Group-2-groupoids and 2G-crossed modules

Nazmiye Alemdar*1 ${ }^{*}$ (D) Sedat Temel ${ }^{2}$ (D)
${ }^{1}$ Erciyes University, Faculty of Science, Department of Mathematics, Kayseri 38039, Turkey
${ }^{2}$ Recep Tayyip Erdogan University, Faculty of Science and Arts, Department of Mathematics, Rize 53100, Turkey

Abstract

In this paper, we introduce the notion of a group-2-groupoid as a group object in the category of 2 -groupoids. We also obtain a 2 G -crossed module by using the structure of a group-2-groupoid. Then we prove that the category Gp2GD of group-2-groupoids and the category 2 GXMOD of 2 G -crossed modules are equivalent.

Mathematics Subject Classification (2010). 18D05, 18D35, 20J15, 20L05
Keywords. group-2-groupoid, 2G-crossed module

1. Introduction

A groupoid is a small category whose all morphisms are invertible [7,9]. A groupoid can be thought of as a group with many objects and also a group is a groupoid with a single object [6]. A group object in the category of groupoids is called a 2-group [4], (resp. " \mathcal{G}-groupoid" in [7] and "group-groupoid" in [11]). For further information on the 2-group, see [3-5,7,12,14]. This definition was generalized to ring-groupoid in [11] and to R-Module groupoid in [1]. Recently the concepts of normal and quotient objects in the category of 2-groups have been obtained by Mucuk et al. [13].

Crossed modules defined by Whitehead can be viewed as 2-dimensional groups $[16,17]$. In [7], Brown and Spencer proved that the category of 2-groups is equivalent to the category of crossed modules of groups. And so a crossed module is essentially the same thing as a 2-group. This result was generalized to the crossed modules and internal groupoids in some algebraic categories including groups in [15]. Also this result was proved for the category of topological 2 -groups and the category of topological crossed modules in [5].

A 2-group can be thought of as a 2-category with one object in which all 1-morphisms and 2 -morphisms are invertible [3,14]. The 2 -categorical approach to 2 -groups is a powerful conceptual tool. However, for explicit calculations it is often useful to treat 2-groups as crossed modules[3].

In Section 3, we have inspired by the work of Brown and Spencer [7], and then we define the group- 2 -groupoid as a group object in the category of 2 -categories. The main goal of this paper is to investigate how a group-2-groupoid corresponds to an algebraic structure similar to crossed modules. For this purpose, we first introduce $2 G$-crossed

[^0]modules as an analogue of crossed modules given in [7]. Then we also define morphisms of group-2-groupoids and 2G-crossed modules. Finally, we prove that the category Gp2Gd of group-2-groupoids and the category 2 GXMOD of 2 G -crossed modules are equivalent.

2. Preliminaries

The following definition is given in [3].
Definition 2.1. A 2-category \mathcal{C} consists of

- objects X, Y, Z, \ldots
- 1-morphisms: $X \xrightarrow{f} Y$
- 2-morphisms:

1-morphisms can be composed as in a category, and 2-morphisms can be composed in two distinct ways: horizontally:

and vertically:

A few simple axioms must hold for this to be a 2-category:

- Composition of 1-morphisms must be associative, and every object X must have a 1-morphism

$$
X \xrightarrow{1_{X}} X
$$

serving as an identity for composition, just as in an ordinary category.

- Vertical composition must be associative, and every 1-morphism $X \xrightarrow{f} Y$ must have a 2 -morphism

serving as an identity for vertical composition.
- Horizontal composition must be associative, and the 2 -morphism

must serve as an identity for horizontal composition.
- Vertical composition and horizontal composition of 2-morphisms must satisfy the following interchange law:

$$
\left(\beta^{\prime} \circ_{v} \beta\right) \circ_{h}\left(\alpha^{\prime} \circ_{v} \alpha\right)=\left(\beta^{\prime} \circ_{h} \alpha^{\prime}\right) \circ_{v}\left(\beta \circ_{h} \alpha\right) .
$$

so that diagrams of the form

define unambiguous 2-morphisms.
Here are some examples of 2-categories.

- The category of small categories Cat is a 2-category whose objects are small categories, 1 -morphisms are functors and 2 -morphisms are natural transformations between functors [2].
- The category of topological spaces Top form a 2-category with homotopies between maps as 2 -morphisms [2].
- Every category is a 2 -category whose 2 -morphisms are identity [14].

A 2-functor $F: \mathcal{C} \rightarrow \mathcal{D}$ between two 2-categories \mathcal{C} and \mathcal{D} is a triple of functions sending objects 1 -morphisms and 2 -morphisms of \mathcal{C} to items of the same types in \mathcal{D} so as to preserve all the categorical structures (source, target, identities, and composites) [10].

Thus, small 2-categories and 2-functors between them form a category which is denoted by 2Cat [14].

