See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/342453080

Euler-Riesz Difference Sequence Spaces

Article in Analysis in Theory and Applications • June 2020
DOI: 10.4208/ata.OA-2017-0068

CITATION

1

2 authors:

Hacer BİLGİN ELLİDOKUZOḠLU
Recep Tayyip Erdoğan Üniversitesi
5 PUBLICATIONS 11 CItations
SEE PROFILE

Some of the authors of this publication are also working on these related projects:

Paranormed Euler-Riesz Sequence Spaces View project

Project compact and bounded operators on Cesaro series spaces View project

$\left[\ell_{p}\right]_{e . r}$ Euler-Riesz Difference Sequence Spaces

Hacer Bilgin Ellidokuzoğlu ${ }^{1, *}$ and Serkan Demiriz ${ }^{2}$
${ }^{1}$ Department of Mathematics, Recep Tayyip Erdoğan University, Rize, Turkey
${ }^{2}$ Department of Mathematics, Tokat Gaziosmanpaşa University, Tokat, Turkey

Received 27 October 2017; Accepted (in revised version) 20 November 2018

Abstract

Başar and Braha [1], introduced the sequence spaces $\breve{\ell}_{\infty}, \breve{c}$ and \breve{c}_{0} of EulerCesáro bounded, convergent and null difference sequences and studied their some properties. Then, in [2], we introduced the sequence spaces $\left[\ell_{\infty}\right]_{e . r}[c]_{e . r}$ and $\left[c_{0}\right]_{e . r}$ of Euler-Riesz bounded, convergent and null difference sequences by using the composition of the Euler mean E_{1} and Riesz mean R_{q} with backward difference operator Δ. The main purpose of this study is to introduce the sequence space $\left[\ell_{p}\right]_{e . r}$ of Euler-Riesz p-absolutely convergent series, where $1 \leq p<\infty$, difference sequences by using the composition of the Euler mean E_{1} and Riesz mean R_{q} with backward difference operator Δ. Furthermore, the inclusion $\ell_{p} \subset\left[\ell_{p}\right]_{e . r}$ hold, the basis of the sequence space $\left[\ell_{p}\right]_{e . r}$ is constucted and $\alpha-, \beta$ - and γ-duals of the space are determined. Finally, the classes of matrix transformations from the $\left[\ell_{p}\right]_{\text {e. }}$ Euler-Riesz difference sequence space to the spaces ℓ_{∞}, c and c_{0} are characterized. We devote the final section of the paper to examine some geometric properties of the space $\left[\ell_{p}\right]_{e . r}$.

Key Words: Composition of summability methods, Riesz mean of order one, Euler mean of order one, backward difference operator, sequence space, BK space, Schauder basis, β-duals, matrix transformations.

AMS Subject Classifications: 40C05, 40A05, 46A45

1 Preliminaries, background and notation

By a sequence space, we understand a linear subspace of the space $w=\mathbb{C}^{\mathbb{N}}$ of all complex sequnces which contains ϕ, the set of all finitely non-zero sequences, where $\mathbb{N}=\{0,1, \cdots\}$. We shall write ℓ_{∞}, c and c_{0} for the spaces of all bounded, convergent and null sequences, respectively. Also by $b s, c s, \ell_{1}$ and ℓ_{p}, we denote the spaces of all bounded, convergent, absolutely and p-absolutely convergent series, respectively, where $1<p<\infty$.

[^0]We shall assume throughout unless stated otherwise that $p, q>1$ with $p^{-1}+q^{-1}=1$ and $0<r<1$, and use the convention that any term with negative subscript is equal to naught.

Let λ, μ be two sequence spaces and $A=\left(a_{n k}\right)$ be an infinite matrix of real or complex numbers $a_{n k}$, where $n, k \in \mathbb{N}$. Then, we say that A defines a matrix mapping from λ into μ, and we denote it by writing $A: \lambda \rightarrow \mu$, if for every sequence $x=\left(x_{k}\right) \in \lambda$ the sequence $A x=\left\{(A x)_{n}\right\}$, the A-transform of x, is in μ; where

$$
\begin{equation*}
(A x)_{n}=\sum_{k} a_{n k} x_{k}, \quad(n \in \mathbb{N}) . \tag{1.1}
\end{equation*}
$$

By (λ, μ), we denote the class of all matrices A such that $A: \lambda \rightarrow \mu$. Thus, $A \in(\lambda, \mu)$ if and only if the series on the right hand side of (1.1) converges for each $n \in \mathbb{N}$ and every $x \in \lambda$, and we have $A x=\left\{(A x)_{n}\right\}_{n \in \mathbb{N}} \in \mu$ for all $x \in \lambda$. A sequence x is said to be A-summable to α if $A x$ converges to α which is called the A-limit of x.

Let X be a sequence space and A be an infinite matrix. The sequence space

$$
\begin{equation*}
X_{A}=\left\{x=\left(x_{k}\right) \in w: A x \in X\right\} \tag{1.2}
\end{equation*}
$$

is called the domain of A in X which is a sequence space.
A sequence space λ with a linear topology is called a K - space provided each of the maps $p_{i}: \lambda \rightarrow \mathbb{C}$ defined by $p_{i}(x)=x_{i}$ is continuous for all $i \in \mathbb{N}$. A $K-$ space is called an $F K$ - space provided λ is a complete linear metric space. An $F K$ - space whose topology is normal is called a $B K$ - space. If a normed sequence space λ contains a sequence (b_{n}) with the property that for every $x \in \lambda$ there is a unique sequence of scalars $\left(\alpha_{n}\right)$ such that

$$
\lim _{n \rightarrow \infty}\left\|x-\left(\alpha_{0} b_{0}+\alpha_{1} b_{1}+\cdots+\alpha_{n} b_{n}\right)\right\|=0
$$

then $\left(b_{n}\right)$ is called a Schauder basis (or briefly basis) for λ. The series $\sum \alpha_{k} b_{k}$ which has the sum x is then called the expansion of x with respect to $\left(b_{n}\right)$, and written as $x=\sum \alpha_{k} b_{k}$.

A matrix $A=\left(a_{n k}\right)$ is called a triangle if $a_{n k}=0$ for $k>n$ and $a_{n n} \neq 0$ for all $n \in \mathbb{N}$. It is trivial that $A(B x)=(A B) x$ holds for the triangle matrices A, B and a sequence x. Further, a triangle matrix U uniquely has an inverse $U^{-1}=V$, which is also a triangle matrix. Then, $x=U(V x)=V(U x)$ holds for all $x \in w$.

