Tragopogon abbreviatus (Asteraceae): a little-known species inferred from morphological and molecular analysis

${ }^{1}$ Department of Biology, Faculty of Science, Karadeniz Technical University, Trabzon, Turkey,
${ }^{2}$ Department of Forestry, Dereli Vocational School, Giresun University, Giresun, Turkey,
${ }^{3}$ Department of Biology, Faculty of Arts and Sciences, Recep Tayyip Erdoğan University, Rize, Turkey

Abstract

Tragopogon porrifolius occurs in Turkey with 3 taxonomically confused subspecies: T. porrifolius subsp. eriospermus, T. porrifolius subsp. longirostris, and T. porrifolius subsp. abbreviatus. In the present paper, T. porrifolius subsp. abbreviatus endemic to Turkey is raised at specific level based on morphological and molecular analysis. After detailed assessment of original herbarium specimens and literature studies, we found that this name is not typified yet. Thus, a lectotype is provided together with an emended diagnosis; synonym, distribution map, and conservation status for the first time. Additionally, a preliminary phylogenetic position of this little-known taxon is given on several newly sequenced data.

Key words: Cichorieae, lectotypification, nuclear sequence data, Tragopogon longirostris, T. porrifolius, Turkey

1. Introduction

Tragopogon L. (Asteraceae) includes about 150 species native to Eurasia and known as salsify worldwide (Bremer, 1994; Soltis et al., 2004) and 22 species (25 taxa) in Turkey (Coşkunçelebi et al., 2017). Members of this genus are known as Yemlik or Tekesakalı in Turkish (Güner et al., 2012) and consumed by local people as a source of food (Baytop, 2000). According to Borisova (1964), Blanca and Diaz De La Guardia (1997), and Sukhorukov and Nilova (2015), the members of the Tragopogon are almost impossible to be identified without mature achenes, phyllaries, and ligules colours. However, most of the Turkish taxa including T. porrifolius L. and T. longirostris Sch. Bip. were identified on incomplete specimens in the Flora of Turkey (Matthews, 1975).

Tragopogon longirostris was treated under T. longirostris var. abbreviatus Boiss. and T. longirostris var. brachyphyllum Boiss. by Boissier (1875). Although Boissier (1875) did not give a detailed description in the protologue of T. longirostris var. abbreviatus, he reported that it differs from T. longirostris var. brachyphyllum of achene features. Boissier (1975) also listed T. dshimilensis K.Koch as a synonym under the T. longirostris var. abbreviatus in the protologue of T. longirostris var. abbreviatus. Later Coşkunçelebi et al. (2017) reported that T. dshimilensis is an accepted taxon endemic to Turkey due to differences in

[^0]the ligule colour, presence of the leaf remains at the base of the stem and plant habit. Although Matthews (1975) followed Boissier's view in the Flora of Turkey during the preparation of the Turkish Tragopogon account, this account does not always coincide with current published accounts of the genus Tragopogon (Feinbrun-Dothan, 1978; Dimopoulos et al., 2016). Greuter (2003) transferred T. longirostris under T. porrifolius as subspecies (T. porrifolius subsp. longirostris (Sch. Bip.) Greuter), however he ignored the names T. longirostris var. abbreviatus in his paper about the Euro+Med treatment of Cichorieae (Compositae).

During a taxonomic revision of the Turkish Tragopogon, the authors collected several specimens easily keying out T. longirostris var. abbreviatus according to the Flora of Turkey (Matthews, 1975). Further comparisons based on several morphological features that are important for the genus Tragopogon (Blanca and Diaz De La Guardia, 1997; Sukhorukov and Nilova, 2015) revealed that these samples distinctly differ from T. porrifolius subsp. longirostris (=T. longirostris var. longirostris) and T. porrifolius subsp. eriospermus (Ten.) Greuter (=T. porrifolius var. brachyphyllus Boiss). Although T. longirostris and T. porrifolius (=T. porrifolius var. brachyphyllus Boiss.) were treated as separate species by Matthews (1975) in the Flora of Turkey, Coşkunçelebi and Gültepe (2012)
transferred T. longirostris var. abbreviatus under the T. porrifolius as a subspecies (T. porrifolius subsp. abbreviatus (Boiss.) Coşkunç and M.Gultepe) contrary to Greuter (2003). Besides Gültepe et al. (2016) reported, contrary to Greuter (2003), that T. porrifolius and T. longirostris should be treated as separate species based on molecular data. Correspondingly, the aim of the present study is to identify the authentic material of the name T. longirostris var. abbreviatus and ascertain its taxonomy and provide a preliminary phylogenetic position of this little-known species.

2. Materials and methods

2.1. Morphological studies

The current study was mainly performed on authors' own specimens preserved in Herbarium of Biology Department at Karadeniz Technical University (KTUB) as well as herbarium specimens from the following herbaria (ANK, B, E, EGE, G, GAZI, HUB, ISTE, ISTF, ISTO, KATO, KNYA, LE, TBI, VANF). Detailed locality information of the examined specimens is given in the Appendix. Herbarium acronyms are given according to Index Herbariorum (Thiers, 2019).

All specimens were identified according to the Flora of Turkey (Matthews, 1975), and nomenclature is given according to Coşkunçelebi and Gültepe (2012). Morphological characters were measured from specimens according to Boisser (1875), Matthews (1975), Gültepe (2014), and relevant literature (Borisova, 1964; Richardson, 1976; Rechinger, 1977). All measurements and observations were performed from at least 3 specimens. Outer mature achenes, phyllaries, fruiting, and flowering capitula obtained from herbarium specimens stored at KTUB were drawn and/or photographed under the stereo microscope.

2.2. Red list assessment studies

The threat category has been assessed according to the red list criteria of IUCN (2012) using area of occupancy (AOO), the extent of occurrence (EOO), population numbers, and field observations. A distribution map, calculation of the EOO (km^{2}), and AOO (km^{2}) were carried out by using Geo-Cat (Bachman et al., 2011).

2.3. Molecular studies

Genomic DNAs were extracted from silica-dried leaves following the modified extraction procedure of Doyle and Doyle (1987). Amplification and sequence of nrDNA ITS regions were carried out according to Gültepe et al. (2010). Phylogenetic analyses were performed on the ITS data set consisting of 87 accessions (Table 1), of which 15 were newly generated sequences, 72 sequences were obtained from GenBank and 10 were used as an outgroup provided from Gültepe et al. (2016). For each taxon,
multiple samples were used whenever possible to observe the infra-specific DNA sequence variation and construct a robust phylogenetical analysis. All sequences (85 accessions) were aligned with Bioedit v. 7.0 (Hall, 1999). Phylogenetic relationships were reconstructed using Maximum Parsimony (MP) and Bayesian Inference (BI) analyses. MP analyses were run in PAUP* version 4.0b10 (Swofford, 2003) using heuristic search with the following parameters: all characters have equal weight, gaps are regarded as 'missing', simple addition of sequences, TBR branching swapping, maxtrees setting to 100 and autoincreased by 100 , one nonbinary starting tree arbitrarily dichotomized before branch swapping, only one tree was saved. A majority rule consensus tree was calculated from the most parsimonious trees. Jackknife (JK) support values for the nodes found in the MP analysis were calculated in PAUP* applying the optimal jackknife parameters according to Farris et al. (1996) and Müller (2005) with the following parameters: 10,000 jackknife replicates using the TBR branch swapping algorithm with 36.788% of characters deleted and one tree held during each replicate. Prior to BI analyses, the nucleotide substitution model that best fits the datasets was determined for ITS with MrModeltest 2.3 (Nylander, 2004), following the Akaike Information Criterion (AIC). BI analyses in MrBayes 3.2 (Rounquist et al., 2012) were performed with 4 simultaneous runs of Metropolis-coupled Markov Chains Monte Carlo (MCMCMC), each with 4 parallel Markov chains. Each chain was performed for 20 million generations and, starting with a random tree, one tree was saved every 1000th generation. For other parameters, the default settings of the program were left unchanged. A conservative burn-in of 0.2 (i.e. discarding the first 20% of the trees) was applied. The remaining trees were used to generate a majority-rule consensus tree, and visualized in TreeGrap v. 2 (Stöver and Müller, 2010).