A 2-groupoid is a 2 -category \mathcal{G} in which every 1 -morphism and every 2-morphism have inverses [14]. So a 2-groupoid $\mathcal{G}=\left(G_{0}, G_{1}, G_{2}\right)$ has a set G_{0} of objects, a set G_{1} of 1-morphisms and a set G_{2} of 2-morphisms together with the source and target maps

$$
\begin{array}{lll}
s_{1}, t_{1}: G_{1} \longrightarrow G_{0}, & s_{1}(a)=x, & t_{1}(a)=y, \\
s_{2}, t_{2}: G_{2} \longrightarrow G_{0}, & s_{2}(\alpha)=x, & t_{2}(\alpha)=y, \\
s_{3}, t_{3}: G_{2} \longrightarrow G_{1}, & s_{3}(\alpha)=a, & t_{3}(\alpha)=b,
\end{array}
$$

and the identity maps

$$
\begin{array}{ll}
\varepsilon_{1}: G_{0} \longrightarrow G_{1}, & \varepsilon_{1}(x)=1_{x}, \\
\varepsilon_{2}: G_{0} \longrightarrow G_{2}, & \varepsilon_{2}(x)=1_{1_{x}}, \\
\varepsilon_{3}: G_{1} \longrightarrow G_{2}, & \varepsilon_{3}(a)=1_{a},
\end{array}
$$

such that the following diagram commute for all objects

If $a, b \in G_{1}, s_{1}(b)=t_{1}(a)$ and $\alpha, \alpha^{\prime}, \beta \in G_{2}, s_{2}(\beta)=t_{2}(\alpha)$ and $s_{3}\left(\alpha^{\prime}\right)=t_{3}(\alpha)$ then the composition maps

$$
\begin{aligned}
& \circ: G_{1} s_{1} \times_{t_{1}} G_{1} \longrightarrow G_{1}, \\
& \circ_{h}: G_{2} s_{2} \times_{t_{2}} G_{2} \longrightarrow G_{2}, \\
& \circ_{v}: G_{2} s_{3} \times \times_{t_{3}} G_{2} \longrightarrow G_{2},
\end{aligned}
$$

exist such that, $s_{1}(b \circ a)=s_{1}(a), t_{1}(b \circ a)=t_{1}(b), s_{2}\left(\beta \circ_{h} \alpha\right)=s_{2}(\alpha), t_{2}\left(\beta \circ_{h} \alpha\right)=s_{2}(\beta)$, $s_{3}\left(\alpha^{\prime} \circ_{v} \alpha\right)=s_{3}(\alpha)$ and $t_{3}\left(\alpha^{\prime} \circ_{v} \alpha\right)=t_{3}\left(\alpha^{\prime}\right)$. Further, these partial compositions are associative, for $x \in G_{0}$ and $a \in G_{1}$ the elements $\varepsilon_{1}(x)=1_{x}, \varepsilon_{2}(x)=1_{1_{x}}$ and $\varepsilon_{3}(a)=1_{a}$ act as the identities and each 1-morphism a has an inverse \bar{a} and each 2-morphism α has a horizontal inverse $\bar{\alpha}^{h}$ and a vertical inverse $\bar{\alpha}^{v}$ such that

The maps

$$
\begin{gathered}
\eta_{1}: G_{1} \longrightarrow G_{1}, \quad \eta_{1}(a)=\bar{a} \\
\eta_{2}: G_{2} \longrightarrow G_{2}, \quad \eta_{2}(\alpha)=\bar{\alpha}^{h} \\
\eta_{3}: G_{2} \longrightarrow G_{2}, \quad \eta_{3}(\alpha)=\bar{\alpha}^{v}
\end{gathered}
$$

are called the inversions.
Example 2.2. Let G_{0}, G_{1} and G_{2} be the sets $\mathbb{Z}_{n}, \mathbb{Z}_{n} \times \mathbb{Z}$ and $\mathbb{Z}_{n} \times \mathbb{Z} \times \mathbb{Z}$, respectively. We assume that both pairs (\bar{x}, y) and $(\bar{x}, y+k n)$ are 1-morphisms from \bar{x} to $\overline{x+y}$ (for $k \in \mathbb{Z}$) and the triple $(\bar{x}, y, y+k n)$ is a 2 -morphism from (\bar{x}, y) to $(\bar{x}, y+k n)$ as follows:

Then we can define the composition of 1-morphisms by

$$
(\overline{x+y}, z) \circ(\bar{x}, y)=(\bar{x}, y+z)
$$

the vertical composition of 2-morphisms (for any $k_{i} \in \mathbb{Z}$) by

$$
\left(\bar{x}, y+k_{2} n, y+k_{3} n\right) \circ_{v}\left(\bar{x}, y+k_{1} n, y+k_{2} n\right)=\left(\bar{x}, y+k_{1} n, y+k_{3} n\right)
$$

and the horizontal composition by

$$
\left(\overline{x+y}, z, z+k_{2} n\right) \circ_{h}\left(\bar{x}, y, y+k_{1} n\right)=\left(\bar{x}, y+z, y+z+\left(k_{1}+k_{2}\right) n\right)
$$

