

RESEARCH ARTICLE

Group-2-groupoids and 2G-crossed modules

Nazmiye Alemdar^{*1}, Sedat Temel²

¹Erciyes University, Faculty of Science, Department of Mathematics, Kayseri 38039, Turkey ²Recep Tayyip Erdogan University, Faculty of Science and Arts, Department of Mathematics, Rize 53100, Turkey

Abstract

In this paper, we introduce the notion of a group-2-groupoid as a group object in the category of 2-groupoids. We also obtain a 2G-crossed module by using the structure of a group-2-groupoid. Then we prove that the category GP2GD of group-2-groupoids and the category 2GXMOD of 2G-crossed modules are equivalent.

Mathematics Subject Classification (2010). 18D05, 18D35, 20J15, 20L05

Keywords. group-2-groupoid, 2G-crossed module

1. Introduction

A groupoid is a small category whose all morphisms are invertible [7,9]. A groupoid can be thought of as a group with many objects and also a group is a groupoid with a single object [6]. A group object in the category of groupoids is called a 2-group [4], (resp. "9-groupoid" in [7] and "group-groupoid" in [11]). For further information on the 2-group, see [3–5,7,12,14]. This definition was generalized to ring-groupoid in [11] and to R-Module groupoid in [1]. Recently the concepts of normal and quotient objects in the category of 2-groups have been obtained by Mucuk et al. [13].

Crossed modules defined by Whitehead can be viewed as 2-dimensional groups [16, 17]. In [7], Brown and Spencer proved that the category of 2-groups is equivalent to the category of crossed modules of groups. And so a crossed module is essentially the same thing as a 2-group. This result was generalized to the crossed modules and internal groupoids in some algebraic categories including groups in [15]. Also this result was proved for the category of topological 2-groups and the category of topological crossed modules in [5].

A 2-group can be thought of as a 2-category with one object in which all 1-morphisms and 2-morphisms are invertible [3,14]. The 2-categorical approach to 2-groups is a powerful conceptual tool. However, for explicit calculations it is often useful to treat 2-groups as crossed modules [3].

In Section 3, we have inspired by the work of Brown and Spencer [7], and then we define the group-2-groupoid as a group object in the category of 2-categories. The main goal of this paper is to investigate how a group-2-groupoid corresponds to an algebraic structure similar to crossed modules. For this purpose, we first introduce 2G-crossed

^{*}Corresponding Author.

Email addresses: nakari@erciyes.edu.tr (N. Alemdar), stemel@erciyes.edu.tr (S. Temel) Received: 12.02.2018; Accepted: 03.04.2018

modules as an analogue of crossed modules given in [7]. Then we also define morphisms of group-2-groupoids and 2G-crossed modules. Finally, we prove that the category GP2GD of group-2-groupoids and the category 2GXMOD of 2G-crossed modules are equivalent.

2. Preliminaries

The following definition is given in [3].

Definition 2.1. A 2-category C consists of

- objects X, Y, Z, \dots
- 1-morphisms: $X \xrightarrow{f} Y$
- 2-morphisms: $X \underbrace{ \downarrow \alpha}_{f'} Y$

1-morphisms can be composed as in a category, and 2-morphisms can be composed in two distinct ways: horizontally:

$$X \underbrace{ \begin{array}{c} f \\ \psi \alpha \\ f' \end{array}}_{f'} Y \underbrace{ \begin{array}{c} g \\ \psi \beta \\ g' \end{array}}_{g'} Z = X \underbrace{ \begin{array}{c} g \circ f \\ \psi \beta \circ_h \alpha \\ g' \circ f' \end{array}}_{g' \circ f'} Z$$

and vertically:

$$X \xrightarrow{f' \\ \psi \alpha' \\ f'' \\ f''' \\ f'' \\$$

A few simple axioms must hold for this to be a 2-category:

• Composition of 1-morphisms must be associative, and every object X must have a 1-morphism

$$X \xrightarrow{1_X} X$$

serving as an identity for composition, just as in an ordinary category.

• Vertical composition must be associative, and every 1-morphism $X \xrightarrow{f} Y$ must have a 2-morphism

$$X \underbrace{ \begin{array}{c} f \\ \downarrow 1_f \\ f \end{array}}_{f} Y$$

serving as an identity for vertical composition.

• Horizontal composition must be associative, and the 2-morphism

$$X \underbrace{\qquad \qquad }_{1_X}^{1_X} X$$

must serve as an identity for horizontal composition.

• Vertical composition and horizontal composition of 2-morphisms must satisfy the following *interchange law:*

$$(\beta' \circ_v \beta) \circ_h (\alpha' \circ_v \alpha) = (\beta' \circ_h \alpha') \circ_v (\beta \circ_h \alpha).$$

so that diagrams of the form

define unambiguous 2-morphisms.

Here are some examples of 2-categories.

- The category of small categories CAT is a 2-category whose objects are small categories, 1-morphisms are functors and 2-morphisms are natural transformations between functors [2].
- The category of topological spaces TOP form a 2-category with homotopies between maps as 2-morphisms [2].
- Every category is a 2-category whose 2-morphisms are identity [14].