3. Results

3.1. Taxonomy

Tragopogon abbreviatus (Boiss.) Coşkunç. \& M.Gultepe, comb.\&stat. nov. (Figure 1)

Basionym: Tragopogon longirostris var. abbreviatus Boiss., Fl.Orient. 3.745 (1875).

Synonym: Tragopogon porrifolius subsp. abbreviatus (Boiss.) Coşkunç. and M.Gultepe, Türkiye Bitkileri Listesi (Damarlı Bitkiler), 212 (2012), syn. nov.

Lectotype (designed here): Turkey/B2 Manisa: Alaşehir ("Tmoli subra Philadelpbiam") Boisser s.n (G00330030!).

Residual syntypes: C1 Aydın, Aydın Dağı ("in regione subalpina montis Mesogis supra Tralles"), Boisser s.n. (G00330034!), B2 Manisa: Alaşehir ("Tmoli pars superior Alaşehir"), Boisser s.n. (G00330029!), A8 Gümüşhane,

Table 1. Locality information of the taxa using in phylogenetic analysis based on the present (*) and GenBank (**) accessions. MJ: majority-rule consensus tree.

Taxa	Voucher	Code used in the MJ
T. afghanicus Boiss.	M. Ownbey 274243 (WS)	${ }^{* *}$ AY508175
T. albinervis Freyn \& Sint.	V. A. Matthews s.n. (K)	**AY508183
T. armeniacus Kuth.	A. Chechurov s.n. (LE)	${ }^{* *}$ AY645803
T. aureus Boiss.	A. Khochrjakov s. n. (MHA)	${ }^{* *}$ AY645804
T. balcanicus Velen.	A. Khochrjakov s.n. (MHA)	${ }^{* *}$ AY645805
T. bornmuelleri Ownbey \& Rech. f.	K. H. Rechinger 1507 (K)	${ }^{* *}$ AY645806
T. brevirostris DC.	261641	${ }^{* *}$ AY508174
T. coelesyriacus Boiss.	USA, M. Ownbey 274106 (WS)	${ }^{* *}$ AY645809
T. collinus DC.	N. Tzvelev s. n.	${ }^{* *}$ AY645810
T. coloratus C.A.Mey.	E. Nazarova s. n. (ERE)	${ }^{* *}$ AY645811
T. cretaceus S.A.Nikitin	Tzvelev N. N.	**HQ456271
T. crocifolius L.	M. Ownbey 274740 (WS)	${ }^{* *}$ AY508180
T. cupanii DC.	Italy, G. Caruso	${ }^{* *}$ KF050386
T. cupanii DC.	USA, M. Ownbey 274133	${ }^{* *}$ EF374138
T. dasyrhynchus Artemczuk	Russia, E. Mavrodiev field collection,	** AY645812
T. dshimilensis K.Koch	Turkey, Coşkunçelebi \& Gültepe 301	${ }^{*}$ CG301
T. dubjanskyi Krasch. \& S. A. Nikitin	South Russia, E. Mavrodiev	${ }^{* *}$ AY645814
T. dubius Scop.	M. Ownbey 274197 (WS)	${ }^{* *}$ AY645813
T. elongates S.A.Nikitin	V. Bochkin \& I. Rusanovich s. n. (MHA)	${ }^{* *}$ AY645815
T. fibrosus Freyn \& Sint.	A. Khochrjakov s.n. (MHA)	${ }^{* *}$ AY645816
T. filifolius Boiss.	A. Grosshejm s. n. (LE)	${ }^{* *}$ AY645817
T. graminifolius DC.	I.A. Gubanov and P. Meshherjakov (LE 381)	${ }^{* *}$ KF050411
T. hayekii (Soó) I. Richardson	I. B. K.Richardson 175685 (WS)	${ }^{* *}$ AY645818
T. heterospermus Schweigg.	A. Skvortzov s. n. (MHA)	${ }^{* *}$ AY508168
T. jesdianus Boiss. \& Buhse	I. Gubanov \& V. Pavlov s. n. (MW)	${ }^{* *}$ AY645819
T. kemulariae Kuth.	E. Nazarova s. n. 34564E (ERE)	${ }^{* *}$ AY645820
T. kindingeri Adamović	M. Ownbey 251956 (WS)	${ }^{* *}$ AY508178
T. kotschyi Boiss.	K. H. Rechinger s.n. (K)	${ }^{* *}$ AY508181
T. krascheninnikovii S. A. Nikitin	S. Kuthatheladze s. n. (LE)	**AY645821
T. lamottei Rouy	F. Valle \& G. Blanca field collection	${ }^{* *}$ AY645823
T. latifolius Boiss. var. angustifolius	Turkey, Coşkunçelebi \& Gültepe 62 (Dogan et al. 2014)	*CG62
T. longifolius Boiss.	F. Valle \& G. Blanca field collection	${ }^{* *}$ AY645824
T. longirostris Sch. Bip.	USA, M. Ownbey 274106 (WS)	${ }^{* *}$ AY508185
T. longirostris Sch. Bip. var. longirostris	Turkey, GAT-bg250	**AJ633502
T. makaschwilii Kuth.	S. Kuthatheladze s. n. (LE)	${ }^{* *}$ AY645826
T. marginatus Boiss. \& Buhse	S. Kuthatheladze s. n. (LE)	${ }^{* *}$ AY645827
T. meskheticus Kuth.	D. Sosnovsky s. n. (LE)	${ }^{* *}$ AY645828
T. minor Mill.	1373086 (USN)	${ }^{* *}$ AY508184
T. mirus Ownbey	USA, 2602 Palouse, WA	${ }^{* *}$ AY458587
T. mirus	F.H. Montgomery, W. Shumovich	${ }^{* *}$ MG220248
T. montanus S. A. Nikitin	K. H. Rechinger s.n (K)	${ }^{* *}$ AY508172
T. nachitschevanicus Kuth.	Azerbaijan, s.n. (LE)	**KF050432

Table 1. (Continued).

