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1. Introduction

The use of short, standardized DNA sequences to identify species (i.e., DNA barcod-
ing [1]) has considerably changed how we assess, analyze, and monitor biodiversity within
all ecosystems (e.g., [2,3]). Since its initiation, DNA barcoding has significantly contributed
to our understanding of species boundaries and the composition of biological communities
across the world [4]. In addition, it has paved the way for national and international biodi-
versity research programs. Notable examples include biodiversity biomonitoring [5], food
industry surveillance [6], and detecting substitution in the herbal medicine industry [7].

The foundation of species identification by DNA barcoding is a curated barcode
reference library, enabling comparisons of DNA sequences from unidentified organisms
to sequences from previously identified taxa. The largest database for this purpose is
the Barcode of Life Data Systems (BOLD [8]) containing more than nine million DNA
barcodes (Figure 1). The reference library is continuously expanding, with ~60% of the
entries published during the last decade. This effort has been primarily driven by research
projects promoted by the International Barcode of Life consortium (iBOL), such as Barcode
500K (completed in 2015) and BIOSCAN, launched June 2019 [9,10]. Other initiatives, such
as the Earth Biogenome Project, aim to genome sequence all eukaryotic biodiversity in the
upcoming decade, which will further expand DNA barcode coverage. The vast majority of
organisms still lack DNA barcodes, and much of the current work has been carried out in
Europe and North America, resulting in a bias in barcoded biota (Figure 1).

(@)
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Figure 1. Number of public DNA barcodes available in Barcode of Life Data Systems (BOLD) by
country (obtained 1 January, 2021).

A review by DeSalle and Goldstein [4] highlighted that DNA barcoding is a widely
applied contemporary tool that has diversified paradigms and practices. The adoption of
high-throughput sequencing (HTS) technologies has further decreased costs and increased
the range of applications for DNA barcoding [5,11]. Despite differences in the choice of
target DNA marker and challenges with generating barcodes for some taxa [12], DNA
barcoding is now routinely used across the tree of life and functions as an integrated and
standard methodology in biodiversity studies. The essential value of DNA barcoding as an
identification tool is obvious: many species would remain unidentified, hidden, or cryptic
by other means of identification. The added value of DNA barcodes for identification
is that they elucidate species boundaries and provide information on relationships and
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interactions. A list of scientific advances was accomplished through the use of DNA
barcodes and DNA barcoding (e.g., [6,13]).

Two major advances in DNA barcoding have been the development of approaches
for sequencing mixtures of samples, and high-throughput sequencing of PCR amplicons
with generic primers (DNA metabarcoding). The metabarcoding approach enables the
analysis of entire communities in complex samples [14,15], and has expanded the utility of
DNA barcoding and associated libraries to microbiomes (e.g., [16]), diets (e.g., [17]), bulk
sample biomonitoring (e.g., [2]), sequencing environmental samples (eDNA, e.g., [18]), and
paleogenomics (e.g., [19]). DNA metabarcoding contributes to the molecular toolbox for
studying both temporal and spatial species dynamics [20].

Beyond the above-mentioned large-scale initiatives and widespread global engage-
ment, a measure of the impact of DNA barcoding can be deduced from the steep curve of
the annual number of scientific publications on this topic. Our search (21 January 2021) in
Scopus® for publications with ‘DNA barcod*” or ‘DNA metabarcod*” in the title, abstract, or
keywords for the period 2003-2020 returned 14,229 publications from a variety of journals,
representing extensive scientific diversity and applications. The publication numbers on
these topics have been steadily growing since their introduction (Figure 2).

DNA barcoding and DNA metabarcoding publications through time
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Figure 2. Publications per year registered in Scopus®, containing ‘DNA barcod*’ or ‘DNA metabar-
cod* in the title, abstract, or keywords (obtained 21 January 2021).

Nearly two decades after DNA barcodes were first proposed, we reflect upon their
future utility and value. In a world of rapid scientific progress, technology has introduced
not only novel research avenues, but also rapidly evolving scientific practices. We pose the
following two key, overarching questions: (1) Will DNA barcoding stand the test of time as
technological progress enables relatively easy access to large-scale genomic data? (2) Will
DNA barcoding alter how we describe, assess, and investigate biodiversity?