A 2-functor $F: \mathcal{C} \to \mathcal{D}$ between two 2-categories \mathcal{C} and \mathcal{D} is a triple of functions sending objects 1-morphisms and 2-morphisms of \mathcal{C} to items of the same types in \mathcal{D} so as to preserve all the categorical structures (source, target, identities, and composites) [10].

Thus, small 2-categories and 2-functors between them form a category which is denoted by 2CAT [14].

A 2-groupoid is a 2-category \mathcal{G} in which every 1-morphism and every 2-morphism have inverses [14]. So a 2-groupoid $\mathcal{G} = (G_0, G_1, G_2)$ has a set G_0 of objects, a set G_1 of 1-morphisms and a set G_2 of 2-morphisms together with the source and target maps

$$x \underbrace{ \downarrow \alpha }_{b} y$$

$$s_1, t_1 \colon G_1 \longrightarrow G_0, \quad s_1(a) = x, \quad t_1(a) = y,$$

$$s_2, t_2 \colon G_2 \longrightarrow G_0, \quad s_2(\alpha) = x, \quad t_2(\alpha) = y,$$

$$s_3, t_3 \colon G_2 \longrightarrow G_1, \quad s_3(\alpha) = a, \quad t_3(\alpha) = b,$$

and the identity maps

$$\begin{aligned} \varepsilon_1 \colon G_0 &\longrightarrow G_1, \quad \varepsilon_1(x) = 1_x, \\ \varepsilon_2 \colon G_0 &\longrightarrow G_2, \quad \varepsilon_2(x) = 1_{1_x}, \\ \varepsilon_3 \colon G_1 &\longrightarrow G_2, \quad \varepsilon_3(a) = 1_a, \end{aligned}$$

such that the following diagram commute for all objects

If $a, b \in G_1$, $s_1(b) = t_1(a)$ and $\alpha, \alpha', \beta \in G_2$, $s_2(\beta) = t_2(\alpha)$ and $s_3(\alpha') = t_3(\alpha)$ then the composition maps

$$\circ: G_1 \ {}_{s_1} \times_{t_1} G_1 \longrightarrow G_1,$$

$$\circ_h: G_2 \ {}_{s_2} \times_{t_2} G_2 \longrightarrow G_2,$$

$$\circ_v: G_2 \ {}_{s_3} \times_{t_3} G_2 \longrightarrow G_2,$$

exist such that, $s_1(b \circ a) = s_1(a)$, $t_1(b \circ a) = t_1(b)$, $s_2(\beta \circ_h \alpha) = s_2(\alpha)$, $t_2(\beta \circ_h \alpha) = s_2(\beta)$, $s_3(\alpha' \circ_v \alpha) = s_3(\alpha)$ and $t_3(\alpha' \circ_v \alpha) = t_3(\alpha')$. Further, these partial compositions are associative, for $x \in G_0$ and $a \in G_1$ the elements $\varepsilon_1(x) = 1_x$, $\varepsilon_2(x) = 1_{1_x}$ and $\varepsilon_3(a) = 1_a$ act as the identities and each 1-morphism a has an inverse \bar{a} and each 2-morphism α has a horizontal inverse $\bar{\alpha}^h$ and a vertical inverse $\bar{\alpha}^v$ such that

$$x \underbrace{\stackrel{a}{\underset{b}{\forall \alpha}} y \underbrace{\stackrel{\overline{a}}{\underset{\overline{b}}{\forall \overline{a}^{h}}}_{\overline{b}} x}_{a} = x \underbrace{\stackrel{1_{x}}{\underset{1_{x}}{\forall 1_{1_{x}}}} x}_{1_{x}} x$$

The maps

$$\eta_1 \colon G_1 \longrightarrow G_1, \quad \eta_1(a) = \bar{a},$$

$$\eta_2 \colon G_2 \longrightarrow G_2, \quad \eta_2(\alpha) = \bar{\alpha}^h,$$

$$\eta_3 \colon G_2 \longrightarrow G_2, \quad \eta_3(\alpha) = \bar{\alpha}^v$$

are called the inversions.

Example 2.2. Let G_0 , G_1 and G_2 be the sets \mathbb{Z}_n , $\mathbb{Z}_n \times \mathbb{Z}$ and $\mathbb{Z}_n \times \mathbb{Z} \times \mathbb{Z}$, respectively. We assume that both pairs (\overline{x}, y) and $(\overline{x}, y + kn)$ are 1-morphisms from \overline{x} to $\overline{x+y}$ (for $k \in \mathbb{Z}$) and the triple $(\overline{x}, y, y + kn)$ is a 2-morphism from (\overline{x}, y) to $(\overline{x}, y + kn)$ as follows:

$$\overline{x} \underbrace{(\overline{x}, y)}_{(\overline{x}, y, y+kn)} \overline{x+y} .$$

Then we can define the composition of 1-morphisms by

$$(\overline{x+y}, z) \circ (\overline{x}, y) = (\overline{x}, y+z),$$

the vertical composition of 2-morphisms (for any $k_i \in \mathbb{Z}$) by

$$(\overline{x}, y + k_2n, y + k_3n) \circ_v (\overline{x}, y + k_1n, y + k_2n) = (\overline{x}, y + k_1n, y + k_3n),$$

and the horizontal composition by

$$(\overline{x+y}, z, z+k_2n) \circ_h (\overline{x}, y, y+k_1n) = (\overline{x}, y+z, y+z+(k_1+k_2)n).$$