It is easy to prove that the vertical and horizontal compositions satisfy interchange law. For $\bar{x} \in G_{0}$ and $(\bar{x}, y) \in G_{1}$, the identity morphisms are $1_{\bar{x}}=(\bar{x}, 0)$ and $1_{1_{\bar{x}}}=(\bar{x}, 0,0)$ and $1_{(\bar{x}, y)}=(\bar{x}, y, y)$. The inverse of (\bar{x}, y) under \circ is $\overline{(\bar{x}, y)}=(\overline{x+y},-y)$, the inverse of $(\bar{x}, y, y+k n)$ under \circ_{h} is $\overline{(\bar{x}, y, y+k n)}^{h}=(\overline{x+y},-y,-y-k n)$ and under \circ_{v} is $\overline{(\bar{x}, y, y+k n)}^{v}=(\bar{x}, y+k n, y)$. Thus the triple $\left(G_{0}, G_{1}, G_{2}\right)$ is a 2-groupoid.

A morphism of 2-groupoids is simply a 2-functor between the underlying 2-categories. Hence small 2-groupoids and their morphisms form a category which is denoted by 2GPD [14].

3. Group-2-groupoids and 2G-crossed modules

We now define the group object in 2CAT similar to group object in Cat as follows:
Definition 3.1. A group object \mathcal{G} in 2CAT is a small 2-category \mathcal{G} equipped with the following 2 -functors satisfying group axioms
(1) the product $m: \mathcal{G} \times \mathcal{G} \longrightarrow \mathcal{G}$,

$$
x \xlongequal[b]{\Downarrow \alpha} y, x^{\prime} \underset{b^{\prime}}{\stackrel{a}{\Downarrow \alpha^{\prime}}} y^{\prime} \mapsto x x^{\prime} \underset{b b^{\prime}}{\stackrel{a a^{\prime}}{\Downarrow}} y y^{\prime}
$$

(2) the inverse inv: $\mathcal{G} \longrightarrow \mathcal{G}$,

$$
x \xlongequal[b]{\Downarrow-} \stackrel{a}{\Downarrow \alpha} y \mapsto x^{-1} \underset{b^{-1}}{\Downarrow \alpha^{-1}} y^{-1}
$$

(3) the unit $\varepsilon:\{*\} \longrightarrow \mathcal{G}$ (where $\{*\}$ is the terminal object in 2CAT).

Remark 3.2. The one-object discrete category (i.e. every morphism is an identity) is the terminal object of the category of small categories Cat [8]. Similarly, the category \{*\} which is defined as terminal object of 2CAT above, is the one-object discrete 2-category (i.e. every 1-morphism and every 2 -morphism is an identity).

In terms of group object in 2Cat, a group-2-groupoid can be obtained in the following way:

Proposition 3.3. A group object \mathcal{G} in 2САT is a 2-groupoid.
Proof. Let \mathcal{G} be a group object in 2Сат. Then 2-functors $m: \mathcal{G} \times \mathcal{G} \rightarrow \mathcal{G}$ called product, inv: $\mathcal{G} \rightarrow \mathcal{G}$ called inverse and $\varepsilon:\{*\} \rightarrow \mathcal{G}$ (where $\{*\}$ is the terminal object in 2CAT) called unit satisfying the usual group axioms. The product of $x \xrightarrow[b a]{\forall a} y$ and $x^{\prime} \xlongequal[b^{\prime}]{\Downarrow \alpha^{\prime}} y^{\prime}$ is written as $x x^{\prime} \xlongequal[b b^{\prime}]{\Downarrow a a^{\prime}} y y^{\prime}$, the inverse of $x \xrightarrow[b]{\Downarrow a^{\prime}} y$ is written as $x^{-1} \underset{b^{-1}}{\stackrel{a^{-1}}{\Downarrow-1}} y^{-1}$.
Let $\circ^{\circ} \circ_{h}$ and \circ_{v} be the composition of 1-morphisms, the horizontal composition and the vertical compositions of 2 -morphisms in \mathcal{G}, respectively. To prove \mathcal{G} is a 2 -groupoid, we have to show that all 1 -morphisms and 2 -morphisms in \mathcal{G} have inverses for compositions \circ, \circ_{h} and \circ_{v}.

The 2-functor m gives interchange laws

$$
\begin{aligned}
(c \circ a)\left(c^{\prime} \circ a^{\prime}\right) & =\left(c c^{\prime}\right) \circ\left(a a^{\prime}\right), \\
\left(\beta \circ_{h} \alpha\right)\left(\beta^{\prime} \circ_{h} \alpha^{\prime}\right) & =\left(\beta \beta^{\prime}\right) \circ_{h}\left(\alpha \alpha^{\prime}\right) \\
\left(\delta \circ_{v} \alpha\right)\left(\delta^{\prime} \circ_{v} \alpha^{\prime}\right) & =\left(\delta \delta^{\prime}\right) \circ_{v}\left(\alpha \alpha^{\prime}\right)
\end{aligned}
$$

whenever $c \circ a, c^{\prime} \circ a^{\prime}, \quad \beta \circ_{h} \alpha, \quad \beta^{\prime} \circ_{h} \alpha^{\prime}, \quad \delta \circ_{v} \alpha$ and $\delta^{\prime} \circ_{v} \alpha^{\prime}$ are defined.
In [7], it was proved that $c \circ a=a 1_{y}^{-1} c=c 1_{y}^{-1} a$ and $\bar{a}=1_{x} a^{-1} 1_{y}$ is the inverse of a under 0 .