Let us give the definition of some triangle limitation matrices which are needed in the text. Δ denotes the backward difference matrix $\Delta=\left(\Delta_{n k}\right)$ and $\Delta^{\prime}=\left(\Delta_{n k}^{\prime}\right)$ denotes the transpose of the matrix Δ, the forward difference matrix, which are defined by

$$
\begin{aligned}
& \Delta_{n k}= \begin{cases}(-1)^{n-k}, & n-1 \leq k \leq n, \\
0, & 0 \leq k<n-1 \text { or } k>n,\end{cases} \\
& \Delta_{n k}^{\prime}= \begin{cases}(-1)^{n-k}, & n \leq k \leq n+1, \\
0, & 0 \leq k<n \text { or } k>n+1,\end{cases}
\end{aligned}
$$

for all $k, n \in \mathbb{N}$; respectively.

Then, let us define the Euler mean $E_{1}=\left(e_{n k}\right)$ of order one and Riesz mean $R_{q}=\left(r_{n k}\right)$

$$
e_{n k}=\left\{\begin{array}{ll}
\frac{\binom{n}{k}}{2^{n}}, & 0 \leq k \leq n, \\
0, & k>n,
\end{array} \quad r_{n k}= \begin{cases}\frac{q_{k}}{Q_{n}}, & 0 \leq k \leq n \\
0, & k>n\end{cases}\right.
$$

for all $k, n \in \mathbb{N}$ and where $\left(q_{k}\right)$ be a sequence of positive numbers and $Q_{n}=\sum_{k=0}^{n} q_{k}$. Their inverses $E_{1}^{-1}=\left(g_{n k}\right)$ and $R_{q}^{-1}=\left(h_{n k}\right)$ are given by

$$
g_{n k}=\left\{\begin{array}{ll}
\binom{n}{k}(-1)^{n-k} 2^{k}, & 0 \leq k \leq n, \\
0, & k>n,
\end{array} \quad h_{n k}= \begin{cases}(-1)^{n-k} \frac{Q_{k}}{q_{k}}, & n-1 \leq k \leq n, \\
0, & \text { otherwise },\end{cases}\right.
$$

for all $k, n \in \mathbb{N}$.
We define the matrix $\tilde{B}=\left(\tilde{b}_{n k}\right)$ by the composition of the matrices E_{1}, R_{q} and Δ as

$$
\tilde{b}_{n k}= \begin{cases}\frac{\binom{n}{k} q_{k}}{2^{n} Q_{n}}, & 0 \leq k \leq n, \tag{1.3}\\ 0, & k>n,\end{cases}
$$

for all $k, n \in \mathbb{N}$.
In the literature, the notion of difference sequence spaces was introduced by Kızmaz [8] as

$$
X(\Delta)=\left\{x=\left(x_{k}\right) \in w: \Delta^{\prime} x=\left(x_{k}-x_{k+1}\right) \in X\right\}
$$

for $X \in\left\{\ell_{\infty}, c, c_{0}\right\}$. The difference space $b v_{p}$, consisting of all sequences $x=\left(x_{k}\right)$ such that $\Delta x=\left(x_{k}-x_{k-1}\right)$ is in the sequence space ℓ_{p}, was studied in the case $0<p<1$ by Altay and Başar [22] and in the case $1 \leq p \leq \infty$ by Başar and Altay [9], and Çolak et al. [4]. Kirişçi and Başar [10] have introduced and studied the generalized difference sequence space

$$
\hat{X}=\left\{x=\left(x_{k}\right) \in w: B(r, s) x \in X\right\},
$$

where X denotes any of the spaces ℓ_{∞}, c, c_{0} and ℓ_{p} with $1 \leq p<\infty$, and $B(r, s) x=$ (s. $x_{k-1}+r . x_{k}$) with $r, s \in \mathbb{R} \backslash\{0\}$. Following Kirişçi and Başar [10], Sönmez [11] have been examined the sequence space $X(B)$ as the set of all sequences whose $B(r, s, t)-$ trasforms are in the space $X \in\left\{\ell_{\infty}, c, c_{0}, \ell_{p}\right\}$, where $B(r, s, t)$ denotes the triple band matrix $B(r, s, t)=\left\{b_{n k}\{r, s, t\}\right\}$ defined by

$$
b_{n k}\{r, s, t\}= \begin{cases}r, & n=k \\ s, & n=k+1 \\ t, & n=k+2 \\ 0, & \text { otherwise }\end{cases}
$$

for all $k, n \in \mathbb{N}$ and $r, s, t \in \mathbb{R} \backslash\{0\}$. Quite recently, Başar has studied the spaces $\tilde{\ell}_{p}$ of p-absolutely \tilde{B}-summable sequences, in [6]. The reader can also review these references to get more detailed information [12-14].

Then, as a natural continuation of Başar [6], Başar and Braha [1] introduce the spaces $\breve{\ell}_{\infty}, \breve{c}$ and \breve{c}_{0} of Euler-Cesáro bounded, convergent and null difference sequences by using the composition of the Euler mean E_{1} and Cesáro mean C_{1} of order one with backward difference operator Δ. In [2], we introduced the $\left[\ell_{\infty}\right]_{\text {e.r }}[c]_{e . r}$ and $\left[c_{0}\right]_{e . r}$ of Euler-Riesz bounded, convergent and null difference sequences by using the composition of the Euler mean E_{1} and Riesz mean R_{q} with backward difference operator Δ and prove that the inclusions $\ell_{\infty} \subset\left[\ell_{\infty}\right]_{e . r} c \subset[c]_{e . r}$ and $c_{0} \subset\left[c_{0}\right]_{e . r}$ strictly hold. Furthermore, we investigated some properties and compute $\alpha-, \beta$ - and γ - duals of these spaces. Afterwards, we characterized of some matrix classes of Euler-Riesz sequence spaces.

