollary 1.2 of [4], there exist g, h ∈ A′ with g∧h = 0, and G(g) = 0 = H(h) such
that

∗T (x, f) + T ∗(f, x) = g + h.

By the Riesz-Kontorovič Theorem ([1, Theorem 1.13]),

inf{g(y) + h(z) : x = y + z, y, z ∈ A+} = (g ∧ h)(x) = 0,

which implies that, for ε > 0, there exist y, z ∈ A+ such that x = y+z and g(y) < ε
and h(z) < ε.
We now define the linear functionals G1 and H1 on A′ by

G1 = G ∧ ̂(y − y ∧ z) and H1 = H ∧ ̂(z − y ∧ z).
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Clearly, 0 ≤ G1, H1 ∈ (A′)′c and the following inequalities hold.

0 ≤ H −H1 = (H − (z − y ∧ z))+ ≤ (x̂− ̂(z − y ∧ z))+

= ( ̂y + z − (z − y ∧ z))+ = ( ̂y + y ∧ z)+ ≤ 2ŷ, (1)

and similarly
0 ≤ G−G1 ≤ 2ẑ. (2)

Since T ∗∗∗ is positive and T ∗∗∗(â, b̂) = T̂ (a, b) for all a, b ∈ A, it follows that
0 ≤ T ∗∗∗(G1, H1) ∧ T ∗∗∗(H1, G1)

≤ T ∗∗∗( ̂y − y ∧ z, ̂z − y ∧ z) ∧ T ∗∗∗( ̂z − y ∧ z, ̂y − y ∧ z) = 0;

i.e., T ∗∗∗(G1, H1) ∧ T ∗∗∗(H1, G1) = 0. (3)
We next consider the elements

0 ≤ T ∗∗∗(G−G1, H), T ∗∗∗(G1, H −H1), T
∗∗∗(H −H1, G), T ∗∗∗(H1, G−G1)

of (A′)′n. Then, by the positivity of T
∗∗∗ and (1),

T ∗∗∗(G−G1, H)(f) ≤ T ∗∗∗(G−G1, x̂)(f) = (G−G1)(T ∗∗(x̂, f))

= (G−G1)(∗T (x, f)) ≤ (G−G1)(∗T (x, f) + T ∗(f, x))

= (G−G1)(g + h) = (G−G1)(g) + (G−G1)(h)

≤ G(g) + (G−G1)(h) ≤ 0 + 2ẑ(h) = 2h(z) (4)

and, by (2),

T ∗∗∗(G1, H −H1)(f) ≤ T ∗∗∗(G,H −H1)(f) ≤ T ∗∗∗(x̂, H −H1)(f)

= x̂(T ∗∗(H −H1, f)) = T ∗∗(H −H1, f)(x)

= (H −H1)(T
∗(f, x))

≤ (H −H1)(T
∗(f, x) +∗ T (x, f)) = (H −H1)(g + h)

= (H −H1)(g) + (H −H1)(h) ≤ H(g) + (H −H1)(h)

≤ 0 + 2ŷ(g) = 2g(y). (5)

It follows by symmetry that

T ∗∗∗(H −H1, G)(f) ≤ 2g(y) and T ∗∗∗(H1, G−G1)(f) ≤ 2h(z). (6)

Using the fact that (a+ b) ∧ c ≤ a ∧ c+ b ∧ c ≤ a+ b ∧ c in vector lattices and (3),
we find

T ∗∗∗(G,H) ∧ T ∗∗∗(H,G) = (T ∗∗∗(G−G1, H) + T ∗∗∗(G1, H −H1, ) + T ∗∗∗(G1, H1))

∧(T ∗∗∗(H −H1, G) + T ∗∗∗(H1, G−G1, ) + T ∗∗∗(H1, G1))

≤ T ∗∗∗(G−G1, H) + T ∗∗∗(G1, H −H1)