We also give the following relations for the horizontal and vertical composition of 2morphisms just the same way as in [7];

For horizontal composition, we have

$$
\begin{equation*}
\beta \circ_{h} \alpha=\left(\beta 1_{1_{e}}\right) \circ_{h}\left(1_{1_{y}} 1_{1_{y}}^{-1} \alpha\right)=\left(\beta \circ_{h} 1_{1_{y}}\right)\left(1_{1_{e} \circ_{h}}\left(1_{1_{y}}^{-1} \alpha\right)\right)=\beta 1_{1_{y}}^{-1} \alpha \tag{3.1}
\end{equation*}
$$

and similarly

$$
\begin{equation*}
\beta \circ_{h} \alpha=\alpha 1_{1_{y}}^{-1} \beta \tag{3.2}
\end{equation*}
$$

So it is easy to see from (3.1) and (3.2) that $\bar{\alpha}^{h}=1_{1_{x}} \alpha^{-1} 1_{1_{y}}$ is the inverse of α under \circ_{h}.
For the vertical composition, we have

$$
\begin{equation*}
\delta \circ_{v} \alpha=\left(\delta 1_{1_{e}}\right) \circ_{v}\left(1_{b} 1_{b}^{-1} \alpha\right)=\left(\delta \circ_{v} 1_{b}\right)\left(1_{1_{e}} \circ_{v} 1_{b}^{-1} \alpha\right)=\delta 1_{b}^{-1} \alpha \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta \circ_{v} \alpha=\alpha 1_{b}^{-1} \delta \tag{3.4}
\end{equation*}
$$

And also it is easy to see from (3.3) and (3.4) that $\bar{\alpha}^{v}=1_{b} \alpha^{-1} 1_{a}$ is the inverse of α under o_{v}.

Hence any group object in 2CAT is a 2-groupoid.
Furthermore, if $y=e$, then $\alpha \beta=\beta \alpha$; hence the elements of Kers s_{2} and Kert ${ }_{2}$ commute under the group operation. In [7], it was proved that if $a, a_{1} \in \operatorname{Ker} s_{1}$ and $t_{1}(a)=x$, then

$$
a a_{1} a^{-1}=1_{x} a_{1} 1_{x}^{-1}
$$

Similarly, we show that if $\alpha, \alpha_{1} \in \operatorname{Ker} s_{2}$ and $t_{2}(\alpha)=x$, then

$$
\begin{equation*}
\alpha \alpha_{1} \alpha^{-1}=1_{1_{x}} \alpha_{1} 1_{1_{x}}^{-1} \tag{3.5}
\end{equation*}
$$

Definition 3.4. A group object in the category of 2-groupoids is called a group-2-groupoid.
Example 3.5. $\mathcal{G}=\left(\mathbb{Z}_{n}, \mathbb{Z}_{n} \times \mathbb{Z}, \mathbb{Z}_{n} \times \mathbb{Z} \times \mathbb{Z}\right)$ is a group-2-groupoid with the following 2-functors:

- $\oplus: \mathcal{G} \times \mathcal{G} \longrightarrow \mathcal{G}, \quad\left(\overline{x_{1}}, y_{1}, z_{1}\right) \oplus\left(\overline{x_{2}}, y_{2}, z_{2}\right)=\left(\overline{x_{1}+x_{2}}, y_{1}+y_{2}, z_{1}+z_{2}\right)$
- inv: $\mathcal{G} \longrightarrow \mathcal{G}, \quad(\bar{x}, y, z)^{-1}=(\overline{n-x},-y,-z)$
- $\varepsilon:\{*\} \longrightarrow \mathcal{G}, \quad e=\overline{0}, \quad 1_{e}=(\overline{0}, 0), \quad 1_{1_{e}}=(\overline{0}, 0,0)$.

Definition 3.6. Let $\mathcal{G}=\left(G_{0}, G_{1}, G_{2}\right)$ and $\mathcal{H}=\left(H_{0}, H_{1}, H_{2}\right)$ be group-2-groupoids and let $F=\left(f_{0}, f_{1}, f_{2}\right): \mathcal{G} \rightarrow \mathcal{H}$ be a 2 -functor. If F preserves the group structures, then it is called a morphism of group-2-groupoids.

So group-2-groupoids and morphisms of them form a category which is denoted by Gp2GD.

The following theorem was proved by Brown and Spencer in [7]:
Theorem 3.7. The category of 2 -groups and the category of crossed modules are equivalent.