In the present paper, we introduce the $\left[\ell_{p}\right]_{e . r}$ of Euler-Riesz bounded, convergent and null difference sequence by using the composition of the Euler mean E_{1} and Riesz mean R_{1} of order one with backward difference operator Δ. Furthermore, we investigate some properties and compute $\alpha-, \beta$ - and γ - duals of these space. Afterwards, we characterize of some matrix classes of Euler-Riesz sequence space. We devote the final section of the paper to examine some geometric properties of the space $\left[\ell_{p}\right]_{e . r}$

2 The Euler-Riesz sequence space

In this section, we shall give a new sequence space and we shall investigate its some properties:

$$
\left[\ell_{p}\right]_{e . r}=\left\{x=\left(x_{k}\right) \in w: \sum_{n=0}^{\infty}\left|\sum_{k=0}^{n} \frac{\binom{n}{k} q_{k}}{2^{n} Q_{n}} x_{k}\right|^{p}<\infty\right\} .
$$

With the notation (1.2), we may redefine the space $\left[\ell_{p}\right]_{e, r}$ as fallows:

$$
\begin{equation*}
\left[\ell_{p}\right]_{e, r}=\left(\ell_{p}\right)_{\tilde{B}} . \tag{2.1}
\end{equation*}
$$

Define the sequence $y=\left(y_{k}\right)$, which will be frequently used, as the \tilde{B}-transform of a sequence $x=\left(x_{k}\right)$, i.e.,

$$
\begin{equation*}
y_{k}=\sum_{j=0}^{k} \frac{\binom{k}{j} q_{j}}{2^{k} Q_{k}} x_{j}, \quad k \in \mathbb{N} . \tag{2.2}
\end{equation*}
$$

Throughout the text, we suppose that the sequences $x=\left(x_{k}\right)$ and $y=\left(y_{k}\right)$ are connected with the relation (2.2). One can obtain by a straightforward calculation from (2.2) that

$$
\begin{equation*}
x_{k}=\frac{1}{q_{k}} \sum_{j=0}^{k}\binom{k}{j}(-1)^{k-j} 2^{j} Q_{j} y_{j}, \quad k \in \mathbb{N} . \tag{2.3}
\end{equation*}
$$

Theorem 2.1. The set $\left[\ell_{p}\right]_{\text {e.r }}$ is linear space with coordinatewise addition and scalar multiplication, and it is a BK-space with norm $\|x\|_{\left[e_{p}\right]_{e . r}}=\|\tilde{B} x\|_{p}$.

Proof. The proof of the first part of the theorem is a routine verification, and so we omit it. Furthermore, since (2.2) holds, ℓ_{p} is $B K-$ space with respect to its natural norm, and the matrix \tilde{B} is a triangle, Theorem 4.3.2 of Wilansky [16] implies that the spaces $\left[\ell_{p}\right]_{e . r}$ is $B K$-space.

Therefore, one can easily check that the absolute property does not hold on the space $\left[\ell_{p}\right]_{e . r^{\prime}}$ because $\|x\|_{\left[\ell_{p}\right]_{e,}} \neq \|\left.||x||\right|_{\left.\ell_{p}\right]_{e . r}}$ for at least one sequence in the space $\left[\ell_{p}\right]_{e . r^{\prime}}$, where $|x|=\left(\left|x_{k}\right|\right)$. This says that $\left[\ell_{p}\right]_{e . r}$ is the sequence space of nonabsolute type.
Theorem 2.2. $\left[\ell_{p}\right]_{\text {e.r }}$ is linearly isomorphic to the space ℓ_{p}, i.e., $\left[\ell_{p}\right]_{e . r} \cong \ell_{p}$.
Proof. To prove this theorem, we should show the existence of a linear bijection between the spaces $\left[\ell_{p}\right]_{e . r}$ and ℓ_{p}. Consider the transformation S from $\left[\ell_{p}\right]_{e . r}$ to ℓ_{p} by $y=S x=\tilde{B} x$. The linearity of S is clear. Further, it is obvious that $x=\theta$ whenever $S x=\theta$ and hence S is injective, where $\theta=(0,0,0, \cdots)$.

Let us take any $y \in \ell_{p}$ and define the sequence $x=\left\{x_{n}\right\}$ by

$$
x_{n}=\frac{1}{q_{n}} \sum_{k=0}^{n}\binom{n}{k}(-1)^{n-2^{k}} Q_{k} y_{k} \quad \text { for all } n \in \mathbb{N} .
$$

Then, we obtain in the case of $1 \leq p<\infty$ that

$$
\begin{aligned}
\|x\|_{\left[\ell_{p}\right]_{e, r}} & =\left[\sum_{n=0}^{\infty}\left|\sum_{k=0}^{n} \frac{\binom{n}{k} q_{k}}{2^{n} Q_{n}} x_{k}\right|^{p}\right]^{1 / p} \\
& =\left[\sum_{n=0}^{\infty}\left|\sum_{k=0}^{n} \frac{\binom{n}{k} q_{k}}{2^{n} Q_{n}} \frac{1}{q_{k}} \sum_{j=0}^{k}\binom{k}{j}(-1)^{k-j} 2^{j} Q_{j} y_{j}\right|^{p}\right]^{1 / p} \\
& =\left(\sum_{n}\left|\sum_{k=n}^{\infty} \delta_{n k} y_{k}\right|^{p}\right)^{1 / p}=\|y\|_{e_{p}}<\infty .
\end{aligned}
$$

Consequently, we see from here that S is surjective. Hence, S is a linear bijection which therefore says us that the spaces $\left[\ell_{p}\right]_{e, r}$ and ℓ_{p} are linearly isomorphic, as desired.

Theorem 2.3. The inclusion $\ell_{p} \subset\left[\ell_{p}\right]_{\text {e. }}$ strictly holds for $1 \leq p<\infty$.
Proof. To prove the validity of the inclusion $\ell_{p} \subset\left[\ell_{p}\right]_{e . r}$ for $1 \leq p<\infty$, it suffices to show the existence of a number $K>0$ such that $\|x\|_{\left[\ell_{p}\right]_{e, r}} \leq K \cdot\|x\|_{\ell_{p}}$ for every $x \in \ell_{p}$.