+T ∗∗∗(G1, H1) ∧ (T ∗∗∗(H −H1, G, ) + T ∗∗∗(G1, G−G1)
+T ∗∗∗(H1, G1))

≤ T ∗∗∗(G−G1, H) + T ∗∗∗(G1, H −H1)
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+T ∗∗∗(G1, H1) ∧ T ∗∗∗(H −H1, G) + T ∗∗∗(H1, G−G1)
+T ∗∗∗(G1, H1) ∧ T ∗∗∗(H1, G1)

≤ T ∗∗∗(G−G1, H) + T ∗∗∗(G1, H −H1)

+T ∗∗∗(H −H1, G) + T ∗∗∗(H1, G−G1).
Hence, by (4), (5) and (6),

0 ≤ T ∗∗∗(G,H) ∧ T ∗∗∗(H,G)(f) ≤ T ∗∗∗(G−G1, H)(f) + T ∗∗∗(G1, H −H1)(f)

+T ∗∗∗(H −H1, G)(f) + T ∗∗∗(H1, G−G1)(f)

≤ 2h(z) + 2g(y) + 2g(y) + 2h(z) ≤ 8ε.

Since this holds for an arbitrary ε > 0, we have T ∗∗∗(G,H) ∧ T ∗∗∗(H,G)(f) = 0
for all 0 ≤ f ∈ B′. It now follows that for all f ∈ B′

T ∗∗∗(G,H) ∧ T ∗∗∗(H,G)(f) = T ∗∗∗(G,H) ∧ T ∗∗∗(H,G)(f+)

−T ∗∗∗(G,H) ∧ T ∗∗∗(H,G)(f−)

= 0,

and so T ∗∗∗(G,H) ∧ T ∗∗∗(H,G) = 0, as required. �
We are in a position to prove the main result of this paper.

Theorem 4. Let A,B be vector lattices and T : A × A → B be a positive almost
orthosymmetric bilinear map. Then the bilinear map T ∗∗∗ : (A′)′n × (A′)′n → (B′)′n
is positive almost orthosymmetric.

Proof. In the preceding proposition we have proved that the restriction map
T ∗∗∗|IÂ×IÂ is positive almost orthosymmetric whenever T : A × A → B is so. We
now extend the result to the whole (A′)′n ×A′)′n. To do this, let 0 ≤ G,H ∈ (A′)′n
such that G ∧ H = 0. We have to show that T ∗∗∗(G,H) ∧ T ∗∗∗(H,G)(f) = 0.
Since the band IÂ is order dense in (A′)′n, there exist Gα, Hβ ∈ IÂ such that
0 ≤ Gα ↑ G and 0 ≤ Hβ ↑ H with 0 ≤ Gα ≤ x̂α and 0 ≤ Hβ ≤ ŷβ for some
xα, yβ ∈ A+. It follows from G∧H = 0 that Gα∧Hβ = 0 for all α, β. Furthermore,
0 ≤ Gα, Hβ ≤ x̂α + yβ . Hence, by above, we see that

T ∗∗∗(Gα, Hβ) ∧ T ∗∗∗(Hβ , Gα) = 0 (7)

for all α and β. Now let 0 ≤ f ∈ B′. It follows from 0 ≤ Hβ ↑ H that 0 ≤
Hβ(T ∗∗(f, x)) ↑ H(T ∗∗(f, x));

i.e., 0 ≤ T ∗∗(Hβ , f)(x) ↑ T ∗∗(H, f)(x)

for all 0 ≤ x ∈ A. This shows that 0 ≤ T ∗∗(Hβ , f) ↑ T ∗∗(H, f). Hence, by the
order continuity of Gα for each α, 0 ≤ Gα(T ∗∗(Hβ , f)) ↑ Gα(T ∗∗(H, f));

i.e., 0 ≤ T ∗∗∗(Gα, Hβ)(f) ↑ T ∗∗∗(Gα, H)(f)

which implies that, for each α,

0 ≤ T ∗∗∗(Gα, Hβ) ↑ T ∗∗∗(Gα, H). (8)
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Similarly, since 0 ≤ Gα ↑ G, we have 0 ≤ Gα(T ∗∗(H, f)) ↑ G(T ∗∗(H, f));

i.e., 0 ≤ T ∗∗∗(Gα, H)(f) ↑ T ∗∗∗(G,H)(f)

for all 0 ≤ f ∈ B′, and so

0 ≤ T ∗∗∗(Gα, H) ↑ T ∗∗∗(G,H) (9)