Remark 3.8. Let $\mathcal{G}=\left(G_{0}, G_{1}, G_{2}\right)$ be a group-2-groupoid and s_{1}, t_{1} be the source and target maps from G_{1} to G_{0}. Let $M=\operatorname{Ker} s_{1}, N=G_{0}$ and $\partial_{1}=\left.t_{1}\right|_{M}$. It was proved in Theorem 3.7 that $\left(M, N, \partial_{1}, \bullet\right)$ is a crossed module with the action $(x, a) \mapsto x \bullet a=1_{x} a 1_{x}^{-1}$ of the group N on the group M and the map $\partial_{1}=\left.t_{1}\right|_{M}$.
Proposition 3.9. Let $\mathcal{G}=\left(G_{0}, G_{1}, G_{2}\right)$ be a group-2-groupoid and s_{2}, t_{2} be the source and target maps from G_{2} to G_{0}. Then $\left(\operatorname{Kers}_{2}, G_{0},\left.t_{2}\right|_{L}\right)$ is a crossed module.
Proof. Let $L=\operatorname{Kers}_{2}, N=G_{0}$. Then L, N inherit group structures from that of \mathcal{G} and the map $\partial_{2}=\left.t_{2}\right|_{L}: L \rightarrow N$ is a morphism of groups. Further we have an action $(x, \alpha) \mapsto x \mapsto \alpha$ of N on the group L given by $x \mapsto \alpha=1_{1_{x}} \alpha 1_{1_{x}}^{-1}$. It is easy to show that $\partial_{2}(x>\alpha)=x \partial_{2}(\alpha) x^{-1}$ and $\partial_{2}(\alpha) \triangleright \alpha_{1}=\alpha \alpha_{1} \alpha^{-1}$ by using (3.5). Thus $\left(L, N, \partial_{2},\right)$ is a crossed module.

Proposition 3.10. Let $\mathcal{G}=\left(G_{0}, G_{1}, G_{2}\right)$ be a group-2-groupoid, t_{3} be the target map from G_{2} to G_{1} and $\left(M, N, \partial_{1}, \bullet\right),\left(L, N, \partial_{2},\right)$ be crossed modules which corresponds to the group-2-groupoid \mathcal{G} as above. Then $\partial_{3}=\left.t_{3}\right|_{L}: L \rightarrow M$ is a surjective morphism of groups which preserves actions of crossed modules.

Proof. Since \mathcal{G} is a group-2-groupoid, then t_{3} is a morphism of groups. Therefore, the $\partial_{3}=\left.t_{3}\right|_{L}: L \rightarrow M$ which is the restriction of t_{3}, is also a morphism of groups. And for any 1 -morphism $a \in M$, there is a 2 -morphism $\alpha \in L$ such that $\partial_{3}(\alpha)=\left.t_{3}\right|_{L}(a)$. So, the group morphism ∂_{3} is surjective. It is clear that $t_{2}=t_{1} t_{3}$ and so $\partial_{2}=\partial_{1} \partial_{3}$. Since ∂_{3} is a group morphism, we obtain

$$
\partial_{3}(x \triangleright \alpha)=\partial_{3}\left(1_{1_{x}} \alpha 1_{1_{x}}^{-1}\right)=\partial_{3}\left(1_{1_{x}}\right) \partial_{3}(\alpha) \partial_{3}\left(1_{1_{x}}^{-1}\right)=1_{x} \partial_{3}(\alpha) 1_{x}^{-1}=x \bullet \partial_{3}(\alpha)
$$

From Remark 3.8, Proposition 3.9 and Proposition 3.10, we can define a new structure of crossed modules which corresponds to group-2-groupoids as follows:

Definition 3.11. Let $\left(M, N, \partial_{1}, \bullet\right)$ and $\left(L, N, \partial_{2},\right)$ be crossed modules. A 2G-crossed module $\left(L, M, N, \partial_{1}, \partial_{2}, \partial_{3}, \bullet,>\right)$ is a pair $\left(M, N, \partial_{1}, \bullet\right),\left(L, N, \partial_{2},\right)$ of crossed modules with a surjective morphism of groups $\partial_{3}: L \rightarrow M$ which satisfies the following axioms:
(1) $\partial_{2}=\partial_{1} \partial_{3}$
(2) $\partial_{3}(n \bullet l)=n \bullet \partial_{3}(l)$, for $n \in N, l \in L$.

Definition 3.12. Let $K=\left(L, M, N, \partial_{1}, \partial_{2}, \partial_{3}\right)$ and $K^{\prime}=\left(L^{\prime}, M^{\prime}, N^{\prime}, \partial_{1}^{\prime}, \partial_{2}^{\prime}, \partial_{3}^{\prime}\right)$ be 2Gcrossed modules. A morphism $\left(f_{3}, f_{2}, f_{1}\right): K \rightarrow K^{\prime}$ of 2 G -crossed modules is a pair $\left(f_{2}, f_{1}\right):\left(M, N, \partial_{1}, \bullet\right) \rightarrow\left(M^{\prime}, N^{\prime}, \partial_{1}^{\prime}, \bullet^{\prime}\right), \quad\left(f_{3}, f_{1}\right):\left(L, N, \partial_{2},\right) \rightarrow\left(L^{\prime}, N^{\prime}, \partial_{2}^{\prime},{ }^{\prime}\right)$ of morphisms of crossed modules such that $f_{2} \partial_{3}=\partial_{3}^{\prime} f_{3}$.