T. orientalis L.	M. Ownbey 274728 (WS)	${ }^{* *}$ AY508170
T. olympicus Boiss.	Turkey, Coşkunçelebi \& Gültepe 483	${ }^{* *}$ AY645829
T. podolicus (DC.) S. A. Nikitin	V. A. Sagalaev s. n. (VOLG)	**AY645831
T. porrifolius L. s.l.	USA, 25954 (WS)	${ }^{* *}$ EF374149
T. porrifolius s.l.	USA, 359086 (WS)	${ }^{* *}$ EF374152
T. porrifolius s.l.	USA, 291688 (WS)	${ }^{* *}$ EF374154
T. porrifolius s.l.	USA, 37281 (KANU)	**EF374158
T. porrifolius s.l.	USA, 152714 (KANU)	${ }^{* *}$ EF374161
T. porrifolius s.l.	United Kingdom, Cultivated. Mammoth. Unwins Seeds Ltd.	${ }^{* *}$ EF374168
T. porrifolius s.l.	Spain, J. G. A. Reader, Botanical Museum (O)	${ }^{* *}$ EF374172
T. porrifolius s.l.	Sweden, A. Nordstrom s.n.	${ }^{* *}$ EF374178
T. porrifolius s.l.	Turkey, G. Bocquet 2341	**EF374184
T. porrifolius s.l.	USA, Soltis and Soltis collections 2611-2	${ }^{* *}$ EF374209
T. porrifolius s.l.	Canary Islands, M. Ownbey 427 (WS)	${ }^{* *}$ EF374210
T. porrifolius L. subsp. abbreviatus (Boiss.) Coşkunç. \& M.Gultepe	Turkey, Coşkunçelebi \& Gültepe 184	*CG184
T. porrifolius subsp. abbreviatus	Turkey, Coşkunçelebi \& Gültepe 188	${ }^{*}$ CG188
T. porrifolius subsp. abbreviatus	Turkey, Coşkunçelebi \& Gültepe 302	*CG302
T. porrifolius subsp. abbreviatus	Turkey, Coşkunçelebi \& Gültepe 337	${ }^{*}$ CG337
T. porrifolius subsp. abbreviatus	Turkey, Coşkunçelebi \& Gültepe 345	*CG345
T. porrifolius L. subsp. australis	Cyprus, Jurg Rothlisberger s.n	${ }^{* *}$ EF374213
T. porrifolius L. subsp. eriospermus (Ten.) Greuter	Turkey, Coşkunçelebi \& Gültepe 178	${ }^{*}$ CG345
T. porrifolius subsp. eriospermus	Turkey, Coşkunçelebi \& Gültepe 438	${ }^{*} \mathrm{CG438}$
T. porrifolius subsp. eriospermus	Turkey, Coşkunçelebi \& Gültepe 436 (Gültepe et al. 2015)	${ }^{*} \mathrm{CG436}$
T. porrifolius L. subsp. longirostris (Sch.Bip.) Greuter	Turkey, Coşkunçelebi \& Gültepe 168 (Dogan et al. 2014)	*CG168
T. porrifolius subsp. longirostris	Turkey, Coşkunçelebi \& Gültepe 69	*CG69
T. porrifolius subsp. longirostris	Turkey, Coşkunçelebi \& Gültepe 122	${ }^{*} \mathrm{CG122}$
T. porrifolius subsp. longirostris	Turkey, Coşkunçelebi \& Gültepe 179	*CG179
T. pratensis L.	USA, M. Ownbey 208347 (WS)	**AY508167
T. pterocarpus DC.	Azerbaijan, E. Nazarova (LE)	${ }^{* *}$ EU124006
T. pterodes Petrović	Turkey, Coşkunçelebi \& Gültepe 52 (Gültepe et al. 2015)	${ }^{*}$ CG52
T. pusillus M. Bieb.	S. Lipshitz s. N. (LE)	**AY645830
T. rechingeri Ownbey	Iran, P. Wendelbo 15553 (W)	${ }^{* *}$ EU391835
T. reticulatus Boiss. \& Huet.	E. Nazarova 907 (ERE)	**AY645832
T. ruber S. G. Gmel.	Russia, E. Mavrodiev Field Collection	**AY645833
T. ruthenicus Krasch. \& S. A. Nikitin	Russia, E. Mavrodiev Field Collection	${ }^{* *}$ AY645834
T. samaritanii Boiss.	M. Ownbey 274420 (WS)	**AY645835
T. segetus Kuth.	T. Popova s. n. (LE)	**AY645836
T. serotinus Sosn.	S. Kuthatheladze s. n. (LE)	${ }^{* *}$ AY645837
T. sinuatus Avé-Lall.	USA, M. Ownbey 274232 (WS)	${ }^{* *}$ EF374224
T. sinuatus	M. Ownbey 274442 (WS)	${ }^{* *}$ EF374221
T. sinuatus	M. Ownbey 274133 (WS)	**AY645838
T. sosnowskyi Kuth.	Caucasus 1830 det S. Kuthatheladze s.n. (LE)	**AY645839
T. tommasinii Sch. Bip.	M. Ownbey 274702 (WS)	**AY645842
T. trachycarpus S.A. Nikitin	I. A. Gubanov s.n. (MW)	**AY508177
T. undulatus Jacq.	N. K. Schvedchikova s. n (MW)	**AY508171

Figure 1. Tragopogon abbreviatus (=Tragopogon porrifolius subsp. abbreviatus) (Coşkunçelebi \& M. Gültepe 337). a. Achene drawing. b. Fruiting capitula. c. Flowering capitula d. Phyllaries e. Achene.
uncultivated areas ("champs incultes à Gumusch-khané"), Bourgeau 403 (G00330032!).

Emended description

Sparsely floccose to glabrous, biennial $24-92 \mathrm{~cm}$ tall, stem branched, base of stem without fibrous leaf remains. Cauline leaves $3.5-33 \times 0.25-1.0 \mathrm{~cm}$, linear or linear to lanceolate with flat margin; basal leaves 3.5-35 $\times 0.20-0.5$ cm , linear with flat margin. Peduncles thickened below capitula, involucre sparsely floccose or not. Phyllaries 8 , $20-35 \times 1.8-4.0 \mathrm{~mm}$ in flower and $38-60 \times 3.0-8 \mathrm{~mm}$ in fruit, lanceolate, acute, longer than flowers. Ligules purple, $19-24 \mathrm{~mm}$ long. Achenes (with beak) 19-35 mm long, with 5 longitudinal rows of separate scales and 5 rows of shorter scales between; beak sulcate and 9-19 mm long, equally or longer than achene body and clavate at apex. Pappus $20-30 \mathrm{~mm}$ long, pale greyish-brown or straw colour, annulus hairy.

Phenology: Flowering in April-July, fruiting in MayJuly

Habitat: T. abbreviatus grows in cultivated fields, roadside, graveyards, hill side, and under Pinus brutia Ten. Forest between 170 and 1150 m above sea level.

Chorotype: Endemic to Turkey
Distribution: North, west and south-west of Turkey (Figure 2).

Vernacular name: Çayır yemliği (Güner at al., 2012)

Lectotypification

After critical examinations on specimens and literature study, we found that the name T. longirostris var.
abbreviatus has not been typified up to now according to ICN, Article 9.2 (McNeill et al., 2012). Although Boissier (1875) included 7 specimens in the protologue, further examination revealed that 4 of them belong to T. longirostris var. abbreviatus, 1 specimen belongs to T. dshimilensis and 1 specimen to T. longirostris var. brachyphyllum. In the present study, the sheets stored at G are being taken into account while typifying T. longirostris var. abbreviatus (=T. abbreviatus). Authentic specimens stored at G are now available online via JSTOR Global Plants (JSTOR, 2019). All characteristics of Boissier's specimens (G00330029!, G00330030!, G00330032!, G00330034!) coincide with the description in the protologue. Also, there are special labels on the sheets written by either collectors or Boissier (1875). Thus, all these samples can be considered as authentic materials according to ICN, Article 9.3 (McNeill et al., 2012). However, for the specimen (G00330030!) collected from B2 Manisa: Alaşehir ("Tmoli subra Philadelpbiam"), Boisser s.n is more complete and in a better conservation status. Therefore, it has been selected as the lectotype in the present study (Figure 3).

Key to Tragopogon abbreviatus and related species
T. abbreviatus and related taxa may be inserted in the key adapted from the Flora of Turkey and the East Aegean Islands (Matthews, 1975).
4. Peduncles thickened below flowering capitula
6. Capitula 3-5 cm length; pappus purplish T. coloratus
6. Capitula (5-) $6-11 \mathrm{~cm}$ length; pappus greyishbrown

Figure 2. Distribution map of the Tragopogon abbreviatus in Turkey.
7. Plant perennial, less than 12 cm \qquad T. subacaulis
7. Plant annual or biennial, more than 12 cm
8. Achene beak not clavate at apex \qquad T. porrifolius
8. Achene beak clavate at apex
9. Phyllaries 8, achene with 5 longitudinal rows of separate scales and 5 rows of shorter scales between \qquad

T. abbreviatus

9. Phyllaries 5-8, achene with ten longitudinal rows of short separate scales
T. longirostris

3.2. Conservation status

T. abbreviatus was recorded from more than 14 localities in Turkey (Figure 2). Each population consists of sufficient number of mature plant individuals. There is no specific threat in the habitat; the habitat is qualitatively good and far from human activities. Additionally, the AOO and EOO are $27,500 \mathrm{~km}^{2}$ and $290,157 \mathrm{~km}^{2}$, respectively. Thus, it should be assessed as the least concern (LC) in the present paper.