It is easy to prove that the vertical and horizontal compositions satisfy interchange law. For $\overline{x} \in G_0$ and $(\overline{x}, y) \in G_1$, the identity morphisms are $1_{\overline{x}} = (\overline{x}, 0)$ and $1_{1_{\overline{x}}} = (\overline{x}, 0, 0)$ and $1_{(\overline{x},y)} = (\overline{x}, y, y)$. The inverse of (\overline{x}, y) under \circ is $(\overline{x}, y) = (\overline{x+y}, -y)$, the inverse of $(\overline{x}, y, y + kn)$ under \circ_h is $(\overline{x}, y, y + kn)^h = (\overline{x+y}, -y, -y - kn)$ and under \circ_v is $(\overline{x}, y, y + kn)^v = (\overline{x}, y + kn, y)$. Thus the triple (G_0, G_1, G_2) is a 2-groupoid.

A morphism of 2-groupoids is simply a 2-functor between the underlying 2-categories. Hence small 2-groupoids and their morphisms form a category which is denoted by 2GPD [14].

3. Group-2-groupoids and 2G-crossed modules

We now define the group object in 2CAT similar to group object in CAT as follows:

Definition 3.1. A group object \mathcal{G} in 2CAT is a small 2-category \mathcal{G} equipped with the following 2-functors satisfying group axioms

(1) the product $m: \mathfrak{G} \times \mathfrak{G} \longrightarrow \mathfrak{G}$,

$$x \underbrace{ \begin{array}{c} a \\ \psi \alpha \\ b \end{array}}^{a} y , x' \underbrace{ \begin{array}{c} a' \\ \psi \alpha' \\ b' \end{array}}^{a'} y' \mapsto xx' \underbrace{ \begin{array}{c} aa' \\ \psi \alpha \alpha' \\ bb' \end{array}}^{aa'} yy'$$

(2) the inverse $inv: \mathcal{G} \longrightarrow \mathcal{G}$,

$$x \underbrace{\overset{a}{\underset{b}{\Downarrow} \alpha}}_{b} y \mapsto x^{-1} \underbrace{\overset{a^{-1}}{\underset{b^{-1}}{\Downarrow} \alpha^{-1}}}_{b^{-1}} y^{-1}$$

(3) the unit ε : {*} $\longrightarrow \mathcal{G}$ (where {*} is the terminal object in 2CAT).

Remark 3.2. The one-object discrete category (i.e. every morphism is an identity) is the terminal object of the category of small categories CAT [8]. Similarly, the category {*} which is defined as terminal object of 2CAT above, is the one-object discrete 2-category (i.e. every 1-morphism and every 2-morphism is an identity).

In terms of group object in 2CAT, a group-2-groupoid can be obtained in the following way:

Proposition 3.3. A group object *G* in 2CAT is a 2-groupoid.

Proof. Let \mathcal{G} be a group object in 2CAT. Then 2-functors $m: \mathcal{G} \times \mathcal{G} \to \mathcal{G}$ called product, $inv: \mathcal{G} \to \mathcal{G}$ called inverse and $\varepsilon: \{*\} \to \mathcal{G}$ (where $\{*\}$ is the terminal object in

2CAT) called unit satisfying the usual group axioms. The product of $x \underbrace{\Downarrow \alpha}_{h} y$ and

