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THE BINOMIAL ALMOST CONVERGENT AND NULL
SEQUENCE SPACES

MUSTAFA CEMİL BİŞGİN

Abstract. In this paper, we introduce the sequence spaces f(Br,s), f0(Br,s)
and fs(Br,s) which generalize the Kirişçi’s work [16]. Moreover, we show that
these spaces are BK-spaces and are linearly isomorphic to the sequence spaces
f , f0 and fs, respectively. Furthermore, we mention the Schauder basis and
give β, γ-duals of these spaces. Finally, we determine some matrix classes
related to these spaces.

1. Introduction

The family of all real(or complex) valued sequences is a vector space under usual
coordinate-wise addition and scalar multiplication and is denoted by w. Every
vector subspace of w is called a sequence space. The notations of `∞, c0, c and `p
are used for the spaces of all bounded, null, convergent and absolutely p-summable
sequences, respectively, where 1 ≤ p <∞.
A BK-space is a Banach sequence space provided each of the maps pi : X −→ C,

pi(x) = xi is continuous for all i ∈ N, where X is a sequence space. According to
this definition, the sequence spaces `∞, c0 and c are BK-spaces with their sup-norm
defined by ‖x‖∞ = sup

n∈N
|xn| and `p is a BK-space with its `p-norm defined by

‖x‖`p =

( ∞∑
k=0

|xk|p
) 1

p

where 1 ≤ p <∞ [2].
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Let A = (ank) be an infinite matrix of complex numbers. For any x = (xk) ∈ w,
the A-transform of x is written by y = Ax and is defined by

yn = (Ax)n =

∞∑
k=0

ankxk (1.1)

for all n ∈ N and each of these series being assumed convergent [3]. For simplicity
in notation, we henceforth prefer that the summation without limits runs from 0
to ∞.
Given two arbitrary sequence spaces X and Y , the class of all matrices A = (ank)

such that Ax ∈ Y for all x ∈ X is denoted by (X : Y ).
The domain of an infinite matrix A = (ank) in a sequence space X is denoted

by XA defined by
XA = {x = (xk) : Ax ∈ X} (1.2)

which is also a sequence space. The domain of summation matrix S = (snk) in
sequence spaces c and `∞ are called the spaces of all convergent and bounded series
and are denoted by cs and bs, respectively, where S = (snk) is defined by

snk =

{
1 , 0 ≤ k ≤ n
0 , k > n

for all n, k ∈ N.
A matrix is called a triangle if ank = 0 for k > n and ann 6= 0 for all n, k ∈ N.

Also, a triangle matrix A = (ank) uniquely has an inverse A−1 such that A−1 is a
triangle matrix.
As an application of the Hahn-Banach theorem to the sequence space `∞, the

notion of Banach Limits was first introduced by the Stefan Banach. Banach first
recognized certain non-negative linear functionals on `∞ which remain invariant
under shift operators and which are extension of l, where l : c −→ R, l(x) = lim

n→∞
xn

is defined and l is linear functional on c. Such functionals were later termed "Banach
Limits" [1].
A functional L : `∞ −→ R is called a Banach Limit if the following conditions

hold
(i) L(axn + byn) = aL(xn) + bL(yn) a, b ∈ R
(ii) L(xn) ≥ 0 if xn ≥ 0, n = 0, 1, 2, ...
(iii) L(Pj(xn)) = L(xn), Pj(xn) = xn+j , j = 1, 2, 3, ...
(iv) L(e) = 1 where e = (1, 1, ...)
Lorentz continued the study of Banach Limits and brought out a new concept

called Almost Convergence. The bounded sequence x = (xn) is called almost
convergent and the number Limxn = λ is called its F -limit if L(xn) = λ holds for
every limit L [4].
The theory of matrix transformation has a great importance in the theory of

summability which was obtained by Cesàro, Norlund, Borel, Riesz... . Therefore,
many authors have constructed new sequence spaces by using matrix domain of
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infinite matrices. For instance, (`∞)Nq
and cNq