Let us take any $x \in \ell_{p}$. Then we obtain, with the notation of (2.2), by applying the Hölder's inequality for $1<p<\infty$ that

$$
\begin{align*}
\left|y_{k}\right|^{p} & =\left|\sum_{j=0}^{k} \frac{\binom{k}{j} q_{j}}{2^{k} Q_{k}} x_{j}\right|^{p} \leq\left|\sum_{j=0}^{k} \frac{\binom{k}{j} Q_{k}}{2^{k} Q_{k}} x_{j}\right|^{p}=\left|\sum_{j=0}^{k} \frac{\binom{k}{j}}{2^{k}} x_{j}\right|^{p} \\
& \leq\left[\sum_{j=0}^{k} \frac{\binom{k}{j}}{2^{k}}\left|x_{j}\right|^{p}\right] \times\left[\sum_{j=0}^{k} \frac{\binom{k}{j}}{2^{k}}\right]^{p-1}=\sum_{j=0}^{k} \frac{\binom{k}{j}}{2^{k}}\left|x_{j}\right|^{p} . \tag{2.4}
\end{align*}
$$

Using (2.4), we have that

$$
\sum_{k}\left|y_{k}\right|^{p} \leq \sum_{k} \sum_{j=0}^{k} \frac{\binom{k}{j}}{2^{k}}\left|x_{j}\right|^{p} \leq \sum_{k}\left|x_{k}\right|^{p} \sum_{j=0}^{k} \frac{\binom{k}{j}}{2^{k}}=\sum_{k}\left|x_{k}\right|^{p},
$$

which yields us that

$$
\begin{equation*}
\|x\|_{\left[\ell_{p}\right]_{e, r}} \leq\|x\|_{\ell_{p}} \tag{2.5}
\end{equation*}
$$

for $1<p<\infty$, as expected. Besides, let us consider the sequence $u=\left\{u_{k}^{(n)}\right\}$ defined by

$$
u_{k}^{(n)}=\{0,0,0, \cdots, \underbrace{\frac{Q_{n}}{q_{n}}}_{n-\mathrm{th}}, \cdots\}
$$

for all $n \in \mathbb{N}$. Then, we have

$$
(\tilde{B} u)_{n}=\sum_{k=0}^{n} \frac{\binom{n}{k} q_{k}}{2^{n} Q_{n}} u_{k}^{(n)}=\frac{1}{2^{n}} .
$$

For every $n=0,1, \cdots,(\tilde{B} u)_{n} \in \ell_{p}$, but the sequence $u=\left\{u_{k}^{(n)}\right\}$ is not in ℓ_{p}. By the similar discussions, it may be easily proved that the inequality (2.5) also holds in the case $p=1$ and so we omit the detail. This completes the proof.

Since the isomorphism S, defined in Theorem 2.1, is surjective, the inverse image of the basis of the spaces ℓ_{p} is the basis of the new space $\left[\ell_{p}\right]_{e . r}$. Therefore, we have the following theorem without proof.
Theorem 2.4. Define a sequence $b^{(k)}=\left\{b_{n}^{(k)}\right\}_{n \in \mathbb{N}}$ of elements of the space $\left[\ell_{p}\right]_{\text {e. }}$ for every fixed $k \in \mathbb{N}$ by

$$
b_{n}^{(k)}= \begin{cases}\frac{\binom{n}{k}(-1)^{n-k} 2^{k} Q_{k}}{q_{n}}, & 0 \leq k<n \\ 0, & k \geq n\end{cases}
$$

Let $\lambda_{k}=(\tilde{B} x)_{k}$ for all $k \in \mathbb{N}$. Then, the sequence $\left\{b^{(k)}\right\}_{k \in \mathbb{N}}$ is a basis for the space $\left[\ell_{p}\right]_{e . r}$ and any $x \in\left[\ell_{p}\right]_{\text {er }}$ has a unique representation of the form

$$
x=\sum_{k} \lambda_{k} b^{(k)} .
$$

Remark 2.1. It is well known that every Banach space X with a Schauder basis is separable.

From Theorem 2.4 and Remark 2.1, we can give following corollary:
Corollary 2.1. The spaces $\left[\ell_{p}\right]_{e . r}$ is separable.

3 Duals of the new sequence spaces

In this section, we state and prove the theorems determining the $\alpha-, \beta-$ and $\gamma-$ duals of the sequence space $\left[\ell_{p}\right]_{e . r}$.

The set $S(\lambda, \mu)$ defined by

$$
\begin{equation*}
S(\lambda, \mu)=\left\{z=\left(z_{k}\right) \in w: x z=\left(x_{k} z_{k}\right) \in \mu \text { for all } x=\left(x_{k}\right) \in \lambda\right\} \tag{3.1}
\end{equation*}
$$

is called the multiplier space of the sequence spaces λ and μ. One can easily observe for a sequence space v with $\lambda \supset v \supset \mu$ that the inclusions

$$
S(\lambda, \mu) \subset S(v, \mu) \quad \text { and } \quad S(\lambda, \mu) \subset S(\lambda, v)
$$

hold. With the notation of (3.1), the alpha-, beta- and gamma-duals of a sequence space λ, which are respectively denoted by $\lambda^{\alpha}, \lambda^{\beta}$ and λ^{γ} are defined by

$$
\lambda^{\alpha}=S\left(\lambda, \ell_{1}\right), \quad \lambda^{\beta}=S(\lambda, c s) \quad \text { and } \quad \lambda^{\gamma}=S(\lambda, b s) .
$$

For to give the $\alpha-, \beta$ - and γ - duals of the space $\left[\ell_{p}\right]_{e . r}$ of non-absolute type, we need the following Lemma;

Lemma 3.1 ([18]). $A \in\left(\ell_{p}: \ell_{1}\right)$ if and only if

$$
\sup _{K \in \mathcal{F}} \sum_{k}\left|\sum_{n \in K} a_{n k}\right|^{q}<\infty, \quad(1<p \leq \infty) .
$$

Here and in what follows, we denote the collection of all finite subsets of \mathbb{N} by \mathcal{F}.
Lemma 3.2 ([18]). $A \in\left(\ell_{p}: c\right)$ if and only if

$$
\begin{align*}
& \lim _{n \rightarrow \infty} a_{n k} \text { exists for each } k \in \mathbb{N}, \tag{3.2a}\\
& \sup _{n \in \mathbb{N}} \sum_{k}\left|a_{n k}\right|^{q}<\infty, \quad(1<p<\infty) . \tag{3.2b}
\end{align*}
$$

Lemma 3.3 ([18]). $A \in\left(\ell_{p}: \ell_{\infty}\right)$ if and only if (3.2b) holds.
Now, we may give the theorems determining the $\alpha-, \beta-$ and $\gamma-$ duals of the EulerRiesz sequence space $\left[\ell_{p}\right]_{e . r}$.
Theorem 3.1. Define the set a_{q} as follows:

$$
a_{q}=\left\{a=\left(a_{k}\right) \in w: \sup _{K \in \mathcal{F}} \sum_{k=0}^{\infty}\left|\sum_{n \in K}\binom{n}{k}(-1)^{n-k} 2^{k} \frac{a_{n}}{q_{n}} Q_{k}\right|^{q}<\infty\right\} .
$$

Then, $\left\{\left[\ell_{p}\right]_{e . r}\right\}^{\alpha}=a_{q}$.