$$x' \underbrace{ \begin{array}{c} a' \\ b' \end{array}}_{b'} y' \text{ is written as } xx' \underbrace{ \begin{array}{c} aa' \\ bb' \end{array}}_{bb'} yy', \text{ the inverse of } x \underbrace{ \begin{array}{c} a \\ b \end{array}}_{b} y \text{ is written as } x' \underbrace{ \begin{array}{c} aa' \\ bb' \end{array}}_{bb'} yy', \text{ the inverse of } x \underbrace{ \begin{array}{c} a \\ b \end{array}}_{b} y \text{ is written as } x' \underbrace{ \begin{array}{c} aa' \\ bb' \end{array}}_{b} y' \text{ is written as } x' \underbrace{ \begin{array}{c} aa' \\ bb' \end{array}}_{b} y' \text{ is written as } x' \underbrace{ \begin{array}{c} aa' \\ bb' \end{array}}_{b} y' \text{ is written as } x' \underbrace{ \begin{array}{c} aa' \\ bb' \end{array}}_{b} y' \text{ is written as } x' \underbrace{ \begin{array}{c} aa' \\ bb' \end{array}}_{b} y' \text{ is written as } x' \underbrace{ \begin{array}{c} aa' \\ bb' \end{array}}_{b} y' \text{ is written as } x' \underbrace{ \begin{array}{c} aa' \\ bb' \end{array}}_{b} y' \text{ is written as } x' \underbrace{ \begin{array}{c} aa' \\ bb' \end{array}}_{b} y' \text{ is written as } x' \underbrace{ \begin{array}{c} aa' \\ bb' \end{array}}_{b} y' \text{ is written as } x' \underbrace{ \begin{array}{c} aa' \\ bb' \end{array}}_{b} y' \text{ is written as } x' \underbrace{ \begin{array}{c} aa' \\ bb' \end{array}}_{b} y' \text{ is written as } x' \underbrace{ \begin{array}{c} aa' \\ bb' \end{array}}_{b} y' \text{ is written as } x' \underbrace{ \begin{array}{c} aa' \\ bb' \end{array}}_{b} y' \text{ is written as } x' \underbrace{ \begin{array}{c} aa' \\ bb' \end{array}}_{b} y' \text{ is written as } x' \underbrace{ \begin{array}{c} aa' \\ bb' \end{array}}_{b} y' \text{ is written as } x' \underbrace{ \begin{array}{c} aa' \\ bb' \end{array}}_{b} y' \text{ is written as } x' \underbrace{ \begin{array}{c} aa' \\ bb' \end{array}}_{b} y' \text{ is written as } x' \underbrace{ \begin{array}{c} aa' \\ bb' \end{array}}_{b} y' \text{ is written as } x' \underbrace{ \begin{array}{c} aa' \\ bb' \end{array}}_{b} y' \text{ is written as } x' \underbrace{ \begin{array}{c} aa' \\ bb' \end{array}}_{b} y' \text{ is written as } x' \underbrace{ \begin{array}{c} aa' \\ bb' \end{array}}_{b} y' \text{ is written as } x' \underbrace{ \begin{array}{c} aa' \\ bb' \end{array}}_{b} y' \text{ is written as } x' \underbrace{ \begin{array}{c} aa' \\ bb' \end{array}}_{b} y' \text{ is written as } x' \underbrace{ \begin{array}{c} aa' \\ bb' \end{array}}_{b} y' \text{ is written as } x' \underbrace{ \begin{array}{c} aa' \\ bb' \end{array}}_{b} y' \text{ is written as } x' \underbrace{ \begin{array}{c} aa' \\ bb' \end{array}}_{b} y' \text{ is written as } x' \underbrace{ \begin{array}{c} aa' \\ bb' \end{array}}_{b} y' \text{ is written as } x' \underbrace{ \begin{array}{c} aa' \\ bb' \end{array}}_{b} y' \text{ is written as } x' \underbrace{ \begin{array}{c} aa' \\ bb' \end{array}}_{b} y' \text{ is written as } x' \underbrace{ \begin{array}{c} aa' \\ bb' \end{array}}_{b} y' \text{ is written as } x' \underbrace{ \begin{array}{c} aa' \\ bb' \end{array}}_{b} y' \text{ is written as } x' \underbrace{ \begin{array}{c} aa' \\ bb' \end{array}}_{b} y' \text{ is written as } x' \underbrace{ \begin{array}{c} aa' \\ bb' \end{array}}_{b} y' \text{ is written as } x' \underbrace{ \begin{array}{c} aa' \\ bb' \end{array}}_{b} y' \text{ is written as } x' \underbrace{ \begin{array}{c} aa' \\ bb' \end{array}}_{b} y' \text{ is written as } x' \underbrace{ \begin{array}{c} aa' \\ bb' \end{array}}_{b} y' \text{ is written a$$

Let \circ , \circ_h and \circ_v be the composition of 1-morphisms, the horizontal composition and the vertical compositions of 2-morphisms in \mathcal{G} , respectively. To prove \mathcal{G} is a 2-groupoid, we have to show that all 1-morphisms and 2-morphisms in \mathcal{G} have inverses for compositions \circ , \circ_h and \circ_v .

The 2-functor m gives interchange laws

$$(c \circ a)(c' \circ a') = (cc') \circ (aa'),$$
$$(\beta \circ_h \alpha)(\beta' \circ_h \alpha') = (\beta\beta') \circ_h (\alpha\alpha')$$
$$(\delta \circ_v \alpha)(\delta' \circ_v \alpha') = (\delta\delta') \circ_v (\alpha\alpha')$$

whenever $c \circ a$, $c' \circ a'$, $\beta \circ_h \alpha$, $\beta' \circ_h \alpha'$, $\delta \circ_v \alpha$ and $\delta' \circ_v \alpha'$ are defined.

In [7], it was proved that $c \circ a = a 1_y^{-1} c = c 1_y^{-1} a$ and $\overline{a} = 1_x a^{-1} 1_y$ is the inverse of a under \circ .

We also give the following relations for the horizontal and vertical composition of 2morphisms just the same way as in [7]; For horizontal composition, we have

$$\beta \circ_h \alpha = (\beta 1_{1_e}) \circ_h (1_{1_y} 1_{1_y}^{-1} \alpha) = (\beta \circ_h 1_{1_y})(1_{1_e} \circ_h (1_{1_y}^{-1} \alpha)) = \beta 1_{1_y}^{-1} \alpha$$
(3.1)

and similarly

$$\beta \circ_h \alpha = \alpha \mathbf{1}_{1_u}^{-1} \beta. \tag{3.2}$$

So it is easy to see from (3.1) and (3.2) that $\overline{\alpha}^h = 1_{1_x} \alpha^{-1} 1_{1_y}$ is the inverse of α under \circ_h . For the vertical composition, we have

$$\delta \circ_v \alpha = (\delta 1_{1_e}) \circ_v (1_b 1_b^{-1} \alpha) = (\delta \circ_v 1_b)(1_{1_e} \circ_v 1_b^{-1} \alpha) = \delta 1_b^{-1} \alpha$$
(3.3)

and

$$\delta \circ_v \alpha = \alpha 1_h^{-1} \delta. \tag{3.4}$$

And also it is easy to see from (3.3) and (3.4) that $\overline{\alpha}^v = 1_b \alpha^{-1} 1_a$ is the inverse of α under \circ_v .