in [5], Xp and X∞ in [6], er0 and e
r
c

in [7], erp and e
r
∞ in [8] and [9], er0(∆), erc(∆) and er∞(∆) in [10], er0(∆

m), erc(∆
m)

and er∞(∆m) in [11], er0(B
(m)), erc(B

(m)) and er∞(B(m)) in [12], er0(∆, p), e
r
c(∆, p)

and er∞(∆, p) in [13], f̂0 and f̂ in [14], f0(B) and f(B) in [15], f0(E) and f(E) in
[16].
In this paper, we introduce the sequence spaces f(Br,s), f0(Br,s) and fs(Br,s)

which generalize the Kiri̧sçi’s work [16]. Moreover, we show that these spaces
are BK-spaces and are linearly isomorphic to the sequence spaces f , f0 and fs,
respectively. Furthermore, we mention the Schauder basis and give β, γ-duals of
these spaces. Finally, we determine some matrix classes related to these spaces.

2. The Binomial Almost Convergent And Null Sequence Spaces

In this part, we give some historical informations and define the sequence spaces
f0(B

r,s), f(Br,s) and fs(Br,s). Furthermore, we show that these spaces are BK-
spaces and are linearly isomorphic to the sequence spaces f0, f and fs, respectively.
Lorentz obtained the following characterization for almost convergent sequences.

Theorem 1 (see [4]). In order that F -limit, Limxn = λ exists for the sequence
x = (xn), it is necessary and suffi cient that

lim
k→∞

xn + xn+1 + ...+ xn+k
k + 1

= λ

holds uniformly in n.

By taking into account the notion of almost convergence and Theorem 1, the
space of all almost convergent sequences, almost null sequences and almost conver-
gent series are defined by

f =

{
x = (xk) ∈ w : ∃λ ∈ C 3 lim

i→∞

i∑
k=0

xn+k
i+ 1

= λ uniformly in n

}
,

f0 =

{
x = (xk) ∈ w : lim

i→∞

i∑
k=0

xn+k
i+ 1

= 0 uniformly in n

}
,

and

fs =

x = (xk) ∈ w : ∃λ ∈ C 3 lim
i→∞

i∑
k=0

n+k∑
j=0

xj
i+ 1

= λ uniformly in n

 ,

respectively.
By considering the notion of (1.2), the sequence space fs can be rearranged by

means of the summation matrix S = (snk) as follows:

fs = fS (2.1)
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Theorem 2 (see [17]). The inclusions c ⊂ f ⊂ `∞ strictly hold.

Theorem 3 (see [17]). The sequence spaces f and f0 are BK-spaces with the norm

‖x‖f = sup
i,n∈N

∣∣∣∣ i∑
k=0

xn+k
i+1

∣∣∣∣ and fs is a BK-space with the norm ‖x‖fs = ‖Sx‖f .

In order to define sequence spaces, the Euler matrix was first considered by
Altay, Başar and Mursaleen in [7], [8] and [9]. They constructed the Euler sequence
spaces er0, e

r
c , e

r
∞ and erp as follows:

er0 =

{
x = (xk) ∈ w : lim

n→∞

n∑
k=0

(
n

k

)
(1− r)n−krkxk = 0

}
,

erc =

{
x = (xk) ∈ w : lim

n→∞

n∑
k=0

(
n

k

)
(1− r)n−krkxk exists

}
,

er∞ =

{
x = (xk) ∈ w : sup

n∈N

∣∣∣∣∣
n∑
k=0

(
n

k

)
(1− r)n−krkxk

∣∣∣∣∣ <∞
}

and

erp =

{
x = (xk) ∈ w :

∞∑
n=0

∣∣∣∣∣
n∑
k=0

(
n

k

)
(1− r)n−krkxk

∣∣∣∣∣
p

<∞
}
.