In the same way, by the order continuity of Hβ for each β, we obtain

0 ≤ T ∗∗∗(Hβ , Gα) ↑ T ∗∗∗(Hβ , G) (10)

leading to

0 ≤ T ∗∗∗(Hβ , Gα) ↑ T ∗∗∗(H,G). (11)

Now it follows from (8) and (10) that

0 ≤ T ∗∗∗(Gα, Hβ) ∧ T ∗∗∗(Hβ , Gα) ↑ T ∗∗∗(Gα, H) ∧ T ∗∗∗(Hβ , G),

and so, by (7),

T ∗∗∗(Gα, H) ∧ T ∗∗∗(Hβ , G) = 0 (12)

for all α, β. On the other hand, from (9) and (11) we have

0 ≤ T ∗∗∗(Gα, H) ∧ T ∗∗∗(Hβ , G) ↑ T ∗∗∗(G,H) ∧ T ∗∗∗(H,G).

It follows from (12) that

T ∗∗∗(G,H) ∧ T ∗∗∗(H,G) = 0,

as required. �

As the Arens multiplications are separately order continuous and in a commu-
tative algebra a pseudo-almost f -algebra and almost f -algebra coincide, we imme-
diately obtain the following corollary.

Corollary 5. (1) The order continuous bidual of a pseudo-almost f -algebra is
a Dedekind complete (and hence Archimedean) pseudo-almost f -algebra.

(2) The order bidual of a commutative pseudo-almost f -algebra is a Dedekind
complete pseudo-almost f -algebra.

Another way of obtaining the result of Proposition 3 is by means of the approx-
imation by components ([11]). First we observe some notations: Let A be a vector
lattice and let a be a fixed element of A. If E := {F ∈ (A′)′n : ∃λ > 0, |F | ≤ λâ}-the
ideal generated in (A′)′n by â. Consider the Boolean algebra R generated by the
set of all band projections of E onto principal bands generated by positive elements
of Â in E. If we denote the band projection onto the band generated in E by the
element F ∈ E by PF , then R is generated by the set G := {Px̂ : x ∈ A+}-the
set of all band projections onto the principal ideals generated by elements x̂ with
x ∈ A+. Also, Gâ := {Px̂â : x ∈ A+}.
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Proposition 6. Let A,B be vector lattices and T : A × A → B be a positive
almost orthosymmetric bilinear map. If x ∈ A+ and 0 ≤ G,H ∈ (A′)′n satisfy
G,H ≤ x̂ and G ∧H = 0 (that is, G and H are two disjoint elements of the band
IÂ = {F ∈ (A′)′n : |F | ≤ x̂ for some x ∈ A+} generated by Â, which is order dense
in (A′)′n), then T

∗∗∗(G,H) ∧ T ∗∗∗(H,G) = 0.