3.3. Molecular analysis

The aligned data matrix of the ITS region of rDNA (ITS1, 5.8 S , ITS2) consists of 687 characters, of which 332 are constant and 205 are parsimony-informative sites including outgroups. Specimens belonging to T. abbreviatus have C and A at the position of 512 and 516, respectively. However, the rest examined Tragopogon taxa including T. porrifolius and T. coelesyriacus clades consisting of nucleotides A and G at the same sites. Bayesian phylogram (majority rule consensus tree) of Tragopogon based on ITS with JK
support values is presented in Figure 4. According to this phylogram, members of Tragopogon were separated from out-group ($\mathrm{PP}=1, \mathrm{JK}=100$) and fell in 4 distinct subgroups ($\mathrm{PP}=1.00, \mathrm{JK}=100$). The examined specimens treated under T. porrifolius before this study were grouped in the same clade in Subgroup I with good supports ($\mathrm{PP}=1.00$, $\mathrm{JK}=64$). However, individuals belonging to T. porrifolius subsp. eriospermus, T. abbreviatus and T. porrifolius subsp. longirostris were discriminated from each other in the phylogenetic tree.

4. Discussion

T. abbreviatus was firstly described as a variety of T. longirostris based on specimens of Boissier, Bourgeau, Calvert, and Koch collected from different parts of Turkey. Although Boisser (1875) did not specify collection details, i.e. collection date, collector number and herbarium, in the protologue, he noted that the beak of T. longirostris var. abbreviatus was scarcely longer ("rostrum achenio vix longius"), not well 2 times longer ("vel duplo longius") as in the T. longirostris var. longirostris. The authentic material of the name is currently stored at G, but a critical examination of these specimens revealed that 4 of them (G 00330029!, G 00330030!, G 00330032!, G 00330034!) clearly belong to T. abbreviatus due to achene traits and general habitus. However, specimen collected from A8 Erzurum, Tortum ("in Armenia circa Turtum", Calvert s.n., G [G00330031!]) differs from the rest of the cited specimens due to unbranched stem and the number of

Figure 3. Lectotype of T. abbreviatus stored at G.
phyllaries (6 digit), so it was identified as T. longirostris var. longirostris ($=$ T. porrifolius subsp. longirostris) in the present study. The specimens stored at P (P 00720169
photo!) and B (B 100093737!) collected from A8 Rize: Cimil (Ponto Lazico) listed under name of T. longirostris var. abbreviatus by Matthews (1975) were identified as

Figure 4. Bayesian phylogram (majority rule consensus tree) of Tragopogon taxa based on ITS dataset. Support values: Bayesian posterior probability (PP) above branches maximum parsimony jackknife (JK) below branches, dashes (-) designate no supports. Purple and yellow indicate flower colours.
T. dshimilensis K.Koch by Coşkunçelebi et al. (2017). Additional specimens of P.H. Davis (D. 44523 (E!)) and Trelawny (Trelawny 1003 (E!)) listed under the name of T. longirostris var. abbreviatus by Matthews (1975) in the Flora of Turkey were also identified in the present study as T. reticulatus Boiss. \& Huet and T. pterocarpus DC, respectively.

Tragopogon abbreviatus is morphologically related to T. longirostris var. longirostris and T. porrifolius subsp. eriospermus. Although the length of achene beak of T. abbreviatus is shorter than the closely related taxa, achene beak of T. abbreviatus (Figure 1) and T. porrifolius subsp. eriospermus (Figure 5) is straight and stout contrary to T. porrifolius subsp. longirostris (Figure 6) characterized

Figure 5. Tragopogon porrifolius subsp. eriospermus (Coşkunçelebi \& Gültepe 178) a. Achene drawing. b. Fruiting capitula. c. Flowering capitula d. Phyllaries e. Achene.

Figure 6. Tragopogon porrifolius subsp. longirostris (Coşkunçelebi \& M. Gültepe 112) a. Achene drawing. b. Fruiting capitula. c. Flowering capitula d. Phyllaries e. Achene.

Table 2. Character comparison of Tragopogon abbreviatus with related species.

Traits	T. abbreviatus	T. porrifolius subsp. longirostris	T. porrifolius subsp. eriospermus	T. dshimilensis
Habit	Biennial	Biennial	Annual or biennial	Perennial
Stem	$24-92 \mathrm{~cm}$, branched	12-120 cm, branched	$24-76 \mathrm{~cm}$, branched	23-80
Peduncle	Thickened below capitula, involucre sparsely floccose or not at base	Thickened below capitula, involucre sparsely floccose or not at base	Thickened below capitula, involucre sparsely floccose or not at base	Not or slightly thickened, involucre floccose
Leaves	Cauline leaves 3.5-33× $0.25-1.0 \mathrm{~cm}$, linear or linear to lanceolate with flat margin; basal leaves $3.5-35 \times 0.20-0.5 \mathrm{~cm}$, linear with flat margin	Cauline leaves $5-26 \times$ $0.24-1.2 \mathrm{~cm}$, linear or linear to lanceolate with flat margin; basal leaves $11-25 \times 0.27-0.9 \mathrm{~cm}$, linear with flat margin	Cauline leaves 4-17x $0.65-1.8 \mathrm{~cm}$, linear or linear to lanceolate with flat margin; basal leaves $14-29 \times 0.4-1.0 \mathrm{~cm}$, linear with flat margin	Cauline leaves $5.0-8.5 \times$ $0.5-2.5 \mathrm{~cm}$, lanceolate/ ovate, margin flat, basal leaves $14-30 \times 0.35-1.0$ cm , lanceolate, margin flat.
Phyllaries	$8,20-35 \times 1.8-4.0 \mathrm{~mm}$ in flower and 38-60 $\times 3.0-8$ mm in fruit lanceolate, acute, longer than flowers	$5-8,22-37 \times 2.5-6.0$ mm in flower and 42-95 $\times 4.5-15 \mathrm{~mm}$ in fruit lanceolate, acute, longer than flowers	8-9, 20-32 $\times 2.3-5.5$ mm in flower and 45-63 $\times 4.2-7.8 \mathrm{~mm}$ in fruit lanceolate, acute, longer than flowers	$7-11,18-30 \times 2.5-4.3$ mm in flower and $14-40$ $\times 2.7-6 \mathrm{~mm}$ in fruit, lanceolate, acute, equal to or shorter than flowers.
Ligules	19-24 mm, purple	8-16 mm, purple	$13-18 \mathrm{~mm}$, purple	17-25 mm, yellow
Achene	19-35 mm, with five longitudinal rows of separate scales and five rows of shorter scales between	29-54 mm, with ten longitudinal rows of short separate scales	$35-47 \mathrm{~mm}$, with ten longitudinal rows of short separate scales	$17-25 \mathrm{~mm}$, with 10 longitudinal rows of slightly unequal scales
Beak	9-19 mm long, equal to or longer than achene body and clavate at apex	17-34 mm, sulcate, longer than achene body and clavate at apex	14-27 mm, not sulcate, equal, shorter or longer than achene body and not clavate at apex	5-13 mm long, equal or shorter than achene body and clavate at apex.
Annulus	Hairy	Hairy	Hairy	Hairy
Pappus	$20-30 \mathrm{~mm}$, pale greyishbrown or straw coloured	$23-35 \mathrm{~mm}$, pale greyishbrown or straw coloured	25-35 mm, pale greyishbrown or straw coloured	Pappus $15-25 \mathrm{~mm}$ long, fawn-coloured
Achene type according to Sukhorukov \&Nilova (2015)	Group V, but shorter achene length	Group V	Group V, but beak not angled	Group VII and Group VIII

by a thinner and sometimes curved beak as well (Table 2). Additionally, the achene beak is typically sulcate in T. longirostris var. longirostris and T. abbreviatus (Figure 1, Figure 6), and not sulcate in T. porrifolius subsp. eriospermus (Figure 5). More detailed morphological comparisons are given in Table 2.

According to Gültepe et al. (2015), the chromosome number of T. abbreviatus is $2 n=2 x=12$ based on 4 different specimens. However, detailed morphological investigations of these specimens stored at KTUB revealed that none of them belong to T. abbreviatus. Pollen
grains with oblate spheroidal shape were reported in T. abbreviatus by Gültepe et al. (2018) based on specimens collected from Muğla: Seki, Coşkunçelebi \& M. Gültepe 345! (Appendix).