where 1 ≤ p <∞, and the Euler matrix Er = (ernk) is defined by

ernk =

{ (
n
k

)
(1− r)n−krk , 0 ≤ k ≤ n

0 , k > n

for all n, k ∈ N, where 0 < r < 1.
Afterward, Kiri̧sçi used the Euler matrix in [16] for defining Euler almost null

and Euler almost convergent sequence spaces. These spaces are defined by

f0(E) =

x = (xk) ∈ w : lim
m→∞

m∑
j=0

n+j∑
k=0

(
n+j
k

)
(1− r)n+j−krkxk

m+ 1
= 0 uniformly in n


and

f(E) =x = (xk) ∈ w : ∃λ ∈ C 3 lim
m→∞

m∑
j=0

n+j∑
k=0

(
n+j
k

)
(1− r)n+j−krkxk

m+ 1
= λ uniformly in n

 .

Recently, Bi̧sgin has defined the Binomial sequence spaces br,s0 , b
r,s
c , b

r,s
∞ and br,sp

in [18] and [19] as follows:

br,s0 =

{
x = (xk) ∈ w : lim

n→∞

1

(s+ r)n

n∑
k=0

(
n

k

)
sn−krkxk = 0

}
,
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br,sc =

{
x = (xk) ∈ w : lim

n→∞

1

(s+ r)n

n∑
k=0

(
n

k

)
sn−krkxk exists

}
,

br,s∞ =

{
x = (xk) ∈ w : sup

n∈N

∣∣∣∣∣ 1

(s+ r)n

n∑
k=0

(
n

k

)
sn−krkxk

∣∣∣∣∣ <∞
}

and

br,sp =

{
x = (xk) ∈ w :

∑
n

∣∣∣∣∣ 1

(s+ r)n

n∑
k=0

(
n

k

)
sn−krkxk

∣∣∣∣∣
p

<∞
}

where 1 ≤ p <∞ and the Binomial matrix Br,s = (br,snk) is defined by

br,snk =

{ 1
(s+r)n

(
n
k

)
sn−krk , 0 ≤ k ≤ n

0 , k > n

for all k, n ∈ N, r, s ∈ R and rs > 0. Here, we would like to touch on a point, if we
take r + s = 1, we obtain the Euler sequence spaces er0, e

r
c , e

r
∞ and erp. Therefore

Bi̧sgin has generalized the Altay, Başar and Mursaleen’s works.
Now, we define the sequence spaces f0(Br,s), f(Br,s) and fs(Br,s) by

f0(B
r,s) =

x = (xk) ∈ w : lim
i→∞

i∑
j=0

n+j∑
k=0

(
n+j
k

)
sn+j−krkxk

(i+ 1)(r + s)n+j
= 0 uniformly in n

 ,

f(Br,s) =x = (xk) ∈ w : ∃λ ∈ C 3 lim
i→∞

i∑
j=0

n+j∑
k=0

(
n+j
k

)
sn+j−krkxk

(i+ 1)(r + s)n+j
= λ uniformly in n


and

fs(Br,s) =x = (xk) ∈ w : ∃λ ∈ C 3 lim
i→∞

i∑
j=0

n+j∑
ν=0

ν∑
k=0

(
ν
k

)
sν−krkxk

(i+ 1)(r + s)ν
= λ uniformly in n

 ,

respectively. By taking into account the notation (1.2), the sequence spaces f0(Br,s),
f(Br,s) and fs(Br,s) can be redefined by means of the domain of the Binomial ma-
trix Br,s = (br,snk) as follows:

f0(B
r,s) = (f0)Br,s , f(Br,s) = fBr,s and fs(Br,s) = fsBr,s (2.2)

In addition, given an arbitrary sequence x = (xk) ∈ w, the Br,s-transform of
x = (xk) is defined by

yk = (Br,sx)k =
1

(s+ r)k

k∑
j=0

(
k

j

)
sk−jrjxj (2.3)

for all k ∈ N.
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Theorem 4. The sequence spaces f0(Br,s), f(Br,s) and fs(Br,s) endowed with the
norms

‖x‖f(Br,s) = ‖x‖f0(Br,s) = ‖Br,sx‖f and ‖x‖fs(Br,s) = ‖Br,sx‖fs
are BK-spaces, respectively.