Proof. It is suffi cient to proof that T ∗∗∗(PGx̂, PH x̂) ∧ T ∗∗∗(PH x̂, PGx̂) = 0 since
0 ≤ G ≤ PGx̂ and 0 ≤ H ≤ PH x̂. (Note that, as band projections are positive, 0 ≤
G∧H = PGG∧PHH ≤ PGx̂∧PH x̂, and so PGx̂∧PH x̂ = 0 implies G∧H = 0. Hence
T ∗∗∗(G,H)∧ T ∗∗∗(H,G) ≤ T ∗∗∗(PGx̂, PH x̂)∧ T ∗∗∗(PH x̂, PGx̂) by the positivity of
T ∗∗∗.) But, to do this, it is suffi cient to proof that T ∗∗∗(x̂−F, F )∧T ∗∗∗(F, x̂−F ) = 0
for any component F of x̂; that is, x̂− F ∧ F = 0.
The proof of this is in four steps, as follows.
Step 1. Let F ∈ Gâ, say F = Pâx̂ = supn(nâ ∧ x̂). Then it follows from

x̂− F = x̂− sup
n

(nâ ∧ x̂) = inf
n

(x̂− nâ ∧ x̂) = inf
n

(x̂− nâ)+

and that for each fixed n

0 ≤ T ∗∗∗(x̂− F, (nâ− x̂)+) ∧ T ∗∗∗((nâ− x̂)+, x̂− F )

≤ T ∗∗∗((x̂− nâ)+, (nâ− x̂)+) ∧ T ∗∗∗((x̂− nâ)+, (nâ− x̂)+)

= ̂T ((x− na)+, (na− x)+) ∧ ̂T ((x− na)+, (na− x)+)

= ̂T ((x− na)+, (na− x)+) ∧ T ((x− na)+, (na− x)+)

= 0,

as (x − na)+ ∧ (na − x)+ = 0 and T is almost orthosymmetric (where we use the

fact that T ∗∗∗(â, b̂) = T̂ (a, b) for all a, b ∈ A). Hence
T ∗∗∗(x̂− F, (nâ− x̂)+) ∧ T ∗∗∗((nâ− x̂)+, x̂− F ) = 0,

and so
n(T ∗∗∗(x̂− F, (nâ− x̂)+ ∧ T ∗∗∗((nâ− x̂)+, x̂− F ))) = 0.

This implies that for each n

T ∗∗∗(x̂− F, (â− 1

n
x̂))+ ∧ T ∗∗∗((â− 1

n
x̂)+, x̂− F ) = 0.

Therefore
T ∗∗∗(x̂− F, â) ∧ T ∗∗∗(â, x̂− F ) = 0, as n→∞.

It follows that for each n

n(T ∗∗∗(x̂−F, â)∧T ∗∗∗(â, x̂−F )) = 0; i.e., T ∗∗∗(x̂−F, nâ)∧T ∗∗∗(nâ, x̂−F ) = 0.

Hence,

0 ≤ T ∗∗∗(x̂−F, nâ∧x̂)∧T ∗∗∗(nâ∧x̂, x̂−F ) ≤ T ∗∗∗(x̂−F, nâ)∧T ∗∗∗(nâ, x̂−F ) = 0;

i.e., T ∗∗∗(x̂− F, nâ ∧ x̂) ∧ T ∗∗∗(nâ ∧ x̂, x̂− F ) = 0.
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Since this holds for each n, we get

sup
n

(T ∗∗∗(x̂− F, nâ ∧ x̂) ∧ T ∗∗∗(nâ ∧ x̂, x̂− F )) = 0,

which leads that, by the separately order continuity of T ∗∗∗ (since T is positive, T
is of order bounded variation, and so T ∗∗∗ is separately order continuous (see e.g.
Theorem 2.1 in [7])),

0 ≤ T ∗∗∗(x̂− F, F ) ∧ T ∗∗∗(F, x̂− F )

= T ∗∗∗(x̂− F, sup
n

(nâ ∧ x̂)) ∧ T ∗∗∗(sup
n

(nâ ∧ x̂), x̂− F )

= sup
n

(T ∗∗∗(x̂− F, nâ ∧ x̂)) ∧ sup
n

(T ∗∗∗((nâ ∧ x̂), x̂− F ))

= sup
n

(T ∗∗∗(x̂− F, nâ ∧ x̂) ∧ T ∗∗∗((nâ ∧ x̂), x̂− F ))

= 0;

i.e., T ∗∗∗(x̂− F, F ) ∧ T ∗∗∗(F, x̂− F ) = 0.