The present phylogenetic analysis is a preliminary study examining a large number of Tragopogon accessions from Turkey. The molecular phylogenetic analysis based on the ITS data set with multiple sampling supported the monophyly of the genus Tragopogon as indicated in recent molecular studies (Mavrodiev et al., 2004; 2005). ITS dataset also confirmed that the genus Tragopogon is
distinct from the closely related genus Gerepogon L. and other members of Subtribe Scorzonerinae as stated by Mavrodiev et al. (2004). As seen in Figure 4, 4 subgroups appeared in the phylogenetic tree. All sub-groups consist of yellow and/or purple-flowered species. Similarly, both (all) sub-groups are not discriminated on features of peduncles below the capitula (all sub-groups consist of swollen peduncles). According to the phylogenetic tree, 5 accessions belonging to the T. abbreviatus are clustered with strong support ($\mathrm{PP}=1.00, \mathrm{JK}=93$). Thus, present phylogenetic tree inferred from the dataset of our own and GenBank support the status of T. abbreviatus as a distinct species, and also distinguish T. longirostris var. longirostris from T. porrifolius as previously suggested by Greuter (2003). Gültepe et al. (2016) also made similar taxonomical comment about T. longirostris var. longirostris. As seen in molecular phylogenetic tree (Fig. 4), T. longirostris and T. coelesyriacus (Boissier, 1849) are sister taxa so 2 of them should be treated under the name of T. coelesyriacus takes priority over that the names of T. longirostris (Feinbrun-Dothan, 1978; Dimopoulos et al., 2016). Besides, morphological examination of the holotype of T. coelesyriacus stored at G-Boiss (G00330023 photo!) shows that it belongs to T. longirostris as stated by Boissier (1875). However, T. coelesyriacus clade consists of 2 recently accepted taxa T. porrifolius subsp. australis, T. porrifolius subsp. longirostris and T. krascheninnikovii (Nikitin, 1933) proposed as a synonym to T. longirostris by

References

Bachman S, Moat J, Hill AW, De Torre J, Scott B (2011). Supporting Red List threat assessments with GeoCAT: geospatial conservation assessment tool. ZoeKeys 150:117-126.

Baytop T (2000). Anadolu dağlarında 50 yıl: Bir bitki avcısının gözlemleri, Nobel Tıp kitabevi, İstanbul (in Turkish).
Blanca G, Diaz De La, Guardia C (1997). Fruit morphology in Tragopogon L. (Compositae: Lactuceae) from the Iberian Peninsula. Botanical Journal of Linnean Society 125: 319-329. doi: 10.1006/bojl.1997.0117
Boissier EP (1849). Tragopogon L. In: Boissier EP (editor). Diagnosus Plantarum Orientalium Novarum, Vol.11. Typis Marci Ducloux et Cons, Parisiis. pp. 47-48
Boissier EP (1875). Tragopogon L. In: Boissier EP (editor). Flora Orientalis, Vol.3. H. Georg., Basileae, pp. 744-755.

Borisova AG (1964). Tragopogon L. In: Bobrov EG and Tzvelev NN (editors). Flora of USSR Compositae Tribe Cichorieae, Vol.29. Smithsonian Institution Libraries, Washington D.C., pp. 115196,
Bremer K (1994). Asteraceae: Cladistics and Classification. Portland, OR, USA: Timber Press.

Rechinger (1977). It looks that the T. coelesyriacus clade is a monophyletic complex including several unresolved taxa so further studies need to solve the infraspecific taxonomy of this clade (Fig. 4).

Additionally, as seen in the phylogenetic tree (Figure 4), some representatives of T. porrifolius were aggregated into Subgroup I and rest of accessions are appeared in polytomy. This situation coincides with the view of Mavrodiev et al. (2007), who indicated that T. porrifolius is a polyphyletic complex based on combined ITS and ETS datasets. Present findings also supplied additional molecular evidence for T. dshimilensis, previously accepted as a synonym of T. abbreviatus by Boissier (1875). As seen in Figure 4, T. dshimilensis is located in the Subgroup II with strong support ($\mathrm{PP}=1.00, \mathrm{JK}=$ 61) rather than T. abbreviatus. In conclusion, the present study has shown that T. abbreviatus, T. porrifolius subsp. longirostris and T. coelesyriacus are not the members of T. porrifolius complex contrary to what stated in Greuter (2003). Besides, this complex includes in Turkey only T. porrifolius subsp. eriospermus contrary to what reported by Coşkunçelebi and Gültepe (2012).

Acknowledgements

The authors express thanks to TÜBİTAK (TBAG110T954) for financial support, curators of G and B for kindly helping during the studies in the herbaria and anonymous referee for valuable comments.

Coşkunçelebi K, Gültepe M (2012). Tragopogon L. In: Güner A, Aslan S, Ekim T, Vural M, Babaç MT (editors). A checklist of the Flora of Turkey (Vascular Plants). İstanbul, Turkey: Nezahat Gökyiğit Botanik Bahçesi ve Flora Araştırmaları Derneği Yayını, pp. 211-212.
Coşkunçelebi K, Gültepe M, Makbul S. (2017). Rediscovery of Tragopogon dshimilensis (Asteraceae) endemic to Turkey. Phytotaxa 316: 51-58. doi: 10.11646/phytotaxa.316.1.4

Dimopoulos P, Raus T, Bergmeier E, Constantinidis T, Gregoris I et al (2016). Vascular plants of Greece: An annotated checklist. Supplement, Willdenowia 46: 301-347.

Dogan B, Duran A, Gültepe M, Öztürk M, Coşkunçelebi K (2014). Tragopogon anatolicus, a new species from east Turkey. Phytotaxa 167: 234-244. doi 10.11646/phytotaxa.167.3.2

Doyle JJ, Doyle JL (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19: 11-15.

Farris JS, Albert VA, Källersjö M, Lipscomb D, Kluge AG (1996). Parsimony jackknifing outperforms neighbor-joining. Cladistics 12: 99-124. doi: 10.1006/clad.1996.0008

Feinbrun-Dothan N (1978). Flora Palestina, Vol. 3. The Israel Academy of Sciences and Humanities, Jerusalem, pp. 421-423.

Greuter W (2003). The Euro + Med treatment of Cichorieae (Compositae): generic concepts and required new names. Willdenowia 33: 229-238. doi: 10.3372/wi.33.33201

Gültepe M, Uzuner U, Coşkunçelebi K, Beldüz AO, Terzioğlu S (2010). Internal transcribed spacer (ITS) polymorphism in the wild Primula L. (Primulaceae) taxa of Turkey. Turkish Journal of Botany 34: 147-157. doi: 10.3906/bot-0905-23

Gültepe M (2014). Türkiye Tragopogon L. (Asteraceae) taksonlarının biyosistematik yönden incelenmesi. Doktora Tezi, Karadeniz Teknik Üniversitesi, Trabzon, Türkiye.
Gültepe M, Coşkunçelebi K, Makbul S, Vladimirov V (2015). Chromosome counts of TragopogonL. (Asteraceae) from Turkey. Caryologia 68: 193-199. doi: 10.1080/00087114.2015.1032608
Gültepe M, Coşkunçelebi K, Makbul S, Terzioğlu S (2016). Taxonomic notes on Tragopogon, and two newly described taxa from Anatolia. Nordic Journal of Botany 34: 529-537. doi: 10.1111/njb.01133, ISSN 1756-1051

Gültepe M, Makbul S, Okur S, Coşkunçelebi K (2018). Contribution to the pollen morphology of Tragopogon (Asteraceae) in Turkey. Phytotaxa 361 (2): 168-182. doi: 10.11646/phytotaxa.361.2.3

Güner A, Aslan S, Ekim T, Vural M, Babaç MT (2012). A checklist of the Flora of Turkey (Vascular Plants). İstanbul, Turkey: Nezahat Gökyiğit Botanik Bahçesi ve Flora Araştırmaları Derneği Yayını.

Hall TA (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acid Symposium Series 41: 95-98.
IUCN (2012). Guidelines for application of IUCN Red List criteria at regional and national levels, ver. 4.0. IUCN Species Survival Commission.

Matthews VA (1975). Tragopogon L. In: Davis PH (editor). Flora of Turkey and the East Aegean Islands, Vol. 5. Edinburgh, UK: Edinburgh University Press, pp. 657-668.