Therefore, 2G-crossed modules and morphisms between them form a category which is denoted by 2GXMod.

Definition 3.13. An equivalence between categories \mathcal{C} and \mathcal{D} is defined to be a pair of functors $S: \mathcal{C} \rightarrow \mathcal{D}, T: \mathcal{D} \rightarrow \mathcal{C}$ together with natural isomorphisms $1_{\mathcal{C}} \cong T S, 1_{\mathcal{D}} \cong S T$, where $1_{\mathcal{C}}$ and $1_{\mathcal{D}}$ are the identity functors [10].
Theorem 3.14. The category GP2GD of group-2-groupoids and the category 2GXMOD of $2 G$-crossed modules are equivalent.

Proof. A functor

$$
\gamma: \mathrm{GP} 2 \mathrm{GD} \rightarrow 2 \mathrm{GXMOD}
$$

is defined as follows: For a group-2-groupoid $\mathcal{G}=\left(G_{0}, G_{1}, G_{2}\right)$, by using Remark 3.8, Proposition 3.9 and Proposition 3.10, we can define a 2 G -crossed module $\gamma(\mathcal{G})=K=$ ($L, M, N, \partial_{1}, \partial_{2}, \partial_{3}$) which corresponds to the group-2-groupoid \mathcal{G}.

Conversely, define a functor

$$
\psi: 2 \mathrm{GXMOD} \rightarrow \mathrm{GP} 2 \mathrm{GD}
$$

in the following way. Let $K=\left(L, M, N, \partial_{1}, \partial_{2}, \partial_{3}, \bullet \bullet\right)$ be a 2 G -crossed module. A group2 -groupoid $\psi(K)$ can be defined as follows. The group of objects of $\psi(K)$ is N. The group of 1-morphisms of $\psi(K)$ is the semi-direct product $N \ltimes M$ with the group structure

$$
(n, m)\left(n^{\prime}, m^{\prime}\right)=\left(n n^{\prime}, m\left(n \bullet m^{\prime}\right)\right)
$$

The source and target maps are defined by $s_{1}(n, m)=n, t_{1}(n, m)=\partial_{1}(m) n$, respectively and the identity 1 -morphism of \circ is $\left(n, e_{M}\right)$, while the composition is defined by

$$
\left(\partial_{1}(m) n, m_{1}\right) \circ(n, m)=\left(n, m_{1} m\right)
$$

in [7]. Now the group of 2-morphisms of \mathcal{G} can be defined the semi-direct product $N \ltimes M \ltimes L$ with the group structure

$$
(n, m, l)\left(n^{\prime}, m^{\prime}, l^{\prime}\right)=\left(n n^{\prime}, m\left(n \bullet m^{\prime}\right), l\left(n \rightharpoonup l^{\prime}\right)\right) .
$$

If $\partial_{2}(l)=\partial_{2}(k)$ then pairs $\left(n, \partial_{3}(l)\right)$ and $\left(n, \partial_{3}(k)\right)$ are 1-morphisms from n to $\partial_{2}(l) n$. Hence we can define 2-morphism $\left(n, \partial_{3}(l), k\right)$ from $\left(n, \partial_{3}(l)\right)$ to $\left(n, \partial_{3}(k)\right)$ as follows:

The source and target maps of 2-morphisms can be defined by $s_{2}\left(n, \partial_{3}(l), k\right)=n, s_{3}\left(n, \partial_{3}(l), k\right)=$ $\left(n, \partial_{3}(l)\right), t_{2}\left(n, \partial_{3}(l), k\right)=\partial_{2}(l) n, t_{3}\left(n, \partial_{3}(l), k\right)=\left(n, \partial_{3}(k)\right)$, respectively and the identity 2-morphism of \circ_{h} for $n \in N$ is (n, e_{M}, e_{L}), when the horizontal composition of 2-morphisms is defined by

$$
\left(\partial_{1}(m) n, m_{1}, l_{1}\right) \circ_{h}(n, m, l)=\left(n, m_{1} m, l_{1} l\right) .
$$

If $\partial_{2}(l)=\partial_{2}(k)=\partial_{2}(h)$, then $\left(n, \partial_{3}(k), h\right)$ is 2-morphism from $\left(n, \partial_{3}(k)\right)$ to $\left(n, \partial_{3}(h)\right)$ and the vertical composition of 2 -morphisms is defined by

$$
\left(n, \partial_{3}(k), h\right) \circ_{v}\left(n, \partial_{3}(l), k\right)=\left(n, \partial_{3}(l), h\right) .
$$

The identity 2-morphism of \circ_{v} for $\left(n, \partial_{3}(l)\right) \in N \ltimes M$ is $\left(n, \partial_{3}(l), l\right)$ and the inverse ${\overline{\left(n, \partial_{3}(l), k\right)}}^{v}=\left(n, \partial_{3}(k), l\right)$. Thus $\psi(K)=(N, N \ltimes M, N \ltimes M \ltimes L)$ is a group-2-groupoid.