Step 2. Let F =
∧m
i=1 Fi where either Fi ∈ Gâ or x̂− Fi ∈ Gâ. Then

x̂− F =

m∨
i=1

(x̂− Fi),

and so

0 ≤ T ∗∗∗(x̂− F, F ) ∧ T ∗∗∗(F, x̂− F )

= T ∗∗∗(

m∨
i=1

(x̂− Fi),
m∧
i=1

Fi) ∧ T ∗∗∗(
m∧
i=1

Fi,

m∨
i=1

(x̂− Fi))

≤ T ∗∗∗(

m∑
i=1

(x̂− Fi), Fi) ∧ T ∗∗∗(Fi,
m∑
i=1

(x̂− Fi))

=

m∑
i=1

T ∗∗∗((x̂− Fi), Fi) ∧
m∑
i=1

T ∗∗∗(Fi, x̂− Fi)

≤
m∑
i=1

(T ∗∗∗((x̂− Fi), Fi) ∧ T ∗∗∗(Fi, x̂− Fi))

= 0 (by Step 1);

i.e., T ∗∗∗(x̂− F, F ) ∧ T ∗∗∗(F, x̂− F ) = 0.

Step 3. Let F =
∨n
i=1 Fi where each Fi is of the form F had in Step 1 (that is,

Fi =
∧m
j=1 Fij ,∀i = 1, 2, · · · , n, and so F =

∨n
i=1

∧m
j=1 Fij). Then, in the same way

as Step 2,

x̂− F =

m∧
i=1

(x̂− Fi),
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and so

0 ≤ T ∗∗∗(x̂− F, F ) ∧ T ∗∗∗(F, x̂− F )

= T ∗∗∗(

m∧
i=1

(x̂− Fi),
m∨
i=1

Fi) ∧ T ∗∗∗(x̂− Fi,
m∨
i=1

Fi)

≤ T ∗∗∗(x̂− Fi,
m∨
i=1

Fi) ∧ T ∗∗∗(x̂− Fi,
m∨
i=1

Fi)

≤ T ∗∗∗(x̂− Fi,
m∑
i=1

Fi) ∧ T ∗∗∗(
m∑
i=1

Fi, x̂− Fi)

=

m∑
i=1

(T ∗∗∗(x̂− Fi, Fi)) ∧
m∑
i=1

(T ∗∗∗(Fi, x̂− Fi))

≤
m∑
i=1

(T ∗∗∗(x̂− Fi, Fi) ∧ T ∗∗∗(Fi, x̂− Fi))

= 0 (by Step 2);

i.e., T ∗∗∗(x̂− F, F ) ∧ T ∗∗∗(F, x̂− F ) = 0.

Step 4. Let F ∈ Rx̂. If F = supα Fα or F = infα Fα with each Fα is a component
of x̂ (that is, (x̂− Fα) ∧ Fα = 0 for each α) having the property that

T ∗∗∗(x̂− Fα, Fα) ∧ T ∗∗∗(Fα, x̂− Fα) = 0,

then using the separately order continuity of T ∗∗∗ we show that F has the same
property;

i.e., T ∗∗∗(x̂− F, F ) ∧ T ∗∗∗(F, x̂− F ) = 0.