Proof. We know that f , f0 and fs are BK-spaces. Also, Br,s = (br,snk) is a triangle
matrix and the condition (2.2) holds. By combining these three facts and Theorem
4.3.12 of Wilansky[3], we deduce that f(Br,s), f0(Br,s) and fs(Br,s) are BK-spaces.
This completes the proof. �

Theorem 5. The sequence spaces f0(Br,s), f(Br,s) and fs(Br,s) are linearly iso-
morphic to the sequence spaces f0, f and fs, respectively.

Proof. Since the relations f0(Br,s) ∼= f0 and fs(Br,s) ∼= fs can be shown by using
a similar way, we give the proof of theorem for only the sequence space f(Br,s).
For this, we should show the existence of a linear bijection between the sequence
spaces f(Br,s) and f .
Let us consider the transformation L : f(Br,s) −→ f such that L(x) = Br,sx.

Then it is obvious that for every x = (xk) ∈ f(Br,s), L(x) = Br,sx ∈ f . Moreover,
it is clear that L is a linear transformation and x = 0 whenever L(x) = 0. Because
of this, L is injective.
Now, we define a sequence x = (xk) by means of the sequence y = (yk) ∈ f by

xk =
1

rk

k∑
j=0

(
k

j

)
(−s)k−j(s+ r)jyj

for all k ∈ N. Then, we have

(Br,sx)k =
1

(s+ r)k

k∑
j=0

(
k

j

)
sk−jrjxj

=
1

(s+ r)k

k∑
j=0

(
k

j

)
sk−j

j∑
i=0

(
j

i

)
(−s)j−i(s+ r)iyi

= yk

for all k ∈ N. This shows us that

lim
i→∞

i∑
j=0

n+j∑
k=0

(
n+j
k

)
sn+j−krkxk

(i+ 1)(r + s)n+j
= lim
i→∞

i∑
j=0

yn+j
i+ 1

= F − limyn

namely, x = (xk) ∈ f(Br,s) and L(x) = y. Therefore L is surjective. Moreover, for
all x = (xk) ∈ f(Br,s), we know that

‖L(x)‖f = ‖Br,sx‖f = ‖x‖f(Br,s)
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So, L is norm preserving. As a results of these, L is a linear bijection which says
us that the sequence space f(Br,s) is linearly isomorphic to the sequence space f ,
that is f(Br,s) ∼= f . This completes the proof. �

Theorem 6. The inclusion c ⊂ f(Br,s) is strict.

Proof. It is obvious that the inclusion c ⊂ f(Br,s) holds. Now, we consider the
sequence x = (xk) defined by xk = (−1)k for all k ∈ N. Then, x = (xk) /∈ c but

Br,sx =

((
s−r
s+r

)k)
∈ f , namely x ∈ f(Br,s). So, the inclusion c ⊂ f(Br,s) strictly

holds. This completes the proof. �

3. The Schauder Basis And β, γ-Duals

In this part, we speak of the Schauder basis and give β, γ-duals of the spaces
f(Br,s) and fs(Br,s).
Let us start with the definition of the Schauder basis. For a given normed space

(X, ‖.‖X), a sequence b = (bk) of elements of X is called a Schauder basis for X, if
and only if, for all x ∈ X, there exists a unique sequence µ = (µk) of scalar such
that x =

∑
k

µkbk; i.e. such that∥∥∥∥∥x−
n∑
k=0

µkbk

∥∥∥∥∥
X

−→ 0

as n→∞.

Corollary 1 (see [14]). Almost convergent sequence space f has no Schauder basis.

Remark 1. For an arbitrary sequence space X and a triangle matrix A = (ank),
it is known that XA has a basis if and only if X has a basis [20].