To define a natural isomorphism $S: \psi \gamma \rightarrow 1_{\text {GP2GD }}$, let \mathcal{G} be a group-2-groupoid. A $\operatorname{map} S_{\mathcal{G}}: \psi \gamma(\mathcal{G}) \rightarrow \mathcal{G}$ is defined to be the identity on objects, on 1-morphisms is given by $a \mapsto\left(x, a 1_{x}^{-1}\right)$ and on 2-morphisms is given by $\alpha \mapsto\left(x, a 1_{x}^{-1}, \alpha 1_{1_{x}}^{-1}\right)$.

It is clear that $S_{\mathcal{G}}$ is bijective on 1-morphisms and 2-morphisms and also preserves the group operation and compositions as follows:

$$
\begin{aligned}
S_{\mathcal{G}}(\alpha) S_{\mathcal{G}}\left(\alpha^{\prime}\right) & =\left(x, a 1_{x}^{-1}, \alpha 1_{1_{x}}^{-1}\right)\left(x^{\prime}, a^{\prime} 1_{x^{\prime}}^{-1}, \alpha^{\prime} 1_{1_{x^{\prime}}}^{-1}\right) \\
& =\left(x x^{\prime}, a 1_{x}^{-1}\left(x \bullet a^{\prime} 1_{x^{\prime}}^{-1}\right), \alpha 1_{1_{x}}^{-1}\left(x \alpha^{\prime} 1_{1_{x^{\prime}}}^{-1}\right)\right) \\
& =\left(x x^{\prime}, a 1_{x}^{-1} 1_{x} a^{\prime} 1_{x^{\prime}}^{-1} 1_{x}^{-1}, \alpha 1_{1_{x}}^{-1} 1_{1_{x}} \alpha^{\prime} 1_{1_{x^{\prime}}}^{-1} 1_{1_{x}}^{-1}\right) \\
& =\left(x x^{\prime}, a a^{\prime} 1_{x x^{\prime}}^{-1}, \alpha \alpha^{\prime} 1_{1_{x x^{\prime}}}^{-1}\right) \\
& =S_{\mathcal{G}}\left(\alpha \alpha^{\prime}\right)
\end{aligned}
$$

for $x \stackrel{a}{\Downarrow^{\alpha}} x_{1} \stackrel{a_{1}}{b_{1}} x_{2}$

$$
S_{\mathcal{G}}\left(a_{1} \circ a\right)=S_{\mathcal{G}}\left(a_{1} 1_{x_{1}}^{-1} a\right)=\left(x, a_{1} 1_{x_{1}}^{-1} a 1_{x}^{-1}\right)=\left(x_{1}, a_{1} 1_{x_{1}}^{-1}\right) \circ\left(x, a 1_{x}^{-1}\right)=S_{\mathcal{G}}\left(a_{1}\right) \circ S_{\mathcal{G}}(a)
$$

$$
S_{\mathcal{G}}\left(\alpha_{1} \circ_{h} \alpha\right)=S_{\mathcal{G}}\left(\alpha_{1} 1_{1_{x_{1}}}^{-1} \alpha\right)=\left(x, a_{1} 1_{x_{1}}^{-1} a 1_{x}^{-1}, \alpha_{1} 1_{1_{x_{1}}}^{-1} \alpha 1_{1_{x}}^{-1}\right)=S_{\mathcal{G}}\left(\alpha_{1}\right) \circ_{h} S_{\mathcal{G}}(\alpha) \text { and for }
$$

Finally, we define a natural isomorphism $T: 1_{2 \mathrm{GXMOD}} \rightarrow \gamma \psi$, as follows: If $K=$ $\left(L, M, N, \partial_{1}, \partial_{2}, \partial_{3}\right)$ is a 2 G -crossed module, then T_{K} is the identity on N, on M is given by $m \mapsto\left(e_{N}, m\right)$ and on L is given by $l \mapsto\left(e_{N}, e_{M}, l\right)$. Clearly T_{K} is bijective and preserves the group operations as follows:

$$
\begin{gathered}
T_{K}(m) T_{K}\left(m^{\prime}\right)=\left(e_{N}, m\right)\left(e_{N}, m^{\prime}\right)=\left(e_{N}, m\left(e_{N} \bullet m^{\prime}\right)\right)=\left(e_{N}, m m^{\prime}\right)=T_{K}\left(m m^{\prime}\right) \\
T_{K}(l) T_{K}\left(l^{\prime}\right)=\left(e_{N}, e_{M}, l\right)\left(e_{N}, e_{M}, l^{\prime}\right)=\left(\left(e_{N}, e_{M}, l\left(e_{N} \bullet l^{\prime}\right)\right)=\left(e_{N}, e_{M}, l l^{\prime}\right)=T_{K}\left(l l^{\prime}\right)\right.
\end{gathered}
$$

Hence, by Defination 3.13, the category GP2GD of group-2-groupoids and the category 2 GXMOD of 2 G -crossed modules are equivalent.