Proof. We chose the sequence $a=\left(a_{k}\right) \in w$. We can easily derive that with the (2.3) that

$$
\begin{equation*}
a_{n} x_{n}=\sum_{k=0}^{n}\binom{n}{k}(-1)^{n-k} 2^{k} \frac{a_{n}}{q_{n}} Q_{k} y_{k}=(B y)_{n}, \quad(n \in \mathbb{N}) \tag{3.3}
\end{equation*}
$$

where $B=\left(b_{n k}\right)$ is defined by the formula

$$
b_{n k}=\left\{\begin{array}{ll}
\binom{n}{k}(-1)^{n-k} 2^{k} \frac{a_{n}}{q_{n}} Q_{k}, & (0 \leq k \leq n), \tag{3.4}\\
0, & (k>n)
\end{array} \quad(n, k \in \mathbb{N})\right.
$$

It follows from (3.3) that $a x=\left(a_{n} x_{n}\right) \in \ell_{1}$ whenever $x \in\left[\ell_{p}\right]_{\text {e.r }}$ if and only if $B y \in \ell_{1}$ whenever $y \in c_{0}$. This gives the result that $\left\{\left[\ell_{p}\right]_{e . r}\right\}^{\alpha}=a_{q}$.
Theorem 3.2. The matrix $D(r)=\left(d_{n k}\right)$ is defined by

$$
d_{n k}= \begin{cases}\sum_{j=k}^{n}\left(\frac{j}{k}\right)(-1)^{j-k} 2^{k} \frac{a_{j}}{q_{j}} Q_{k}, & (0 \leq k \leq n), \tag{3.5}\\ 0, & (k>n),\end{cases}
$$

for all $k, n \in \mathbb{N}$. Then, $\left\{\left[\ell_{p}\right]_{\text {e. }}\right\}^{\beta}=b_{1} \cap b_{2}$ where

$$
\begin{aligned}
& b_{1}=\left\{a=\left(a_{k}\right) \in w: \lim _{n \rightarrow \infty} d_{n k}=\alpha_{k}\right\}, \\
& b_{2}=\left\{a=\left(a_{k}\right) \in w: \sup _{n \in \mathbb{N}} \sum_{k}\left|d_{n k}\right|^{q}<\infty\right\} .
\end{aligned}
$$

Proof. We give the proof for the space $\left[\ell_{p}\right]_{e . r}$. Consider the equation

$$
\begin{align*}
\sum_{k=0}^{n} a_{k} x_{k} & =\sum_{k=0}^{n}\left[\sum_{j=0}^{k}\binom{k}{j}(-1)^{k-j_{2} j} \frac{1}{q_{k}} Q_{j} y_{j}\right] a_{k} \\
& =\sum_{k=0}^{n}\left[\sum_{j=k}^{n}\binom{k}{j}(-1)^{k-j} j^{j} \frac{a_{k}}{q_{k}} Q_{j}\right] y_{k}=(D y)_{n} \tag{3.6}
\end{align*}
$$

where $D=\left(d_{n k}\right)$ defined by (3.4).
Thus, we deduce by with (3.6) that $a x=\left(a_{k} x_{k}\right) \in c s$ whenever $x=\left(x_{k}\right) \in\left[\ell_{p}\right]_{e, r}$ if and only if $D y \in c$ whenever $y=\left(y_{k}\right) \in \ell_{p}$. Therefore, we derive from (3.2a) and (3.2b) that

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} d_{n k} \text { exists for each } k \in \mathbb{N} \\
& \sup _{n \in \mathbb{N}} \sum_{k=0}^{n}\left|d_{n k}\right|^{q}<\infty, \quad(1<p<\infty)
\end{aligned}
$$

which shows that $\left\{\left[\ell_{p}\right]_{\text {e. }}\right\}^{\beta}=b_{1} \cap b_{2}$.
Theorem 3.3. $\left\{\left[\ell_{p}\right]_{e . r}\right\}^{\gamma}=b_{2}$.
Proof. This is obtained in the similar way used in the proof of Theorem 3.2.

4 Matrix transformations related to the new sequence spaces

In this section, we characterize the matrix transformations from the space $\left[\ell_{p}\right]_{e . r}$ into any given sequence space μ and from the sequence space μ into the space $\left[\ell_{p}\right]_{e . r}$.

We known that, if $\left[\ell_{p}\right]_{e . r} \cong \ell_{p}$, we can say: The equivalence $x \in\left[\ell_{p}\right]_{e . r}$ if and only if $y \in \ell_{p}$ holds.

In what follows, for brevity, we write,

$$
\tilde{a}_{n k}=: \sum_{k=0}^{n}\binom{n}{k}(-1)^{n-k} 2^{k} \frac{Q_{k}}{q_{n}} a_{n k}
$$

for all $k, n \in \mathbb{N}$.
Theorem 4.1. Suppose that the entries of the infinite matrices $A=\left(a_{n k}\right)$ and $E=\left(e_{n k}\right)$ are connected with the relation

$$
\begin{equation*}
e_{n k}=: \tilde{a}_{n k} \tag{4.1}
\end{equation*}
$$

for all $k, n \in \mathbb{N}$ and μ be any given sequence space. Then, $A \in\left(\left[\ell_{p}\right]_{e . r}: \mu\right)$ if and only if $\left\{a_{n k}\right\}_{k \in \mathbb{N}} \in\left\{\left[\ell_{p}\right]_{e . r}\right\}^{\beta}$ for all $n \in \mathbb{N}$ and $E \in\left(\ell_{p}: \mu\right)$.
Proof. Let μ be any given sequence space. Suppose that (4.1) holds between $A=\left(a_{n k}\right)$ and $E=\left(e_{n k}\right)$, and take into account that the space $\left[\ell_{p}\right]_{e . r}$ and ℓ_{p} are linearly isomorphic.