By combining this fact and Corollary 1, we can give the next result.

Corollary 2. The sequence spaces f(Br,s) and fs(Br,s) have no Schauder basis.

The multiplier space of two arbitrary sequence spaces X and Y is defined by

M(X,Y ) =
{
a = (ak) ∈ w : xa = (xkak) ∈ Y for all x = (xk) ∈ X

}
By using this definition and sequence spaces cs and bs, the β- and γ-duals of a
sequence space X are defined by

Xβ = M(X, cs) and Xγ = M(X, bs)

respectively.
Now, we give some statements which are used in the next lemma. Let A = (ank)

be an infinite matrix of complex numbers.

sup
n∈N

∑
k

|ank| <∞ (3.1)
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lim
n→∞

ank = αk for each fixed k ∈ N (3.2)

lim
n→∞

∑
k

ank = α (3.3)

lim
n→∞

∑
k

|∆(ank − αk)| = 0 (3.4)

sup
n∈N

∑
k

|∆ank| <∞ (3.5)

lim
k→∞

ank = 0 for each fixed n ∈ N (3.6)

lim
n→∞

∑
k

|∆2ank| = α (3.7)

where ∆ank = ank − an,k+1 and ∆2ank = ∆(∆ank).

Lemma 1. For an infinite matrix A = (ank), the following statements hold:

(i) A = (ank) ∈ (f : `∞)⇔ (3.1) holds (see [21])
(ii) A = (ank) ∈ (f : c)⇔ (3.1), (3.2), (3.3) and (3.4) hold (see [21])
(iii) A = (ank) ∈ (fs : `∞)⇔ (3.5) and (3.6) hold (see [14])
(iv) A = (ank) ∈ (fs : c)⇔ (3.2), (3.5), (3.6) and (3.7) hold (see [22])

Theorem 7. Given the sets tr,s1 , t
r,s
2 , t

r,s
3 , t

r,s
4 , t

r,s
5 , t

r,s
6 and tr,s7 as follows:

tr,s1 =

a = (ak) ∈ w : sup
n∈N

n∑
k=0

∣∣∣∣∣∣
n∑
j=k

(
j

k

)
(−s)j−k(r + s)kr−jaj

∣∣∣∣∣∣ <∞


tr,s2 =

a = (ak) ∈ w : lim
n→∞

n∑
j=k

(
j

k

)
(−s)j−k(r + s)kr−jaj exists for each k ∈ N


tr,s3 =

a = (ak) ∈ w : lim
n→∞

n∑
k=0

 k∑
j=0

(
k

j

)
(−s)k−j(r + s)jr−k

 ak exists


tr,s4 =

a = (ak) ∈ w : lim
n→∞

∑
k

∣∣∣∣∣∣∆
 n∑
j=k

(
j

k

)
(−s)j−k(r + s)kr−jaj − αk

∣∣∣∣∣∣ = 0


tr,s5 =

a = (ak) ∈ w : sup
n∈N

∑
k

∣∣∣∣∣∣∆
 n∑
j=k

(
j

k

)
(−s)j−k(r + s)kr−jaj

∣∣∣∣∣∣ <∞


tr,s6 =

a = (ak) ∈ w : lim
k→∞

n∑
j=k

(
j

k

)
(−s)j−k(r + s)kr−jaj = 0 for each n ∈ N


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and

tr,s7 =

a = (ak) ∈ w : lim
n→∞

∑
k

∣∣∣∣∣∣∆2

 n∑
j=k

(
j

k

)
(−s)j−k(r + s)kr−jaj

∣∣∣∣∣∣ exists


where lim

n→∞

n∑
j=k

(
j
k

)
(−s)j−k(r + s)kr−jaj = αk for all k ∈ N.

Then, the following statements hold.