To answer these questions and contemplate the future of DNA barcoding, we orga-
nized a discussion on this topic among early career researchers during the ForBio course,
DNA barcoding—from sequences to species, held online 21-25 September 2020. The course
covered multiple theoretical and practical aspects of the use of molecular tools to delimit
and identify species. To prime the discussion, arguments were organized through a SWOT
analysis, and were facilitated by tutors in the course. This allowed us to develop and
collate opinions on the key aspects, current state (strengths and weaknesses), and future
prospects (opportunities and threats) of DNA barcoding. This analysis served as a starting
point for a comprehensive discussion with flexible category boundaries. For instance, an
opportunity may be seen as a threat and vice-versa. The main objective of this opinion
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STRENGTHS
DNA barcoding:

paper is to communicate views and perspectives on the future of DNA barcoding from
early career researchers, following comprehensive discussions and literature reviews.

2. SWOT Analysis and Early Career Opinions

Our SWOT analysis, led by early career researchers, identified several current char-
acteristics and prospects for DNA barcoding (Figure 3). In the following, we discuss the
most important aspects related to the future of DNA barcoding in biodiversity research
and management.

WEAKN ESSES

DNA barcoding:

enables quick species identification

increases the discovery rate of new species

adds data to solve taxonomic uncertainty

allows species identification with limited amounts of DNA
increases cost and time efficiency compared to traditional
identification methods

objectively identifies species with scalable protocols
produces references for matching DNA of unknown origin
such as metagenomics and eDNA

.

. o

requires better quality control of reference libraries
occasionally co-amplifies non-target organisms with non-
specific primers

does not provide species resolution in all groups
sometimes requires use of multiple markers

needs mutual agreement on marker choice
standardization is difficult across organism groups
demands resources (equipment, labs, funding)

requires curated open access databases

HREATS PPORTUNITIES
DNA barcoding: DNA barcoding:
* risks being surpassed by novel technologies * can evolve with new technology
* needs a standardized international legal framework to * assists in revealing global biodiversity
prevent deepening the inequality gap * may automate biomonitoring
* may lead to misinterpretation of data without sufficient * provides molecular context to historic specimens

knowledge of taxonomic or genetic variation

¢ needs stable infrastructure and economic resources

* isvulnerable to instability of digital preservation and
cybersecurity

* may create resource competition between barcoding and

can stimulate public engagement with genetic tools
increases international access to DNA resources
contributes to a reliable library of life

can estimate species diversity from complex and
environmental samples

. & @

morphological approaches

Figure 3. Major strengths, weaknesses, opportunities, and threats for DNA barcoding, resulting from the SWOT analysis.

2.1. DNA Barcoding Offers Efficient, Affordable, and High-Throughput Solutions

For most biological diversity, DNA barcoding can be more efficient and require less
expertise compared to traditional morphological methods for species identification. It can
also be more affordable, particularly for large sample sizes, since the price of generating a
single barcode sequence can be as low as USD 0.10 if workflows are scaled efficiently [21].
However, the present costs and efficiency of DNA barcoding vary depending on the
research question, taxonomic target group, and project scale, and may not be optimal for all
studies. The uneven distribution of infrastructure required for DNA barcoding must also
be considered in cost calculations. For regions with limited access to DNA technology, the
more realistic identification option for individual specimens may still be morphology. Such
scenarios have spurred collaborations, in which local knowledge on species identification
has been coupled with sequencing capacity, generating barcoding “hubs” (e.g., [22]). As the
international DNA barcoding program continues to expand, key priorities include ensuring
equitable global access to technologies, and that samples, knowledge, and benefits are
treated in line with the Nagoya Protocol. Inclusive collaboration should be a priority for
established and early career researchers alike.