Let $A \in\left(\left[\ell_{p}\right]_{e, r}: \mu\right)$ and take any $y=\left(y_{k}\right) \in \ell_{p}$. Then, $E \tilde{B}$ exists and $\left\{a_{n k}\right\}_{k \in \mathbb{N}} \in$ $b_{1} \cap b_{2}$ which yields that $\left\{e_{n k}\right\}_{k \in \mathbb{N}} \in \ell_{1}$ for each $n \in \mathbb{N}$. Hence, Ey exists and thus

$$
\sum_{k} e_{n k} y_{k}=\sum_{k} a_{n k} x_{k}
$$

for all $n \in \mathbb{N}$.
We have that $E y=A x$ which leads us to the consequence $E \in\left(\ell_{p}: \mu\right)$.
Conversely, let $\left\{a_{n k}\right\}_{k \in \mathbb{N}} \in\left\{\left[\ell_{p}\right]_{e . r}\right\}^{\beta}$ for each $n \in \mathbb{N}$ and $E \in\left(\ell_{p}: \mu\right)$ hold, and take any $x=\left(x_{k}\right) \in\left[\ell_{p}\right]_{e . r}$. Then, $A x$ exists. Therefore, we obtain from the equality

$$
\sum_{k=0}^{\infty} a_{n k} x_{k}=\sum_{k=0}^{\infty}\left[\sum_{j=0}^{k}\binom{k}{j}(-1)^{k-j_{2} j} \frac{Q_{j}}{q_{k}} a_{k j}\right] y_{k}
$$

for all $n \in \mathbb{N}$, that $E y=A x$ and this shows that $A \in\left(\left[\ell_{p}\right]_{e, r}: \mu\right)$. This completes the proof.

Theorem 4.2. Suppose that the elements of the infinite matrices $A=\left(a_{n k}\right)$ and $B=\left(b_{n k}\right)$ are connected with the relation

$$
\begin{equation*}
b_{n k}=: \sum_{j=0}^{k} \frac{\binom{k}{j} q_{j}}{2^{k} Q_{k}} a_{j k} \quad \text { for all } k, n \in \mathbb{N} . \tag{4.2}
\end{equation*}
$$

Let μ be any given sequence space. Then, $A \in\left(\mu:\left[\ell_{p}\right]_{\text {e.r }}\right)$ if and only if $B \in\left(\mu: \ell_{p}\right)$.

Proof. Let $z=\left(z_{k}\right) \in \mu$ and consider the following equality.

$$
\sum_{k=0}^{m} b_{n k} z_{k}=\sum_{j=0}^{k} \frac{\binom{k}{j} q_{j}}{2^{k} Q_{k}}\left(\sum_{k=0}^{m} a_{j k} z_{k}\right) \quad \text { for all } m, n \in \mathbb{N},
$$

which yields as $m \rightarrow \infty$ that $(B z)_{n}=\{\tilde{B}(A z)\}_{n}$ for all $n \in \mathbb{N}$. Therefore, one can observe from here that $A z \in\left[\ell_{p}\right]_{e . r}$ whenever $z \in \mu$ if and only if $B z \in \ell_{p}$ whenever $z \in \mu$. This completes the proof.

The following results were taken from Stieglitz and Tietz [18]:

$$
\begin{align*}
& \lim _{n \rightarrow \infty} a_{n k}=0, \tag{4.3a}\\
& \sup _{K} \sum_{n}\left|\sum_{k \in K} a_{n k}\right|^{p}<\infty . \tag{4.3b}
\end{align*}
$$

Lemma 4.1. Let $A=\left(a_{n k}\right)$ be an infinite matrix. Then
(i) $A=\left(a_{n k}\right) \in\left(c_{0}: \ell_{p}\right)=\left(c: \ell_{p}\right)=\left(\ell_{\infty}: \ell_{p}\right)$ if and only if (4.3b) holds.
(ii) $A=\left(a_{n k}\right) \in\left(\ell_{p}: c_{0}\right)$ if and only if (3.2b) and (4.3a) hold.
(iii) $A=\left(a_{n k}\right) \in\left(\ell_{p}: c\right)$ if and only if (3.2a) and (3.2b) hold.
(iv) $A=\left(a_{n k}\right) \in\left(\ell_{p}: \ell_{\infty}\right)$ if and only if (3.2b) holds.

Now, we can give the following results:
Corollary 4.1. Let $A=\left(a_{n k}\right)$ be an infinite matrix. The following statements hold: $(1<p<$ $\infty)$
(i) $A \in\left(\left[\ell_{p}\right]_{e . r}: \ell_{\infty}\right)$ if and only if $\left\{a_{n k}\right\}_{k \in \mathbb{N}} \in\left\{\left[\ell_{p}\right]_{\text {e.r }}\right\}^{\beta}$ for all $n \in \mathbb{N}$ and (3.2a) holds with $\tilde{a}_{n k}$ instead of $a_{n k}$.
(ii) $A \in\left(\left[\ell_{p}\right]_{e_{e, r}}: c\right)$ if and only if $\left\{a_{n k}\right\}_{k \in \mathbb{N}} \in\left\{\left[\ell_{p}\right]_{e_{.,}}\right\}^{\beta}$ for all $n \in \mathbb{N}$ and (3.2a) and (3.2b) hold with $\tilde{a}_{n k}$ instead of $a_{n k}$.
(iii) $A \in\left(\left[\ell_{p}\right]_{e . r}: c_{0}\right)$ if and only if $\left\{a_{n k}\right\}_{k \in \mathbb{N}} \in\left\{\left[\ell_{p}\right]_{e . r}\right\}^{\beta}$ for all $n \in \mathbb{N}$ and (3.2a) and (4.3a) hold with $\tilde{a}_{n k}$ instead of $a_{n k}$.

Corollary 4.2. Let $A=\left(a_{n k}\right)$ be an infinite matrix. The following statements hold: $A=\left(a_{n k}\right) \in$ $\left(c_{0}:\left[\ell_{p}\right]_{\text {e.r }}\right)=\left(c:\left[\ell_{p}\right]_{e . r}\right)=\left(\ell_{\infty}:\left[\ell_{p}\right]_{\text {e.r }}\right)$ if and only if (4.3b) holds with $b_{n k}$ instead of $a_{n k}$.

5 Some geometric properties of the space $\left[\ell_{p}\right]_{e . r}$

In this section, we study some geometric properties of the space $\left[\ell_{p}\right]_{e, r}$.
A Banach space X is said to have the Banach-Saks property if every bounded sequence $\left(x_{n}\right)$ in X admits a subsequence $\left(z_{n}\right)$ such that the sequence $\left\{t_{k}(z)\right\}$ is convergent in the norm in X [24], where

$$
\begin{equation*}
t_{k}(z)=\frac{1}{k+1}\left(z_{0}+z_{1}+\cdots+z_{k}\right), \quad(k \in \mathbb{N}) . \tag{5.1}
\end{equation*}
$$

A Banach space X is said to have the weak Banach-Saks property whenever given any weakly null sequence $\left(x_{n}\right) \subset X$ and there exists a subsequence $\left(z_{n}\right)$ of $\left(x_{n}\right)$ such that the sequence $\left\{t_{k}(z)\right\}$ strongly convergent to zero.