(i) {f(Br,s)}β = tr,s1 ∩ t
r,s
2 ∩ t

r,s
3 ∩ t

r,s
4

(ii) {f(Br,s)}γ = tr,s1
(iii) {fs(Br,s)}β = tr,s2 ∩ t

r,s
5 ∩ t

r,s
6 ∩ t

r,s
7

(iv) {fs(Br,s)}γ = tr,s5 ∩ t
r,s
6

Proof. To avoid the repetition of similar statements, the proof of theorem is given
for only part (i). For any a = (ak) ∈ w, we consider the sequence x = (xk) defined
by

xk =
1

rk

k∑
j=0

(
k

j

)
(−s)k−j(r + s)jyj

for all k ∈ N. Then, we get
n∑
k=0

akxk =

n∑
k=0

 1

rk

k∑
j=0

(
k

j

)
(−s)k−j(r + s)jyj

 ak
=

n∑
k=0

 n∑
j=k

(
j

k

)
(−s)j−kr−j(r + s)kaj

 yk
=

(
Dr,sy

)
n

for all n ∈ N, where the matrix Dr,s = (dr,snk) is defined by

dr,snk =


n∑
j=k

(
j
k

)
(−s)j−kr−j(r + s)kaj , 0 ≤ k ≤ n

0 , k > n

for all k, n ∈ N. So, ax = (akxk) ∈ cs whenever x = (xk) ∈ f(Br,s) if and only
if Dr,sy ∈ c whenever y = (yk) ∈ f . This gives us that a = (ak) ∈ {f(Br,s)}β if
and only if Dr,s ∈ (f : c). By combining this and Lemma 1 (ii), we obtain that
a = (ak) ∈ {f(Br,s)}β if and only if

sup
n∈N

∑
k

|dr,snk | <∞,

lim
n→∞

dr,snk = αk for each fixed k ∈ N,
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lim
n→∞

∑
k

dr,snk = α

and

lim
n→∞

∑
k

|∆(dr,snk − αk)| = 0.

As a consequence {f(Br,s)}β = tr,s1 ∩ t
r,s
2 ∩ t

r,s
3 ∩ t

r,s
4 . This completes the proof. �

4. Matrix Classes

In this part, we determine some matrix classes related to the sequence spaces
f(Br,s) and fs(Br,s).
For simplicity of notation, from now on, we use the following connections.

gr,snk =

∞∑
j=k

(
j

k

)
(−s)j−kr−j(r + s)kanj (4.1)

hr,snk =
1

(s+ r)n

n∑
j=0

(
n

j

)
sn−jrjajk (4.2)

for all n, k ∈ N, respectively.

Theorem 8. For a given sequence space X, assume that the infinite matrices
A = (ank), Gr,s = (gr,snk ) and Hr,s = (hr,snk) are connected with the relations (4.1)
and (4.2). Then, the following statements hold.

(i) A ∈ (f(Br,s) : X) ⇔ Gr,s ∈ (f : X) and {ank}k∈N ∈ {f(Br,s)}β for all
n ∈ N,

(ii) A ∈ (X : f(Br,s))⇔ Hr,s ∈ (X : f).

Proof. (i) We suppose that A ∈ (f(Br,s) : X). By considering the fact that f(Br,s)
and f are linearly isomorphic, we take an arbitrary sequence y = (yk) ∈ f , where
y = Br,sx. Then, Gr,sBr,s exists and {ank}k∈N ∈ {f(Br,s)}β for all n ∈ N. This
gives us that {gr,snk}k∈N ∈ `1 for each n ∈ N. Thus, G

r,sy exists and∑
k

gr,snkyk =
∑
k

ankxk

for all n ∈ N, namely Gr,sy = Ax. So, Gr,s ∈ (f : X).
Conversely, we suppose that Gr,s ∈ (f : X) and {ank}k∈N ∈ {f(Br,s)}β for all

n ∈ N. Let us take an arbitrary sequence x = (xk) ∈ f(Br,s). Then, it is clear that
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Ax exists. Also, we have