Hence any group object in 2CAT is a 2-groupoid.

Furthermore, if y = e, then $\alpha\beta = \beta\alpha$; hence the elements of Kers₂ and Kert₂ commute under the group operation. In [7], it was proved that if $a, a_1 \in \text{Kers}_1$ and $t_1(a) = x$, then $aa_1a^{-1} = 1$ a_11^{-1}

$$aa_1a^{-1} = 1_xa_11_x^{-1}$$

Similarly, we show that if $\alpha, \alpha_1 \in \text{Ker}s_2$ and $t_2(\alpha) = x$, then

$$\alpha \alpha_1 \alpha^{-1} = \mathbf{1}_{1_x} \alpha_1 \mathbf{1}_{1_x}^{-1}.$$
(3.5)

Definition 3.4. A group object in the category of 2-groupoids is called a *group-2-groupoid*. **Example 3.5.** $\mathcal{G} = (\mathbb{Z}_n, \mathbb{Z}_n \times \mathbb{Z}, \mathbb{Z}_n \times \mathbb{Z} \times \mathbb{Z})$ is a group-2-groupoid with the following

Example 3.5. $\mathcal{G} = (\mathbb{Z}_n, \mathbb{Z}_n \times \mathbb{Z}, \mathbb{Z}_n \times \mathbb{Z} \times \mathbb{Z})$ is a group-2-groupoid with the following 2-functors:

- \oplus : $\mathfrak{G} \times \mathfrak{G} \longrightarrow \mathfrak{G}$, $(\overline{x_1}, y_1, z_1) \oplus (\overline{x_2}, y_2, z_2) = (\overline{x_1 + x_2}, y_1 + y_2, z_1 + z_2)$
- $inv: \mathcal{G} \longrightarrow \mathcal{G}, \ (\overline{x}, y, z)^{-1} = (\overline{n-x}, -y, -z)$
- $\varepsilon \colon \{*\} \longrightarrow \mathfrak{G}, \quad e = \overline{\mathfrak{O}}, \quad 1_e = (\overline{\mathfrak{O}}, 0), \quad 1_{1_e} = (\overline{\mathfrak{O}}, 0, 0).$

Definition 3.6. Let $\mathcal{G} = (G_0, G_1, G_2)$ and $\mathcal{H} = (H_0, H_1, H_2)$ be group-2-groupoids and let $F = (f_0, f_1, f_2) \colon \mathcal{G} \to \mathcal{H}$ be a 2-functor. If F preserves the group structures, then it is called a *morphism of group-2-groupoids*.

So group-2-groupoids and morphisms of them form a category which is denoted by GP2GD.

The following theorem was proved by Brown and Spencer in [7]:

Theorem 3.7. The category of 2-groups and the category of crossed modules are equivalent.

Remark 3.8. Let $\mathcal{G} = (G_0, G_1, G_2)$ be a group-2-groupoid and s_1, t_1 be the source and target maps from G_1 to G_0 . Let $M = \text{Kers}_1$, $N = G_0$ and $\partial_1 = t_1|_M$. It was proved in Theorem 3.7 that $(M, N, \partial_1, \bullet)$ is a crossed module with the action $(x, a) \mapsto x \bullet a = 1_x a 1_x^{-1}$ of the group N on the group M and the map $\partial_1 = t_1|_M$.

Proposition 3.9. Let $\mathcal{G} = (G_0, G_1, G_2)$ be a group-2-groupoid and s_2, t_2 be the source and target maps from G_2 to G_0 . Then $(Kers_2, G_0, t_2|_L)$ is a crossed module.

Proof. Let $L = \text{Kers}_2$, $N = G_0$. Then L, N inherit group structures from that of \mathcal{G} and the map $\partial_2 = t_2|_L \colon L \to N$ is a morphism of groups. Further we have an action $(x, \alpha) \mapsto x \blacktriangleright \alpha$ of N on the group L given by $x \blacktriangleright \alpha = 1_{1_x} \alpha 1_{1_x}^{-1}$. It is easy to show that $\partial_2(x \blacktriangleright \alpha) = x \partial_2(\alpha) x^{-1}$ and $\partial_2(\alpha) \blacktriangleright \alpha_1 = \alpha \alpha_1 \alpha^{-1}$ by using (3.5). Thus $(L, N, \partial_2, \blacktriangleright)$ is a crossed module.

1393

Proposition 3.10. Let $\mathcal{G} = (G_0, G_1, G_2)$ be a group-2-groupoid, t_3 be the target map from G_2 to G_1 and $(M, N, \partial_1, \bullet)$, $(L, N, \partial_2, \bullet)$ be crossed modules which corresponds to the group-2-groupoid \mathcal{G} as above. Then $\partial_3 = t_3|_L \colon L \to M$ is a surjective morphism of groups which preserves actions of crossed modules.