In [25], García-Falset introduce the following coefficient:

$$
\begin{equation*}
R(X)=\sup \left\{\liminf _{n \rightarrow \infty}\left\|x_{n}-x\right\|:\left(x_{n}\right) \subset B(X), x_{n} \underset{\rightarrow}{w} 0, x \in B(X)\right\}, \tag{5.2}
\end{equation*}
$$

where $B(X)$ denotes the unit ball of X.
Remark 5.1. A Banach space X with $R(X)<2$ has the weak fixed point property, [26].
Let $1<p<\infty$. A Banach space is said to have the Banach-Saks type p or property $(B S)_{p}$, if every weakly null sequence $\left(x_{k}\right)$ has a subsequence $\left(x_{k l}\right)$ such that for some $C>0$,

$$
\begin{equation*}
\left\|\sum_{l=0}^{n} x_{k l}\right\|<C(n+1)^{1 / p} \tag{5.3}
\end{equation*}
$$

for all $n \in \mathbb{N}$ (see [27]).
Now, we may give the following results related to the some geometric properties, mentioned above, of the space $\left[\ell_{p}\right]_{e . r}$.
Theorem 5.1. The space $\left[\ell_{p}\right]_{e . r}$ has the Banach-Saks type p.
Proof. Let $\left(\epsilon_{n}\right)$ be a sequence of positive numbers for which $\sum \epsilon_{n} \leq 1 / 2$, and also let (x_{n}) be a weakly null sequence in $B\left(\left[\ell_{p}\right]_{e . r}\right)$. Set $b_{0}=x_{0}=0$ and $b_{1}=x_{n_{1}}=x_{1}$. Then, there exists $m_{1} \in \mathbb{N}$ such that

$$
\left\|\sum_{i=m_{1}+1}^{\infty} b_{1}(i) e^{(i)}\right\|_{\left[\ell_{p}\right]_{e, r}}<\epsilon_{1} .
$$

Since $\left(x_{n}\right)$ is a weakly null sequence implies $x_{n} \rightarrow 0$ coordinatewise, there is an $n_{2} \in \mathbb{N}$ such that

$$
\begin{equation*}
\left\|\sum_{i=0}^{m_{2}} x_{n}(i) e^{(i)}\right\|_{\left[\ell_{p}\right]_{e, r}}<\epsilon_{1}, \tag{5.4}
\end{equation*}
$$

where $n \geq n_{2}$. Set $b_{2}=x_{n_{2}}$. Then, there exists an $m_{2}>m_{1}$ such that

$$
\begin{equation*}
\left\|\sum_{i=m_{2}+1}^{\infty} b_{2}(i) e^{(i)}\right\|_{\left[e_{p}\right]_{e r}}<\epsilon_{2} \tag{5.5}
\end{equation*}
$$

By using the fact that $x_{n} \rightarrow 0$ coordinatewise, there exists an $n_{3}>n_{2}$ such that

$$
\begin{equation*}
\left\|\sum_{i=0}^{m_{2}} x_{n}(i) e^{(i)}\right\|_{\left[\ell_{p}\right]_{e, r}}<\epsilon_{2} \tag{5.6}
\end{equation*}
$$

where $n \geq n_{3}$.
If we continue this process, we can find two increasing subsequences $\left(m_{i}\right)$ and $\left(n_{i}\right)$ such that

$$
\begin{equation*}
\left\|\sum_{i=0}^{m_{j}} x_{n}(i) e^{(i)}\right\|_{\left[\ell_{p}\right]_{e r}}<\epsilon_{j} \tag{5.7}
\end{equation*}
$$

for each $n \geq n_{j+1}$ and

$$
\begin{equation*}
\left\|\sum_{i=m_{1}+1}^{\infty} b_{1}(i) e^{(i)}\right\|_{\left[\ell_{p}\right]_{e r}}<\epsilon_{1} \tag{5.8}
\end{equation*}
$$

where $b_{j}=x_{n_{j}}$. Hence

$$
\begin{aligned}
&\left\|\sum_{j=0}^{n} b_{j}\right\|_{\left[\ell_{p}\right]_{e, r}}=\left\|\sum_{j=0}^{n}\left(\sum_{i=0}^{m_{j-1}} b_{j}(i) e^{(i)}+\sum_{i=m_{j-1}+1}^{m_{j}} b_{j}(i) e^{(i)}+\sum_{i=m_{j}+1}^{\infty} b_{j}(i) e^{(i)}\right)\right\|_{\left[e_{p}\right]_{e, r}} \\
&=\left\|\sum_{j=0}^{n}\left(\sum_{i=0}^{m_{j-1}} b_{j}(i) e^{(i)}\right)\right\|_{\left[\ell_{p}\right]_{e, r}}+\left\|\sum_{j=0}^{n}\left(\sum_{i=m_{j-1}+1}^{m_{j}} b_{j}(i) e^{(i)}\right)\right\|_{\left[\ell_{p}\right]_{e, r}} \\
&+\left\|\sum_{j=0}^{n}\left(\sum_{i=m_{j}+1}^{\infty} b_{j}(i) e^{(i)}\right)\right\|_{\left[e_{p}\right]_{e, r}} \\
& \leq\left\|\sum_{j=0}^{n}\left(\sum_{i=m_{j-1}+1}^{m_{j}} b_{j}(i) e^{(i)}\right)\right\|_{\left[\ell_{p}\right]_{e, r}}+2 \sum_{j=0}^{n} \epsilon_{j}
\end{aligned}
$$

On the other hand, it can be seen that $\left\|x_{n}\right\|_{\left[\varphi_{p}\right]_{e, r}}<1$. Therefore, $\left\|x_{n}\right\|_{\left[\ell_{p}\right]_{e . r}}^{p}<1$. We have

$$
\begin{aligned}
&\left\|\sum_{j=0}^{n}\left(\sum_{i=m_{j-1}+1}^{m_{j}} b_{j}(i) e^{(i)}\right)\right\|_{\left[\ell_{p}\right]_{e, r}}^{p} \\
&= \sum_{j=0}^{n} \sum_{i=m_{j-1}+1}^{m_{j}}\left|\sum_{k=0}^{i} \frac{\binom{i}{k} q_{k}}{2^{i} Q_{i}} x_{j}(k)\right|^{p} \\
& \leq \sum_{j=0}^{n} \sum_{i=0}^{\infty}\left|\sum_{k=0}^{i} \frac{\binom{i}{k} q_{k}}{2^{i} Q_{i}} x_{j}(k)\right|^{p} \\
& \leq n+1 .
\end{aligned}
$$