σ∑
k=0

ankxk =

σ∑
k=0

 1

rk

k∑
j=0

(
k

j

)
(−s)k−j(r + s)jyj

 ank
=

σ∑
k=0

 σ∑
j=k

(
j

k

)
(−s)j−kr−j(r + s)kanj

 yk
for all n ∈ N. By passing to limit as σ → ∞, we deduce that Ax = Gr,sy. This
leads us A ∈ (f(Br,s) : X).
(ii) For any x = (xk) ∈ X, we consider the following equality:

{Br,s(Ax)}n =
1

(r + s)n

n∑
k=0

(
n

k

)
sn−krk(Ax)k

=
∑
k

1

(r + s)n

n∑
j=0

(
n

j

)
sn−jrjajkxk

= {Hr,sx}n
for all n ∈ N. By going to the generalized limit, we obtain that Ax ∈ f(Br,s) if and
only if Hr,sx ∈ f . This completes the proof. �
Now, we list some properties in order to give next lemma. Let A = (ank) be an

infinite matrix of complex numbers.

F − lim
n→∞

ank = αk for all fixed k ∈ N (4.3)

F − lim
n→∞

∑
k

ank = α (4.4)

F − lim
n→∞

n∑
j=0

ajk = αk for all fixed k ∈ N (4.5)

sup
n∈N

∑
k

∣∣∣∆( n∑
j=0

ajk

)∣∣∣ <∞ (4.6)

sup
n∈N

∑
k

∣∣∣ n∑
j=0

ajk

∣∣∣ <∞ (4.7)∑
n

ank = αk for all fixed k ∈ N (4.8)∑
n

∑
k

ank = α (4.9)

lim
n→∞

∑
k

∣∣∣∆[ n∑
j=0

ajk − αk
]∣∣∣ = 0 (4.10)
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lim
ϑ→∞

∑
k

∣∣∣ 1

ϑ+ 1

ϑ∑
j=0

an+j,k − αk
∣∣∣ = 0 uniformly in n (4.11)

lim
ϑ→∞

∑
k

∣∣∣∆[ 1

ϑ+ 1

ϑ∑
j=0

an+j,k − αk
]∣∣∣ = 0 uniformly in n (4.12)

lim
ϑ→∞

∑
k

1

ϑ+ 1

∣∣∣ ϑ∑
i=0

∆
[ n+i∑
j=0

ajk − αk
]∣∣∣ = 0 uniformly in n (4.13)

lim
ϑ→∞

∑
k

1

ϑ+ 1

∣∣∣ ϑ∑
i=0

∆2
[ n+i∑
j=0

ajk − αk
]∣∣∣ = 0 uniformly in n (4.14)

Lemma 2. Let A = (ank) be an infinite matrix of complex numbers. Then, the
followings hold:

(i) A = (ank) ∈ (c : f)⇔ (3.1), (4.3) and (4.4) hold (see [23])
(ii) A = (ank) ∈ (`∞ : f)⇔ (3.1), (4.3) and (4.11) hold (see [24])
(iii) A = (ank) ∈ (f : f)⇔ (3.1), (4.3), (4.4) and (4.12) hold (see [24])
(iv) A = (ank) ∈ (f : cs)⇔ (4.7), (4.8), (4.9) and (4.10) hold (see [26])
(v) A = (ank) ∈ (cs : f)⇔ (3.5) and (4.3) hold (see [25])
(vi) A = (ank) ∈ (cs : fs)⇔ (4.5) and (4.6) hold (see [25])
(vii) A = (ank) ∈ (bs : f)⇔ (3.5), (3.6), (4.3) and (4.13) hold (see [27])
(viii) A = (ank) ∈ (bs : fs)⇔ (3.6), (4.5), (4.6) and (4.13) hold (see [27])
(ix) A = (ank) ∈ (fs : f)⇔ (3.6), (4.3), (4.12) and (4.13) hold (see [28])
(x) A = (ank) ∈ (fs : fs)⇔ (4.5), (4.6), (4.13) and (4.14) hold (see [28])

By combining Lemma 1, relations (4.1), (4.2), Theorem 8 and Lemma 2, the
following results can be given.