Indeed, suppose that F = supα Fα. For each fixed α and for all β ≥ α we have
Fβ ≥ Fα, and so x̂ − Fβ ≤ x̂ − Fα. Hence, by the positivity of T ∗∗∗ and the
hypothesis,

0 ≤ T ∗∗∗(x̂−Fβ , Fα)∧T ∗∗∗(Fα, x̂−Fβ) ≤ T ∗∗∗(x̂−Fα, Fα)∧T ∗∗∗(Fα, x̂−Fα) = 0;

i.e., T ∗∗∗(x̂− Fβ , Fα) ∧ T ∗∗∗(Fα, x̂− Fβ) = 0 ∀β ≥ α.
Therefore

inf
β≥α

(T ∗∗∗(x̂− Fβ , Fα) ∧ T ∗∗∗(Fα, x̂− Fβ)) = 0,

and so, by the order continuity of lattice operations (xτ ↓ x and yτ ↓ y implies
xτ ∧ yτ ↓ x ∧ y),

inf
β≥α

T ∗∗∗(x̂− Fβ , Fα) ∧ inf
β≥α

T ∗∗∗(Fα, x̂− Fβ) = 0.

Since T ∗∗∗ is a separately order continuous,

T ∗∗∗( inf
β≥α

(x̂− Fβ), Fα) ∧ T ∗∗∗(Fα, inf
β≥α

(x̂− Fβ)) = 0;

i.e., T ∗∗∗(x̂− F, Fα) ∧ T ∗∗∗(Fα, x̂− F ) = 0.
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Since this holds for all α,

sup
α

(T ∗∗∗(x̂− F, Fα) ∧ T ∗∗∗(Fα, x̂− F )) = 0,

from which it follows that

T ∗∗∗(x̂− F, F ) ∧ T ∗∗∗(F, x̂− F ) = 0,

by the order continuity of lattice operations (if xτ ↑ x and yτ ↑ y, then xτ ∧ yτ ↑
x ∧ y), as above.
In exactly the same way above we now show that if F = infα Fα such that

(x̂− Fα) ∧ Fα = 0 and T ∗∗∗(x̂− Fα, Fα) ∧ T ∗∗∗(Fα, x̂− Fα) = 0 for each α, then

T ∗∗∗(x̂− F, F ) ∧ T ∗∗∗(F, x̂− F ) = 0.

Let α be fixed. Then we have Fβ ≤ Fα for all β ≥ α. Hence, by the positivity
of T ∗∗∗ and the hypothesis,

0 ≤ T ∗∗∗(x̂−Fα, Fβ)∧T ∗∗∗(Fβ , x̂−Fα) ≤ T ∗∗∗(x̂−Fα, Fα)∧T ∗∗∗(Fα, x̂−Fα) = 0;

i.e., T ∗∗∗(x̂− Fα, Fβ) ∧ T ∗∗∗(Fβ , x̂− Fα) = 0, ∀β ≥ α.
Therefore

inf
β≥α

(T ∗∗∗(x̂− Fα, Fβ) ∧ T ∗∗∗(Fβ , x̂− Fα)) = 0,

and so,
inf
β≥α

T ∗∗∗(x̂− Fα, Fβ) ∧ inf
β≥α

T ∗∗∗(Fβ , x̂− Fα) = 0.

Since T ∗∗∗ is a separately order continuous,

T ∗∗∗(x̂− Fα, inf
β≥α

Fβ) ∧ T ∗∗∗( inf
β≥α

Fβ , x̂− Fα) = 0.

i.e., T ∗∗∗(x̂− Fα, F ) ∧ T ∗∗∗(F, x̂− Fα) = 0.

Since this holds for all α, we get

sup
α

(T ∗∗∗(x̂− Fα, F ) ∧ T ∗∗∗(F, x̂− Fα)) = 0.

Therefore
T ∗∗∗(x̂− F, F ) ∧ T ∗∗∗(F, x̂− F ) = 0,

from which the result follows. �

We conclude our work with the following important remark for further research.
Remark. The triadjoints on the whole order biduals is still an open problem. One
has to obtain a way to handle the singular parts of order biduals, as the cases of
orthosymmetric bilinear maps and bi-orthomorphisms [15], in order to prove that
the triadjoint T ∗∗∗ : A′′ × A′′ → B′′ of an almost orthosymmetric bilinear map
T : A×A→ B is an almost orthosymmetric bilinear map.
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