Proof. Since \mathcal{G} is a group-2-groupoid, then t_3 is a morphism of groups. Therefore, the $\partial_3 = t_3|_L \colon L \to M$ which is the restriction of t_3 , is also a morphism of groups. And for any 1-morphism $a \in M$, there is a 2-morphism $\alpha \in L$ such that $\partial_3(\alpha) = t_3|_L(a)$. So, the group morphism ∂_3 is surjective. It is clear that $t_2 = t_1t_3$ and so $\partial_2 = \partial_1\partial_3$. Since ∂_3 is a group morphism, we obtain

$$\partial_3(x \blacktriangleright \alpha) = \partial_3(1_{1_x}\alpha 1_{1_x}^{-1}) = \partial_3(1_{1_x})\partial_3(\alpha)\partial_3(1_{1_x}^{-1}) = 1_x\partial_3(\alpha)1_x^{-1} = x \bullet \partial_3(\alpha).$$

From Remark 3.8, Proposition 3.9 and Proposition 3.10, we can define a new structure of crossed modules which corresponds to group-2-groupoids as follows:

Definition 3.11. Let $(M, N, \partial_1, \bullet)$ and $(L, N, \partial_2, \blacktriangleright)$ be crossed modules. A 2*G*-crossed module $(L, M, N, \partial_1, \partial_2, \partial_3, \bullet, \blacktriangleright)$ is a pair $(M, N, \partial_1, \bullet)$, $(L, N, \partial_2, \blacktriangleright)$ of crossed modules with a surjective morphism of groups $\partial_3 \colon L \to M$ which satisfies the following axioms:

(1) $\partial_2 = \partial_1 \partial_3$ (2) $\partial_3(n \triangleright l) = n \bullet \partial_3(l)$, for $n \in N, l \in L$.

Definition 3.12. Let $K = (L, M, N, \partial_1, \partial_2, \partial_3)$ and $K' = (L', M', N', \partial'_1, \partial'_2, \partial'_3)$ be 2Gcrossed modules. A morphism $(f_3, f_2, f_1) \colon K \to K'$ of 2G-crossed modules is a pair $(f_2, f_1) \colon (M, N, \partial_1, \bullet) \to (M', N', \partial'_1, \bullet'), \quad (f_3, f_1) \colon (L, N, \partial_2, \blacktriangleright) \to (L', N', \partial'_2, \blacktriangleright')$ of morphisms of crossed modules such that $f_2 \partial_3 = \partial'_3 f_3$.

Therefore, 2G-crossed modules and morphisms between them form a category which is denoted by 2GXMOD.

Definition 3.13. An *equivalence* between categories \mathcal{C} and \mathcal{D} is defined to be a pair of functors $S: \mathcal{C} \to \mathcal{D}, T: \mathcal{D} \to \mathcal{C}$ together with natural isomorphisms $1_{\mathcal{C}} \cong TS, 1_{\mathcal{D}} \cong ST$, where $1_{\mathcal{C}}$ and $1_{\mathcal{D}}$ are the identity functors [10].

Theorem 3.14. The category GP2GD of group-2-groupoids and the category 2GXMOD of 2G-crossed modules are equivalent.

Proof. A functor

$$\gamma : \text{GP2GD} \rightarrow 2\text{GXMOD}$$

is defined as follows: For a group-2-groupoid $\mathcal{G} = (G_0, G_1, G_2)$, by using Remark 3.8, Proposition 3.9 and Proposition 3.10, we can define a 2G-crossed module $\gamma(\mathcal{G})=K = (L, M, N, \partial_1, \partial_2, \partial_3)$ which corresponds to the group-2-groupoid \mathcal{G} .

Conversely, define a functor

$$\psi \colon 2\mathrm{GXMod} \to \mathrm{Gp}2\mathrm{Gd}$$

in the following way. Let $K = (L, M, N, \partial_1, \partial_2, \partial_3, \bullet, \blacktriangleright)$ be a 2G-crossed module. A group-2-groupoid $\psi(K)$ can be defined as follows. The group of objects of $\psi(K)$ is N. The group of 1-morphisms of $\psi(K)$ is the semi-direct product $N \ltimes M$ with the group structure

$$(n,m)(n',m') = (nn',m(n \bullet m')).$$

The source and target maps are defined by $s_1(n,m) = n$, $t_1(n,m) = \partial_1(m)n$, respectively and the identity 1-morphism of \circ is (n, e_M) , while the composition is defined by

$$(\partial_1(m)n, m_1) \circ (n, m) = (n, m_1m)$$

in [7]. Now the group of 2-morphisms of \mathcal{G} can be defined the semi-direct product $N \ltimes M \ltimes L$ with the group structure

$$(n, m, l)(n', m', l') = (nn', m(n \bullet m'), l(n \blacktriangleright l')).$$

If $\partial_2(l) = \partial_2(k)$ then pairs $(n, \partial_3(l))$ and $(n, \partial_3(k))$ are 1-morphisms from n to $\partial_2(l)n$. Hence we can define 2-morphism $(n, \partial_3(l), k)$ from $(n, \partial_3(l))$ to $(n, \partial_3(k))$ as follows:

$$n \xrightarrow{(n,\partial_3(l))} \partial_2(l)n.$$

The source and target maps of 2-morphisms can be defined by $s_2(n, \partial_3(l), k) = n$, $s_3(n, \partial_3(l), k) = (n, \partial_3(l))$, $t_2(n, \partial_3(l), k) = \partial_2(l)n$, $t_3(n, \partial_3(l), k) = (n, \partial_3(k))$, respectively and the identity 2-morphism of \circ_h for $n \in N$ is (n, e_M, e_L) , when the horizontal composition of 2-morphisms is defined by

$$(\partial_1(m)n, m_1, l_1) \circ_h (n, m, l) = (n, m_1m, l_1l).$$

If $\partial_2(l) = \partial_2(k) = \partial_2(h)$, then $(n, \partial_3(k), h)$ is 2-morphism from $(n, \partial_3(k))$ to $(n, \partial_3(h))$ and the vertical composition of 2-morphisms is defined by

$$(n,\partial_3(k),h) \circ_v (n,\partial_3(l),k) = (n,\partial_3(l),h).$$

The identity 2-morphism of \circ_v for $(n, \partial_3(l)) \in N \ltimes M$ is $(n, \partial_3(l), l)$ and the inverse $\overline{(n, \partial_3(l), k)}^v = (n, \partial_3(k), l)$. Thus $\psi(K) = (N, N \ltimes M, N \ltimes M \ltimes L)$ is a group-2-groupoid.

To define a natural isomorphism $S: \psi\gamma \to 1_{\text{GP2GD}}$, let \mathcal{G} be a group-2-groupoid. A map $S_{\mathcal{G}}: \psi\gamma(\mathcal{G}) \to \mathcal{G}$ is defined to be the identity on objects, on 1-morphisms is given by $a \mapsto (x, a1_x^{-1})$ and on 2-morphisms is given by $\alpha \mapsto (x, a1_x^{-1}, \alpha 1_{1_x}^{-1})$.

$$x \xrightarrow{a} (x,a1_x^{-1})$$

$$x \xrightarrow{\psi \alpha} x_1 \mapsto x \xrightarrow{(x,a1_x^{-1},\alpha1_{1_x}^{-1})} x_1 \cdot x_1$$

$$b \xrightarrow{(x,b1_x^{-1})} x_1 \cdot x_1$$

It is clear that $S_{\mathcal{G}}$ is bijective on 1-morphisms and 2-morphisms and also preserves the group operation and compositions as follows:

$$S_{\mathfrak{Z}}(\alpha)S_{\mathfrak{Z}}(\alpha') = (x, a1_{x}^{-1}, \alpha 1_{1_{x}}^{-1})(x', a'1_{x'}^{-1}, \alpha' 1_{1_{x'}}^{-1})$$

$$= (xx', a1_{x}^{-1}(x \bullet a'1_{x'}^{-1}), \alpha 1_{1_{x}}^{-1}(x \bullet \alpha' 1_{1_{x'}}^{-1}))$$

$$= (xx', a1_{x}^{-1}1_{x}a'1_{x'}^{-1}1_{x}^{-1}, \alpha 1_{1_{x}}^{-1}1_{1_{x'}}^{-1}1_{1_{x}}^{-1})$$

$$= (xx', aa'1_{xx'}^{-1}, \alpha \alpha' 1_{1_{xx'}}^{-1})$$

$$= S_{\mathfrak{Z}}(\alpha \alpha'),$$

for
$$x \underbrace{\swarrow}_{b}^{a} x_{1} \underbrace{\swarrow}_{b_{1}}^{a_{1}} x_{2}$$

$$\begin{split} S_{\mathcal{G}}(a_{1} \circ a) &= S_{\mathcal{G}}(a_{1} 1_{x_{1}}^{-1} a) = (x, a_{1} 1_{x_{1}}^{-1} a 1_{x}^{-1}) = (x_{1}, a_{1} 1_{x_{1}}^{-1}) \circ (x, a 1_{x}^{-1}) = S_{\mathcal{G}}(a_{1}) \circ S_{\mathcal{G}}(a), \\ S_{\mathcal{G}}(\alpha_{1} \circ_{h} \alpha) &= S_{\mathcal{G}}(\alpha_{1} 1_{1_{x_{1}}}^{-1} \alpha) = (x, a_{1} 1_{x_{1}}^{-1} a 1_{x}^{-1}, \alpha_{1} 1_{1_{x_{1}}}^{-1} \alpha 1_{1_{x_{1}}}^{-1}) = S_{\mathcal{G}}(\alpha_{1}) \circ_{h} S_{\mathcal{G}}(\alpha) \text{ and for } \end{split}$$

$$x \xrightarrow[]{b \ \beta \ \pi}^{a} x_1 \text{ and } x \xrightarrow[]{b \ b \ b \ \mu}^{b} x_1$$