Mavrodiev EV, Edwards CE, Albach DC, Gitzendanner MA, Soltis PS et al. (2004). Phylogenetic relationships in subtribe Scorzonerineae (Asteraceae, Cichorioideae, Cichorioieae) based on ITS sequence data. Taxon 53: 699-712. doi: 10.2307/4135445

Mavrodiev EV, Tancig M, Sherwood AM, Gitzendanner MA, Rocca J et al. (2005). Phylogeny of Tragopogon L. (Asteraceae) based on internal and external transcribed spacer sequence data. International Journal of Plant Sciences 166: 117-133. doi: 10.1086/425206

Mavrodiev EV, Soltis PS, Gitzendanner MA, Baldini RM, Soltis DE (2007). Polyphyly of Tragopogon porrifolius L. (Asteraceae), a European native with intercontinental disjuncts. International Journal of Plant Sciences 168: 889-904. doi:10.1086/518258

McNeill J, Barrie FR, Buck WR, Demoulin V, Greuter W et al.(2012). International Code of Nomenclature for algae, fungi and plants (Melbourne Code) adopted by the eighteenth international botanical congress Melbourne, Australia. Königstein, Germany: Koeltz Scientific Books.

Müller K (2005). The efficiency of different search strategies in estimating parsimony jackknife, bootstrap, and Bremer support. BMC Evolutionary Biology 5: 58. doi: 10.1186/1471-2148-5-58

Nikitin SA (1933). Tragopogon krascheninnikovii S. Nik. sp. n. Acta Instituti Botanici Academiae Scienitiarum 1 (1): 191.
Nylander J (2004). MrModeltest, version 2. Evolutionary Biology Centre, Uppsala University.

Rechinger KH (1977). Tragopogon L. In: Rechinger KH (editor). Flora Iranica, Vol 122. Akademische Druck und Verlagsanstalt, Graz, pp. 83-120.

Richardson IBK (1976). Tragopogon L. In: Tutin TG, Heywood VH, Burges NA, Moore DM., Valentine DH et al. (editors). Flora Europaea, Vol. 4. Cambridge, UK: Cambridge University Press, pp. 322-326.
Ronquist F, Teslenko M, Van der Mark P, Ayres DL, Darling A et al. (2012). MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space. Systematic Biology 61: 539-542. doi: 10.1093/sysbio/sys029
Soltis DE, Soltis PS, Pires JC, Kovarik A, Tate JA et al. (2004). Recent and recurrent polyploidy in Tragopogon (Asteraceae): Cytogenetic, genomic and genetic comparision. Botanical Journal of Linnean Society 82 (4): 485-501. doi: 10.1111/j.10958312.2004.00335.x

Stöver BC, Müller KF (2010). TreeGraph 2: Combining and Visualizing Evidence from Different Phylogenetic Analyses. BMC Bioinformatics 11: 7. doi: 10.1186/1471-2105-11-7
Sukhorukov AP, Nilova MV (2015). Carpology of the genus Tragopogon L. (Asteraceae). Phytotaxa 201 (1): 27-49. doi: 10.11646/ phytotaxa. 201.1.2

Swofford DL (2003). PAUP*. Phylogenetic Analysis Using Parsimony. Sinauer Associates, Sunderland MA.

Thiers BM (2019). Index Herbariorum: A global directory of public herbaria and associated staff. New York Botanical Garden's Virtual Herbarium.

Appendix. Examined specimens in the present study.
Tragopogon abbreviatus: A1 Edirne: Keşan, 5 km southeast of Bahçeköy, 165 m, 20 May 2012, Coşkunçelebi \& M. Gültepe 337 (KTUB), $40^{\circ} 44^{\prime} \mathrm{N}, 026^{\circ} 40^{\prime} \mathrm{E} ;$ A1 Çanakkale: Gelibolu, above Yalova Village, near graveyard, 71 m , 02 Jun 2011, Coşkunçelebi \& M. Gültepe 184 (KTUB), $40^{\circ} 15^{\prime} \mathrm{N}, 026^{\circ} 24^{\prime} \mathrm{E}$; A1 Çanakkale: Gelibolu, above Yalova Village, 110 m, 18 May 2013, Coşkunçelebi \& M. Gültepe 338 (KTUB), $40^{\circ} 16^{\prime} \mathrm{N}, 026^{\circ} 24^{\prime}$ E; Between Gelibolu and Keşan, Koru Mountain, 246 m, 18 May 2013, Coşkunçelebi \& M. Gültepe 441 (KTUB), $40^{\circ} 42^{\prime} \mathrm{N}, 026^{\circ} 47^{\prime} \mathrm{E} ; \mathrm{A} 1$ Tekirdağ: Between Sofuköy and Şarköy, $222 \mathrm{~m}, 03$ Jun 2011, Coşkunçelebi \& M. Gültepe 188 (KTUB), $\mathrm{N} 40^{\circ} 38^{\prime} \mathrm{N}$, $027^{\circ} 00^{\prime}$ E; Between Barbaros and Kumbağ, Mürefte road, 361 m, 29 Jun 2011, Makbul 302 \& Coşkunçelebi (KTUB) $40^{\circ} 50^{\prime} \mathrm{N}, 027^{\circ} 25^{\prime}$ E A2 Bursa: Gürsu, between Narlıdere and Kayacık, 341 m, 01 Jun 2011, Coşkunçelebi \& M. Gültepe 177 (KTUB), $40^{\circ} 15^{\prime} \mathrm{N}, 029^{\circ} 18^{\prime} \mathrm{E}$; C2 Muğla: Between Aydın and Muğla, 458 m , Pinus sp. clearence, 19 May 2011, Coşkunçelebi \& M. Gültepe 161 (KTUB), $37^{\circ} 22^{\prime} \mathrm{N}, 028^{\circ} 08^{\prime} \mathrm{E}$; C2 Muğla: Seki, ski center road separation, roadsides, 1152 m, 23 May 2012, Coşkunçelebi \& M. Gültepe 345 (KTUB), $36^{\circ} 48^{\prime} \mathrm{N}, 029^{\circ} 38^{\prime}$ E; A5 Sinop: Kargı, under Kös Mountain, sandy, gravelly hills, 400 m, 01 Jul 1969, Tobey 2726 (E), $41^{\circ} 81^{\prime} \mathrm{N}, 34^{\circ} 26$

Tragopogon porrifolius subsp. eriospermus: A1 Çanakkale: Gökçeada, between city center and the hill of Sedef, 10 m, 5 May 1975, Ö. Seçmen 349 (EGE); Bozcaada, 1 km from the city center, main road, $5 \mathrm{~m}, 13$ April 1977, Ö. Seçmen 2374 (EGE); A2 (E) İstanbul: Sarıyer, Belgrad Forest, 1951, İ. Akbaş (ISTO); A2 Bursa: Mudanya, southern of Mudanya, $237 \mathrm{~m}, 02$ Jun 2011, $40^{\circ} 21^{\prime} \mathrm{N}$, $028^{\circ} 52^{\prime} \mathrm{E}$, Coşkunçelebi \& M. Gültepe 178 (KTUB); Mudanya, above Mudanya, clearence of Olea europae L. 326 m, 18 May 2012, $40^{\circ} 21^{\prime} \mathrm{N}, 028^{\circ} 50^{\prime} \mathrm{E}$, Coşkunçelebi \& M. Gültepe 328 (KTUB); Mudanya, between Mudanya and Zeytinbağı (Trilye), roadsides, $50 \mathrm{~m}, 17$ May 2013, $40^{\circ} 22^{\prime} \mathrm{N}, 028^{\circ} 49^{\prime} \mathrm{E}$, Coşkunçelebi \& M. Gültepe 435 (KTUB); Mudanya, Zeytinbağı (Trilye), $72 \mathrm{~m}, 17$ May $2013,40^{\circ} 22^{\prime} \mathrm{N}, 028^{\circ} 47^{\prime} \mathrm{E}$, Coşkunçelebi \& M. Gültepe 436 (KTUB); Mudanya, above Çepni Village, meadows, 484 $\mathrm{m}, 17$ May 2013, $40^{\circ} 20^{\prime} \mathrm{N}, 028^{\circ} 49^{\prime} \mathrm{E}$, Coşkunçelebi \& M. Gültepe 438 (KTUB); B1 Balıkesir: Ayvalık, Alibey island, Patriça, Ayışığı Monastery, 10 m, 17 April 1998, K. Alpınar 75065 (ISTE) , Ayvalık, Pınar island, 5 m, 10 May 1996, K. Alpınar 71778 (ISTE); B1 İzmir: Bergama, 400 m Dudley (D.34839) (E); Italy: In pascuis = Agnano, 1830, Gay, J. s.n. (K000797303 photo).