With the advent of various HTS platforms, whole-genome sequencing and metage-
nomics have become more affordable in recent years. Such big data sequencing approaches
have been considered a threat to DNA barcoding [23]. Although genomic data may provide
deeper insights for some biodiversity-related questions, DNA barcoding remains more
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scalable when species identifications are needed. The analysis of genomic data is time-
consuming, requires considerable bioinformatic competence compared to standardized
DNA barcodes, demands more energy for data computation and storage, and is challenging
for quality control when shared [24]. There is an inherent complementarity in DNA bar-
coding and genomics, with “sequencing a small amount of DNA from vast sample sizes”,
appropriate for species identification and biomonitoring, and “sequencing a vast amount of
nucleotides from smaller sample sizes”, appropriate for understanding genomic complexity,
diversity, and function. Within this continuum between whole genomes and DNA bar-
coding, there are organism groups that benefit from deeper sequencing strategies to better
address species-level diversity, such as plants [25]. In plant studies, whole-plastid sequenc-
ing has some potential to increase taxonomic resolution in species identifications [26,27],
and the development of extended barcoding using the nuclear genome is underway [28].
Thus, the question is less about which method is better for discriminating between species
and more about which is appropriate for a specific application. There are also clear mutual
benefits between barcoding and genome sequencing, with DNA barcoding providing a
framework for well-identified samples in genome sequencing projects, and genomic studies
contributing insights that may identify new barcode regions in groups where the standard
regions are suboptimal.

2.2. DNA Barcoding will Survive and Thrive with Accessible and Curated Reference Libraries

Public biological databases that contain sequence information (e.g., BOLD and Gen-
Bank) are pivotal for biodiversity science and equal opportunities in academia. The
usefulness of open databases can, however, be compromised by erroneous or ambiguous
sequence data [29]. For instance, certain primer sets can lead to accidental co-amplification
of non-target organisms [30]. From the start, quality control measures have been imple-
mented in BOLD, for instance, highlighting records that are not barcode compliant, display
stop codons, or result from contamination or misidentifications [8,31]. Despite quality
control measures, mistakes can still arise from specimen misidentification or errors during
one of the many workflow steps [32,33]. Mislabeling of sequences, cross-contamination,
low-quality sequences, and sequencing errors may be unnoticed and become potential
liabilities for downstream applications [29,34].

The necessity of comprehensive and accurate reference libraries for DNA (meta)
barcoding is well-understood, as is the importance of record curation [35]. Despite this
understanding, there is admittedly little incentive for researchers producing the data to
also curate their shared data. It is our view that there should be incentives (funding
and/or recognition) to encourage the development and curation of reference libraries.
BOLD is especially useful as it incorporates several pieces of information (trace files,
metadata, photos, etc.) and cross-shares data with other repositories [36]. BOLD holds
approximately 9 million barcode compliant sequences, although only ~2.2 million are
publicly available (BOLD, accessed 11 February 2021). Private records can be made public
at any time and shared among researchers in private projects. Researchers that publicly
share DNA barcodes bolster the extent and quality of public databases, enabling use and
quality control. Machine learning is already in use for the detection of technical and
biological errors in sequence data [37] and has the potential to further enhance quality
assessments of public data repositories. Another opportunity to strengthen DNA barcode
reference libraries is to invest in the production of barcodes for vouchered specimens in
curated natural history collections. Obtaining DNA barcode data from these well-curated
samples offers the potential to increase the confidence and quality of reference libraries for
many taxonomic groups. Another potential step would be to move to routine inclusion of
reference barcodes as part of new species descriptions, although it would be premature to
make this mandatory as it may prevent many new species from being described (due to
lack of access to technology, failed sequencing, degraded DNA, or requiring destructive
sampling methods).
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2.3. DNA Barcoding Enhances Biodiversity Discovery and Monitoring

The importance of species discovery, species identification, and biodiversity monitor-
ing cannot be overstated, as these are the only means to quantitatively and qualitatively
measure the impacts of climate change, habitat degradation, ecosystem management,
and other anthropogenic impacts on the biosphere. DNA barcode data can provide a
comprehensive basis for organizing and recognizing species-rich groups in the tree of
life, providing good starting points for taxonomy as well as biodiversity assessments and
biomonitoring (e.g., [38]).