Corollary 3. Let us replace the entries of the matrix A = (ank) by those of the
matrix Gr,s = (gr,snk ) in (3.1)-(3.7) and (4.3)-(4.14), then the followings hold:

(i) A = (ank) ∈ (f(Br,s) : c) if and only if {ank}k∈N ∈ {f(Br,s)}β for all
n ∈ N and (3.1), (3.2), (3.3) and (3.7) hold.

(ii) A = (ank) ∈ (f(Br,s) : `∞) if and only if {ank}k∈N ∈ {f(Br,s)}β for all
n ∈ N and (3.1) holds.

(iii) A = (ank) ∈ (f(Br,s) : cs) if and only if {ank}k∈N ∈ {f(Br,s)}β for all
n ∈ N and (4.7), (4.8), (4.9) and (4.10) hold.

(iv) A = (ank) ∈ (f(Br,s) : bs) if and only if {ank}k∈N ∈ {f(Br,s)}β for all
n ∈ N and (4.8) holds.

Corollary 4. Let us replace the entries of the matrix A = (ank) by those of the
matrix Hr,s = (hr,snk) in (3.1)-(3.7) and (4.3)-(4.14), then the followings hold:

(i) A = (ank) ∈ (c : f(Br,s))⇔ (3.1), (4.3) and (4.4) hold,
(ii) A = (ank) ∈ (`∞ : f(Br,s))⇔ (3.1), (4.3) and (4.11) hold,
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(iii) A = (ank) ∈ (f : f(Br,s))⇔ (3.1), (4.3), (4.4) and (4.12) hold,
(iv) A = (ank) ∈ (cs : f(Br,s))⇔ (3.5) and (4.3) hold,
(v) A = (ank) ∈ (bs : f(Br,s))⇔ (3.5), (3.6), (4.3) and (4.13) hold,
(vi) A = (ank) ∈ (fs : f(Br,s))⇔ (3.6), (4.3), (4.12) and (4.13) hold,
(vii) A = (ank) ∈ (cs : fs(Br,s))⇔ (4.5) and (4.6) hold,
(viii) A = (ank) ∈ (bs : fs(Br,s))⇔ (3.6), (4.5), (4.6) and (4.13) hold,
(ix) A = (ank) ∈ (fs : fs(Br,s))⇔ (4.5), (4.6), (4.13) and (4.14) hold.

5. Conclusion

By taking into account the definition of the Binomial matrix Br,s = (br,snk), we
deduce that Br,s = (br,snk) reduces in the case r + s = 1 to the Er = (ernk) which
is called the method of Euler means of order r. So, our results obtained from the
matrix domain of the Binomial matrix Br,s = (br,snk) are more general and more
extensive than the results on the matrix domain of the Euler means of order r.
Moreover, the Binomial matrix Br,s = (br,snk) is not a special case of the weighed
mean matrices. So, the paper fills up a gap in the existent literature.

References

[1] Choudhary, B., Nanda, S., Functional Analysis with Applications, John Wiley & sons
Inc.,New Delhi, 1989.

[2] Maddox, I. J., Elements of Functional Analysis, Cambridge University Press (2nd edition),
1988,

[3] Wilansky, A., Summability Through Functional Analysis, in: North-Holland Mathematics
Studies,vol.85,Elsevier Science Publishers, Amsterdam, Newyork,Oxford,1984.

[4] Lorentz, G.G., A contribution to the theory of divergent sequences, Acta Math. 80(1948),
167—190.

[5] Wang, C. -S., On Nörlund sequence spaces, Tamkang J. Math. 9(1978), 269—274.
[6] Ng, P. -N., Lee, P. -Y., Cesàro sequence spaces of non—absolute type, Comment. Math. (Prace

Mat.) 20(2)(1978), 429—433.
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