$$\begin{split} S_{\mathcal{G}}(\beta \circ_{v} \alpha) &= S_{\mathcal{G}}(\beta \mathbf{1}_{b}^{-1} \alpha) &= (x, a\mathbf{1}_{x}^{-1}, \beta \mathbf{1}_{b}^{-1} \alpha \mathbf{1}_{\mathbf{1}_{x}}^{-1}) \\ &= (x, a\mathbf{1}_{x}^{-1}, \beta \mathbf{1}_{\mathbf{1}_{x}}^{-1} (\mathbf{1}_{b} \mathbf{1}_{\mathbf{1}_{x}}^{-1})^{-1} \alpha \mathbf{1}_{\mathbf{1}_{x}}^{-1}) \\ &= (x, b\mathbf{1}_{x}^{-1}, \beta \mathbf{1}_{\mathbf{1}_{x}}^{-1}) (x, b\mathbf{1}_{x}^{-1}, \mathbf{1}_{b} \mathbf{1}_{\mathbf{1}_{x}}^{-1})^{-1} (x, a\mathbf{1}_{x}^{-1}, \alpha \mathbf{1}_{\mathbf{1}_{x}}^{-1}) \\ &= (x, b\mathbf{1}_{x}^{-1}, \beta \mathbf{1}_{\mathbf{1}_{x}}^{-1}) \circ_{v} (x, a\mathbf{1}_{x}^{-1}, \alpha \mathbf{1}_{\mathbf{1}_{x}}^{-1}) \\ &= S_{\mathcal{G}}(\beta) \circ_{v} S_{\mathcal{G}}(\alpha). \end{split}$$

Finally, we define a natural isomorphism $T: 1_{2GXMOD} \to \gamma \psi$, as follows: If $K = (L, M, N, \partial_1, \partial_2, \partial_3)$ is a 2G-crossed module, then T_K is the identity on N, on M is given by $m \mapsto (e_N, m)$ and on L is given by $l \mapsto (e_N, e_M, l)$. Clearly T_K is bijective and preserves the group operations as follows:

$$T_K(m)T_K(m') = (e_N, m)(e_N, m') = (e_N, m(e_N \bullet m')) = (e_N, mm') = T_K(mm'),$$

$$T_K(l)T_K(l') = (e_N, e_M, l)(e_N, e_M, l') = ((e_N, e_M, l(e_N \triangleright l')) = (e_N, e_M, ll') = T_K(ll').$$

Hence, by Defination 3.13, the category GP2GD of group-2-groupoids and the category 2GXMOD of 2G-crossed modules are equivalent. $\hfill \Box$

Acknowledgment. We would like to thank the referee for his/her useful and kind suggestions.

References

- N. Alemdar and O. Mucuk, The Liftings of R-Modules to Covering Groupoid, Hacet. J. Math. Stat. 41 (6), 813-822, 2012.
- [2] J.C. Baez, An Introduction to n-Categories, in: Moggi E., Rosolini G. (eds) Category Theory and Computer Science, Lecture Notes in Computer Science 1290, Springer, Berlin, Heidelberg, 1997, https://doi.org/10.1007/BFb0026978.
- [3] J.C. Baez, A. Baratin, L. Freidel and D.K. Wise, *Infinite-Dimensional Representa*tions of 2-Groups, Mem. Amer. Math. Soc. 219, Number 1032, 2012.
- [4] J.C. Baez and A.D. Lauda, *Higher-dimensional Algebra*. V. 2-groups, Theory Appl. Categ. 12, 423-491, 2004.

- [5] J.C. Baez and D. Stevenson The Classifying Space of a Topological 2-Group, in: Algebraic Topology. Abel Symposia 4, Springer, Berlin, Heidelberg, 2009.
- [6] R. Brown, From Groups to Groupoids: A Brief Survey, Bull. London Math. Soc. 19, 113-134, 1987.
- [7] R. Brown and C.B. Spencer, *G-groupoids, Crossed Modules and The Fundamental Groupoid of a Topological Group*, Proc. Konn. Ned. Akad. v. Wet. **79**, 296-302 1976.
- [8] M. Forrester-Barker, *Group objects and internal categories*, Preprint arXiv: math/0212065v1, 2002.
- [9] P.J. Higgins, Categories and Groupoids, Van Nostrand, New York, 1971.
- [10] S. Maclane, Categories for the Working Mathematician, Graduate Text in Mathematics, Vol. 5, Springer-Verlag, New York, 1971.
- [11] O. Mucuk, Coverings and ring-groupoids, Geor. Math. J. 5, 475-482, 1998.
- [12] O. Mucuk, B. Bagriyanik, N. Alemdar and T. Şahan, Group-Groupoids And Monodromy Groupoids, Topology Appl. 158 (15), 2034-2042, 2011.
- [13] O. Mucuk, T. Şahan and N. Alemdar, Normality and Quotients in Crossed Modules and Group-groupoids, Appl. Categor. Struct. 23 (3), 415-428, 2015.
- [14] B. Noohi, Notes on 2-Groupoids, 2-Groups and Crossed Modules, Homology Homotopy Appl. 9 (1), 75-106, 2007.
- [15] T. Porter, Extensions, Crossed Modules and Internal Categories in Categories of Groups With Operations, Proc. Edinb. Math. Soc. 30, 371-381, 1987.
- [16] J.H.C. Whitehead, Note on a previous paper entitled "On adding relations to homotopy group", Ann. Math. 47, 806-810, 1946.
- [17] J.H.C. Whitehead, Combinatorial homotopy II, Bull. Amer. Math. Soc. 55, 453-496, 1949.