The application of DNA barcoding to species discovery and identification is well-
established, including the ability of the methodology to cope with different life stages and
provide insights into cryptic species diversity [39]. Since these initial applications, rapid
species identification with DNA barcodes has been deployed in several fields, including
forensic science [40], control of the food supply chain [6], and understanding disease [41].
Its use in biodiversity characterisation and descriptive taxonomy remains important [38],
and acceleration of species discovery is increasingly crucial, given the current threats to
biodiversity and elevated rates of extinction [42].

Biomonitoring is a major application of DNA barcoding, and although the term is most
often used to refer to ecological assessments, it also encompasses biological identifications
to support border control, food authenticity, pharmaceutical monitoring, etc., with sam-
ple characterization and identification as the common base task (e.g., [43—45]). Increased
knowledge of community composition and species interactions can lead to more precise
biomonitoring and allow for the tracking and tracing of particularly important taxa, includ-
ing endangered and invasive species (e.g., [46]). For instance, DNA barcoding of a single
specimen’s symbiome, through targeted sequencing of all coexisting organismal DNA,
may shed new light on species interactions (e.g., food webs, microbiomes, and parasites)
and provide information for environmental management decisions. Detailed mapping of
organisms’ symbiomes may even be an effective tool to intercept future pandemics [47].

Biomonitoring is often performed at the species level, but DNA barcoding also en-
ables population-level research, assessing, for example, intraspecific genetic structure,
population segregation, and phylogeographic patterns (e.g., [48]). As reference databases
are compiled, multiple sequences per species will accumulate. This represents a natural
foundation for inquisition into population-level dynamics. Sequencing of barcode markers
is often the starting point in a phylogeographic study design due to low initial commitment
costs before focusing on additional nuclear DNA regions, which is the preferred target
in systematics due to their biparental inheritance [48,49]. In recent years, metabarcoding
approaches on environmental and fecal samples have yielded insights into population
structure in multiple species [50-52]. Likewise, metabarcoding of stream water can help
elucidate the ecological impacts of environmental stressors by analyzing the haplotype rich-
ness and perseverance of selected macroinvertebrate species [53]. The application of eDNA
(meta)barcoding for biomonitoring at the population-level has just begun, and there is con-
siderable expansion potential [54]. As distinct populations are typically handled as separate
entities, for example, in estimating quotas and making stock assessments for commercial
fish species (e.g., [55]), expanding the reference databases to include wider population
coverage per species will also expand applications into population-level inferences.

There are also interdisciplinary avenues that use DNA barcoding and metabarcoding.
For example, paleo-reconstructions utilize ancient DNA metabarcoding to better under-
stand past biodiversity, climate boundary conditions and response, past ocean conditions,
and even past species distribution (e.g., [19]). The use of paleo-records is well-established,
but the inclusion of DNA (meta)barcoding provides more resolution for these past environ-
ments compared to traditional methods [56]. The potential for recovering soft-bodied biota
typically lost in the geological record creates a compelling argument for the implementation
of metabarcoding and eDNA methods.
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2.4. DNA Barcoding Methodology Is the Foundation for Automation and Accelerated
Biodiversity Assessments

Every methodology has its limitations and challenges. Those that utilize DNA barcod-
ing for species identification must acknowledge the challenges in order to mitigate them.
Some species may not be well-discriminated by standard barcodes due to the absence of a
clear barcode gap (i.e., maximum intraspecific distance lower than minimum interspecific
distance), and this can be particularly problematic in groups that have recently diverged,
show extensive hybridization, and/or have slow mutation rates relative to rates of specia-
tion [28]. To overcome the limited discriminatory efficiency for standard barcodes, multiple
alternative markers or even approaches are suggested, exemplified by the conundrum of
plant DNA barcoding where no single DNA barcode marker separates all or most plant
species [26,57]. Moreover, established universal primers may bind to a variety of templates
but fail to amplify a specific target group, hence establishing a need for either more degen-
erative or target-specific primers [58]. Yet another challenge includes barcode pseudogenes
(i.e., non-functional copies of barcode regions), which can result in the overestimation of
species diversity and misidentifications [59].