Tragopogon porrifolius subsp. longirostris (=T. longirostris var. longirostris): A1 Çanakkale: between Biga and Lapseki, Lapseki, roadsides, $74 \mathrm{~m}, 02$ Jun 2011, 40° $21^{\prime} \mathrm{N}, 028^{\circ} 52^{\prime} \mathrm{E}$, Coşkunçelebi \& M. Gültepe 181 (KTUB); Gelibolu to İstanbul, $55 \mathrm{~m}, 03$ Jun $2011,40^{\circ} 32^{\prime} \mathrm{N}, 026^{\circ} 47^{\prime} \mathrm{E}$,

Coşkunçelebi \& M. Gültepe 187 (KTUB); A1 Tekirdağ Mürefte, Ganos Mountain, 920 m, 03 Jun 2011, $40^{\circ} 47^{\prime} \mathrm{N}$, $027^{\circ} 17^{\prime} \mathrm{E}$, Coşkunçelebi \& M. Gültepe 191 (KTUB); A1 Balıkesir: Marmara Island, 0-10 m, 11 May 1978, E. Tuzlacı 39354 (ISTE); A2 Bursa: Between Yenișehir and İznik, roadsides, clearances of Quercus sp. and Robinia sp., $332 \mathrm{~m}, 18$ May 2012, $40^{\circ} 18^{\prime} \mathrm{N}, 029^{\circ} 40^{\prime} \mathrm{E}$, Coşkunçelebi \& M. Gültepe 325 (KTUB); A2 İstanbul: Beykoz, Karlıtepe, $223 \mathrm{~m}, 16$ May $2012,41^{\circ} 07^{\prime} \mathrm{N}, 029^{\circ} 07^{\prime} \mathrm{E}$, Coşkunçelebi \& M. Gültepe 367 (KTUB); A3 Bilecik: nr Bilecik in Karasu valley, 300-400 m, Bornm. 14359; A4 Ankara: Kızılcahamam, Soğuksu National Park, Çakmaklı, Doruk Tepe location, stony places, 1663 m, Ö. Eyüboğlu 1663 (GAZİ); A4 Kırıkkale: Between Kırıkkale and Ankara, Elmadağ, Gürlevik valley, 968 m, 07 Jun 2010, N3956', $033^{\circ} 16^{\prime}$ E, Coşkunçelebi \& M. Gültepe 122 (KTUB); A5 Çorum: Kargı, between Hacıhamza-Abdullah plateau, 600 m, 16 May 1975, M. Kılınç 2079 (ANK); A5 Amasya: Taşova, between Uluköy and Alparslan, 395 m, 11 May $2012,40^{\circ} 47^{\prime} \mathrm{N}, 036^{\circ} 20^{\prime} \mathrm{E}$, Coşkunçelebi \& M. Gültepe 320 (KTUB); Manisa: SpilDağı, place of At Alanı, roadsides, $1000 \mathrm{~m}, 22$ May 2011, $38^{\circ} 35^{\prime} \mathrm{N}, 027^{\circ} 25^{\prime} \mathrm{E}$, Coşkunçelebi \& M. Gültepe 168 (KTUB); A8 Gümüşhane: Gümüşhane, 3 km south of Bayburt, 1620 m, 21 June 1968, F. Meyer, G. Oğuz (EGE); B1 Izmir: Çamaltı saltern, Çilazmak kiddle, rocky places, 15 May 1994, N. Keyikçi 89 (EGE); Bornova, Çimentaş, roadside, 15 May 1966, H. Peşmen 1044 (EGE); between Çeşme and Ilıca, 8 May 1966, İ. Regel (EGE); B2 Uşak: Between Ușak and Gediz, roadsides, under Pinus sp. forest $698 \mathrm{~m}, 12 \mathrm{Jul} 2012,38^{\circ} 50^{\prime} \mathrm{N}, 029^{\circ} 16^{\prime} \mathrm{E}$, Coşkunçelebi \& M. Gültepe 385a (KTUB); B3 Eskişehir: Sündiken mountain, Kalolmak stream, 1400-1600 m, 12 June 1971, T. Ekim 25 (ANK); Sündiken Mountain, Karaöz stream, 1100 m, 23 May 1971 T. Ekim 25 (ANK); B3 Afyon: Boyat, east slopes of Asan Tepe, 1340 m, 29 June 1975, M. Vural 263 (ANK); B3 Isparta: Eğridir, 940 m, 20 May 1966, C. Regel, H. Peşmen (EGE); B3 Afyon: Dazkırı, Maymun Mountain, Çatal burun, sandy places, 1150 m, 10 May 1984, Z. Aytaç 1232 (GAZİ); B4 Ankara: Between Ankara and Şereflikoçhisar, 10 km to Şereflikoçhisar, slopes, 908 m, 24 May 2010, $39^{\circ} 00^{\prime} \mathrm{N}, 033^{\circ} 27^{\prime} \mathrm{E}$, Coşkunçelebi \& M. Gültepe 107 (KTUB); B5 Yozgat: Akdağmadeni, northwest of Tekkegüney village, cultivated areas, $1388 \mathrm{~m}, 06$ Jun $2010,39^{\circ} 40^{\prime} \mathrm{N}, 035^{\circ} 48^{\prime} \mathrm{E}$, Coşkunçelebi \& M. Gültepe 121 (KTUB); B5 Nevșehir: between Nevșehir and Ortahisar, volcanic tuff, roadside, under trees, 1250 m, 21 May 1989, N. Adıgüzel (GAZİ); B6 Kahramanmaraş: Göksun, Ericek, near Kınıkkoz, 1952 m, 22 Jul 2011, $38^{\circ} 01^{\prime} \mathrm{N}, 036^{\circ} 49^{\prime} \mathrm{E}$, Coşkunçelebi \& M. Gültepe 283 (KTUB); B6 Kayseri: Between Sarız and Yeşilkent, Binboğa Mountains, on the way of the Tekke Kayası, 1734 m, 15 Jul 2010, $38^{\circ} 17^{\prime}$ N, $036^{\circ} 28^{\prime} \mathrm{E}$, Coşkunçelebi \& M. Gültepe 153 (KTUB); B7 Erzincan: Kemaliye, between Sira Konak and Sarı