Acknowledgment. We would like to thank the referee for his/her useful and kind suggestions.

References

[1] N. Alemdar and O. Mucuk, The Liftings of R-Modules to Covering Groupoid, Hacet. J. Math. Stat. 41 (6), 813-822, 2012.
[2] J.C. Baez, An Introduction to n-Categories, in: Moggi E., Rosolini G. (eds) Category Theory and Computer Science, Lecture Notes in Computer Science 1290, Springer, Berlin, Heidelberg, 1997, https://doi.org/10.1007/BFb0026978.
[3] J.C. Baez, A. Baratin, L. Freidel and D.K. Wise, Infinite-Dimensional Representations of ${ }^{2}$-Groups, Mem. Amer. Math. Soc. 219, Number 1032, 2012.
[4] J.C. Baez and A.D. Lauda, Higher-dimensional Algebra. V. 2-groups, Theory Appl. Categ. 12, 423-491, 2004.

$$
\begin{aligned}
& S_{\mathcal{G}}\left(\beta \circ_{v} \alpha\right)=S_{\mathcal{G}}\left(\beta 1_{b}^{-1} \alpha\right)=\left(x, a 1_{x}^{-1}, \beta 1_{b}^{-1} \alpha 1_{1_{x}}^{-1}\right) \\
& =\left(x, a 1_{x}^{-1}, \beta 1_{1_{x}}^{-1}\left(1_{b} 1_{1_{x}}^{-1}\right)^{-1} \alpha 1_{1_{x}}^{-1}\right) \\
& =\left(x, b 1_{x}^{-1}, \beta 1_{1_{x}}^{-1}\right)\left(x, b 1_{x}^{-1}, 1_{b} 1_{1_{x}}^{-1}\right)^{-1}\left(x, a 1_{x}^{-1}, \alpha 1_{1_{x}}^{-1}\right) \\
& =\left(x, b 1_{x}^{-1}, \beta 1_{1_{x}}^{-1}\right) \circ_{v}\left(x, a 1_{x}^{-1}, \alpha 1_{1_{x}}^{-1}\right) \\
& =S_{\mathcal{G}}(\beta) \circ_{v} S_{\mathcal{G}}(\alpha) \text {. }
\end{aligned}
$$

[5] J.C. Baez and D. Stevenson The Classifying Space of a Topological 2-Group, in: Algebraic Topology. Abel Symposia 4, Springer, Berlin, Heidelberg, 2009.
[6] R. Brown, From Groups to Groupoids: A Brief Survey, Bull. London Math. Soc. 19, 113-134, 1987.
[7] R. Brown and C.B. Spencer, G-groupoids, Crossed Modules and The Fundamental Groupoid of a Topological Group, Proc. Konn. Ned. Akad. v. Wet. 79, 296-302 1976.
[8] M. Forrester-Barker, Group objects and internal categories, Preprint arXiv: math/0212065v1, 2002.
[9] P.J. Higgins, Categories and Groupoids, Van Nostrand, New York, 1971.
[10] S. Maclane, Categories for the Working Mathematician, Graduate Text in Mathematics, Vol. 5, Springer-Verlag, New York, 1971.
[11] O. Mucuk, Coverings and ring-groupoids, Geor. Math. J. 5, 475-482, 1998.
[12] O. Mucuk, B. Bagriyanik, N. Alemdar and T. Şahan, Group-Groupoids And Monodromy Groupoids, Topology Appl. 158 (15), 2034-2042, 2011.
[13] O. Mucuk, T. Şahan and N. Alemdar, Normality and Quotients in Crossed Modules and Group-groupoids, Appl. Categor. Struct. 23 (3), 415-428, 2015.
[14] B. Noohi, Notes on 2-Groupoids, 2-Groups and Crossed Modules, Homology Homotopy Appl. 9 (1), 75-106, 2007.
[15] T. Porter, Extensions, Crossed Modules and Internal Categories in Categories of Groups With Operations, Proc. Edinb. Math. Soc. 30, 371-381, 1987.
[16] J.H.C. Whitehead, Note on a previous paper entitled "On adding relations to homotopy group", Ann. Math. 47, 806-810, 1946.
[17] J.H.C. Whitehead, Combinatorial homotopy II, Bull. Amer. Math. Soc. 55, 453-496, 1949.

[^0]: *Corresponding Author.
 Email addresses: nakari@erciyes.edu.tr (N. Alemdar), stemel@erciyes.edu.tr (S. Temel)
 Received: 12.02.2018; Accepted: 03.04.2018