DNA metabarcoding has a particular set of challenges, as the outcome of studies is
influenced by several variables and decisions made in the experimental setup; this includes
the choice of primers, marker specificity, and taxonomic resolution [5]. The requirements of
metabarcoding protocols have resulted in the use of additional or alternative DNA barcod-
ing regions more suitable for specific taxa or applications (e.g., 125 for fish eDNA [60] and
the frnL intron for plants [61]). This utilization of alternative barcoding regions can increase
recoverability and resolution (and thus provides clear benefits) while maintaining similar-
ity to a standardized system, using a common set of loci for the molecular identification
of species.

Fully accepting the challenges and limitations outlined above, ongoing technological
developments are considerably improving the efficiency of DNA barcoding and metabar-
coding. One example of this is the use of the PacBio Sequel platform for extensively
multiplexing samples and reducing costs [11]. Another innovation is where single-species
biomonitoring techniques have been developed based on barcoding primers designed to
detect target species in complex samples with a dip-stick. Doyle and Uthicke [62] designed
the tool by combining a lateral flow assay with species-specific primers to successfully de-
tect the presence of crown-of-thorn starfish on the Great Barrier Reef. This dip-stick method
may potentially detect a wide variety of species from environmental samples, requiring
little scientific training or laboratory access, making it well-suited for citizen science and
remote conservation projects. Another future prospect is the potential for closed-tube PCR
and automation, such as FASTFISH-ID [63], aiming to complete DNA barcoding in the
field. When automated, these set-ups can become remote, real-time sensors. Deployment
of such devices can efficiently provide unprecedented detail of real-time species movement,
migration, and distribution. These tools, as well as other technological advancements for
automatic sampling and processing, may be used for policy development, conservation,
and biosecurity applications.

2.5. DNA Barcoding for Everyone, Everywhere

The DNA barcoding community contributes to networks, collaborative projects, data
sharing, citizen science initiatives, and informed policy design. For instance, iBOL estimates
29,000 users of the Barcode of Life Data Systems database from 200 nations, which includes
~9 million barcodes, and the ambitious goal to expand by another 2 million barcoded taxa by
2026 (iBOL, http:/ /ibol.org; access on 1 January 2021). Access to these and other reference
barcodes is pivotal for well-rounded science and academic inclusivity. Researchers and
organizations planning international collaborations should acknowledge funding bias
and implement benefit-sharing with regions identified to have less barcoding capacity. In
addition to academic projects, DNA barcoding is accessible to the public and suitable for
citizen science. Citizen science projects such as the School Malaise Trap Program can result
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in data collection, education opportunities, and two-way collaboration between scientists
and the general public [64,65].

The effectiveness of collaboration efforts relies on improved and continued open ac-
cess to sequence information. However, freely accessible DNA barcode data can be targeted
by commercial and exploitative research [66,67]. Thus, the delicate discussion of DNA
barcodes as a form of digital sequence information (DSI, [68]), is needed. Digital sequence
information is not yet regulated by the Nagoya Protocol on Access and Benefit-sharing
that came into effect in 2014, despite ongoing discussions regarding DSI inclusion. Some
support open-access DSI as a form of benefit-sharing, while others propose tighter restric-
tions [66]. The outcome of these discussions will have ramifications for DNA barcoding
and metabarcoding and should be considered by anyone working directly or indirectly
with DNA barcodes.

From our reflections, as long as a focus on data quality is prioritized and the method-
ological and technological advancements remain aligned, DNA (meta)barcoding will
continue to impact, shape, and respond to changes in biological sciences, and DNA barcod-
ing will continue to grow and increase our knowledge of global biodiversity. The scalability,
accessibility, and automation potential of DNA (meta)barcoding methods strengthen biodi-
versity investigations. Beyond biodiversity monitoring, the knowledge provided by DNA
barcoding can help mitigate threats to global biodiversity through improved environmental
management and informed conservation measures.
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