Çiçek Mountain, 1738, 15 Jun 2011, $39^{\circ} 12^{\prime} \mathrm{N}, 038^{\circ} 28^{\prime} \mathrm{E}$, Coşkunçelebi \& M. Gültepe 214 (KTUB); B7 Elazığ: Haroğlu village, stony places, north slope, 1400 m, 7 July 1980, H. Evren 398 (ANK); B9 Van: Between Gevaş and İşkırt Village, roadsides, $1677 \mathrm{~m}, 09$ Jun 2011, $38^{\circ} 18^{\prime} \mathrm{N}$, $043^{\circ} 06^{\prime} \mathrm{N}$, Coşkunçelebi \& M. Gültepe 210 (KTUB); B9 Bitlis: Around Tanrıyar village, forest clearence, 1600, 04 May 2003, AA 2962 (VANF); C1 Aydın: Söke, ruins of Priene, 19 June 1971, İ. Akbaş 25343 (ISTF); C1/C2 Muğla: Road of Marmarisa to Ağlan, roadsides, 10 m, 21 May 2011, Coşkunçelebi \& M. Gültepe 166 (KTUB); C2 Aydın: Çine, Mandıra Hill , 1650 m, 11 July 1992, Melahat Evcin 10059 (KATO); C2 Denizli: Babadağ, between Sarayköy and Acıdere, roadside, $1100 \mathrm{~m}, 08$ May 1996, S. Oluk, Ö. Seçmen, Y. Gemici (EGE); C3 Burdur: Between Burdur and Çeltikçi, $1204 \mathrm{~m}, 26$ May 2010, $37^{\circ} 37^{\prime} \mathrm{N}, 030^{\circ} 22^{\prime} \mathrm{E}$. 493, Coşkunçelebi \& M. Gültepe 112 (KTUB); C3 Konya: Road of Seydișehir to Akseki, 28 May 2010, $37^{\circ} 19^{\prime} \mathrm{N}$, $031^{\circ} 51^{\prime} \mathrm{E}$, Coşkunçelebi \& M. Gültepe 115 (KTUB); C3 Antalya: Kemer, Kuzdere plateau on Tahtali mountain, 900 m, D. 15159; Manavgat, Çolaklı village, dune of Petrokent buildings, 0-10 m, 15 April 1991, T. Ekim 9355 (GAZİ); C4 İçel: Anamur, between Anamur and Kazancı, Kızılalan location, 1300 m, 18 May 1985, H. Sümbül 3285 (ANK); C5 Konya: Ereğli, Aydos mountain, protected area of Ayrancı Damp, steppe, limestone bedrock, 1300 m, 19 May 1973, S. Erik 979 (HUB); C5 Adana: Road of Adana to Pozant1, roadsides, $1236 \mathrm{~m}, 10$ Jun 2009, $37^{\circ} 19^{\prime} \mathrm{N}$, $034^{\circ} 48^{\prime} \mathrm{E}$, Coşkunçelebi \& M. Gültepe 60 (KTUB); C6 Gaziantep: Between Nurdağ1 and Gaziantep, before coming to Akyokuș Pass, roadsides, $1065 \mathrm{~m}, 16$ May $2010,37^{\circ} 10^{\prime} \mathrm{N}, 036^{\circ} 58^{\prime} \mathrm{E}$, Coşkunçelebi \& M. Gültepe 91 (KTUB); C6 Hatay: Road of Antakya to İskenderun, road separation of Kırıkhan, 5 km to İskenderun, $385 \mathrm{~m}, 16$ May $2010,36^{\circ} 28^{\prime} \mathrm{N}, 036^{\circ} 17^{\prime}$ E, Coşkunçelebi \& M. Gültepe 90 (KTUB); C9 Siirt: between Sirvan and Pervari, 28 km to Pervari, ocher area, calcareous rocky land, 1350-1400 m, 14 June 1980, A. Güner 2424- M. Koyuncu (HUB); Syrian Arab Republic: Syrie, 22.5.1841, Kotschy, K. G. T. 245a (G00330026 photo); Lebanon: Liban, Apr.-Mai 1846, Boissier, A. s.n., (G00330023 photo); Egypt: Egypte, 0.6.1832, Bové, N. 115 (G00473996 photo)

Tragopogon dshimilensis:A4 Kastamonu: N side of Ilgaz Da., 1700 m, Davis \& O. Polunin, D. 25073 (E); Ilgaz

Mountains, 1600 m, 18.09.1981, Y. Akman, E. Yurdakulol \& M. Demiriz (ANK); A7 Trabzon: Maçka, Zigana, Old Gümüşhane road, under Pinus sylvestris forest, 1870 m , 26.05.2012, $40^{\circ} 38^{\prime} \mathrm{N}, 039^{\circ} 23^{\prime} \mathrm{E}$, Coşkunçelebi \& M. Gültepe 355 (KTUB); Between Trabzon and Gümüşhane, entrance of Zigana tunnel from Gümüșhane side, under the forest near roads, $11.07 .2013,40^{\circ} 38^{\prime} 16^{\prime \prime} \mathrm{N}, 039^{\circ}$ $22^{\prime} 57^{\prime \prime}$ E, Coşkunçelebi \& M. Gültepe 450 (KTUB); A7 Gümüşhane: Kürtün, between Söğüteli and Kazıkbeli, pastures, $1965 \mathrm{~m}, 30.06 .2010,40^{\circ} 53^{\prime} \mathrm{N}, 039^{\circ} 00^{\prime} \mathrm{E}$, Coşkunçelebi \& M. Gültepe 137 (KTUB); Kürtün, Sarı Baba village, $1775 \mathrm{~m}, 04.08 .2011,40^{\circ} 03^{\prime} 13^{\prime \prime} \mathrm{N}, 039^{\circ}$ $01^{\prime} 32^{\prime \prime} \mathrm{E}$, Coşkunçelebi \& M. Gültepe 297 (KTUB); A8 Trabzon: Uzungöl, Demirkapı, alpine, 2100 m, 25.07.2009, Coşkunçelebi \& M. Gültepe 82 (KTUB); A8 Rize: İkizdere, Cimil, Ortaköy, road sides, $1900 \mathrm{~m}, 23.07 .2009,40^{\circ} 45^{\prime} \mathrm{N}$, $040^{\circ} 45^{\prime}$ E, Coşkunçelebi \& M. Gültepe 81 (KTUB); Cimil, $1848 \mathrm{~m}, 28.07 .2011,40^{\circ} 44^{\prime} \mathrm{N}, 040^{\circ} 44^{\prime} \mathrm{E}$, Coşkunçelebi \& M. Gültepe 301 (KTUB); İkizdere, Anzer, between down and up Anzer, $1982 \mathrm{~m}, 28.07 .2011,40^{\circ} 37^{\prime} \mathrm{N}, 040^{\circ} 31^{\prime} \mathrm{E}$, Coşkunçelebi \& M. Gültepe 302 (KTUB); İkizdere, Anzer, $1715 \mathrm{~m} \mathrm{19.06.2012}, 40^{\circ} 37^{\prime} \mathrm{N}, 040^{\circ} 32^{\prime} \mathrm{E}$, Coşkunçelebi \& M. Gültepe 359 (KTUB); Çamlıhemşin, between Hisarcık Köy and Sıraköy, alpine zone; 1600-2000 m, A. Güner 4013 (ANK); İkizdere, Ballıöy (Anzer), meadows, 2150 m, 19.07.1984, M. Vural 3079 (ANK); İkizdere, Ballıköy, 1950 m, 27.07.1991, A. Güner, T. Ekim, M. Koyuncu \& H. Karaca (ANK); İkizdere, Cimil, Yetimhoca Village, roadsides, 1850 m, 24.08.1985, A.Güner \& M. Vural (AG 6932) (ANK); İkizdere, Cimil, Cermanimen Plateau, 2800 m, 23.07.1984 A. Güner 6029 (ANK) A9 Artvin: Şavşat, Yavuz Village, pastures, $1449 \mathrm{~m}, 10.07 .2008,41^{\circ} 13^{\prime} \mathrm{N}$, $42^{\circ} 23^{\prime} \mathrm{E}$, Coşkunçelebi \& M. Gültepe 35 (KTUB); Şavşat, Kocabey, Sulanak area, $1616 \mathrm{~m}, 10.07 .2008,41^{\circ} 14^{\prime} \mathrm{N}, 42^{\circ}$ 25^{\prime} E, Coşkunçelebi \& M. Gültepe 37 (KTUB); Şavşat, Meșeli village, $1591 \mathrm{~m}, 18.07 .2012,41^{\circ} 18^{\prime} \mathrm{N}, 042^{\circ} 28^{\prime} \mathrm{E}$, Coşkunçelebi \& M. Gültepe 417 (KTUB); A9 Kars: Susuz, 8 km from Kars, fallow field, 05.07.1957 Davis \& Hedge (D.30585) (ANK); Kars: Sarıkamış, 2100 m, 07.07.1997, Davis \& Hedge (D.30779) (ANK); Ziyaret Dağı, above Yalnızçam, igneous rocky slopes, 29.06.1957, Davis \& Hedge (D.30324) (ANK); Yalnızçam, very stony volcanic slopes, $1900 \mathrm{~m}, 16.06 .1957$, Davis \& Hedge (D.29615) (ANK).

[^0]: * Correspondence: kamil@ktu.edu.tr