Hence, we obtain

$$
\left\|\sum_{j=0}^{n}\left(\sum_{i=m_{j-1}+1}^{m_{j}} b_{j}(i) e^{(i)}\right)\right\|_{\left[\ell_{p}\right]_{e, r}} \leq(n+1)^{1 / p}
$$

By using the fact $1 \leq(n+1)^{1 / p}$ for all $n \in \mathbb{N}$, we have

$$
\left\|\sum_{j=0}^{n} b_{j}\right\|_{\left[\ell_{p}\right]_{e . r}} \leq(n+1)^{1 / p}+1 \leq 2(n+1)^{1 / p} .
$$

Hence, $\left[\ell_{p}\right]_{e . r}$ has the Banach-Saks type p. This completes the proof of the theorem.
Remark 5.2. Note that $R\left(\left[\ell_{p}\right]_{e . r}\right)=R\left(\ell_{p}\right)=2^{1 / p}$, since $\left[\ell_{p}\right]_{e . r}$ is linearly isomorphic to ℓ_{p}. Hence, by the Remarks 5.1 and 5.2, we have the following.
Theorem 5.2. The space $\left[\ell_{p}\right]_{e . r}$ has the weak fixed point property, where $1<p<\infty$.

Acknowledgements

We have benefited a lot from the referees' reports. So, we thank to the reviewer for his/her careful reading and making some useful comments which improved the presentation of the paper.

References

[1] F. Başar and N. L. Braha, Euler-Cesáro difference spaces of bounded, convergent and null sequences, Tamkang J. Math., 47(4) (2016), 405-420.
[2] H. B. Ellidokuzoğlu, and S. Demiriz, Euler-Riesz difference sequence spaces, Turkish J. Math. Comput. Sci., 7 (2017), 63-72.
[3] B. Altay and F. Başar, The fine spectrum and the matrix domain of the difference operator Δ on the sequence space $\ell_{p},(0<p<1)$, Commun. Math. Anal., 2 (2007), 1-11.
[4] R. Et M.Çolak and E. Malkowsky, Some topics of sequence spaces, Lecture Notes in Mathematics, Firat Univ. Press, (2004), 1-63, ISBN: 975-394-0386-6.
[5] B. Choudhary and S. K. Mishra, A note on Köthe-Toeplitz duals of certain sequence spaces and their matrix transformations, Int. J. Math. Sci., 18 (1995), 681-688.
[6] F. Başar, Domain of the composition of some triangles in the space of p-summable sequences, AIP Conference Proceedings, 1611 (2014), 348-356.
[7] F. Başar, Summability Theory and Its Applications, Bentham Science Publishers, e-books, Monographs, Istanbul, 2012.
[8] H. Kızmaz, On certain sequence spaces, Canad. Math. Bull., 24 (1981), 169-176.
[9] F. Başar and B. Altay, On the space of sequences of p-bounded variation and related matrix mappings, Ukrainian Math. J., 55 (2003), 136-147.
[10] M. Kirişçi and F. Başar, Some new sequence spaces derived by the domain of generalized difference matrix, Comput. Math. Appl., 60 (2010), 1299-1309.
[11] A. Sönmez, Some new sequence spaces derived by the domain of the triple bandmatrix, Comput. Math. Appl., 62 (2011), 641-650.
[12] M. Candan and E. E. Kara, A study on topological and geometrical characteristic of new Banach sequence spaces, Gulf J. Math., 3(4) (2015), 67-84.
[13] E. E. Kara and M. İlkhan, Some properties of generalized Fibonacci sequence spaces, Linear and Multilinear Algebra, 64 (2016), 2208-2223.
[14] E. E. Kara and M. İlkhan, On some Banach sequence spaces derived by a new band matrix, British J. Math. Comput. Sci., 9(2) (2015), 141-159.
[15] P. K. Kamthan and M. Gupta, Sequence Spaces and Series, Marcel Dekker Inc., New York and Basel, 1981.
[16] A. Wilansky, Summability through Functional Analysis, North-HollandMathematics Studies 85, Amsterdam-Newyork-Oxford, 1984.
[17] R. G. Cooke, Infinite Matrices and Sequence Spaces, Macmillan and Co. Limited, London, 1950.
[18] M. Stieglitz and H. Tietz, Matrix transformationen von folgenraumen eine ergebnisubersict, Math. Z., 154 (1977), 1-16.
[19] B. Altay and F. Başar, Some paranormed Riesz sequence spaces of non-absolute type, Southeast Asian Bull. Math., 30 (2006), 591-608.
[20] B. Altay, F. Başar and M. Mursaleen, On the Euler sequence spaces which include the spaces ℓ_{p} and ℓ_{∞} I, Inform. Sci., 176 (2006), 1450-1462.
[21] B. Altay and F. Başar, Some Euler sequence spaces of non-absolute type, Ukrainian Math. J., 57 (2005), 1-17.
[22] B. Altay and F. Başar, Certain topological properties and duals of the domain of a triangle matrix in a sequence space, J. Math. Anal. Appl., 336 (2007), 632-645.
[23] K.-G. Grosse-Erdmann, On ℓ^{1}-invariant sequence spaces, J. Math. Anal. Appl., 262 (2001), 112-132.
[24] J. Diestel, Sequences and Series in Banach Spaces, vol. 92 of Graduate Texts in Mathematics, Springer, New York, NY, USA, 1984.
[25] J. García-Falset, Stability and fixed points for nonexpansive mappings, Houston Journal of Mathematics, 20 (1994), 495-506.
[26] J. García-Falset, The fixed point property in Banach spaces with the NUS-property, J. Math. Anal. Appl., 215(2) (1997), 532-542.
[27] H. Knaust, Orlicz sequence spaces of Banach-Saks type, Archiv der Mathematik, 59(6) (1992), 5620-565.
[28] M. Yeşilkayagil and F. Başar, On the paranormed Nörlund sequence space of non-absolute type, Abstr. Appl. Anal., (2014), 858704.

[^0]: *Corresponding author. Email addresses: hacer.bilgin@erdogan.edu.tr (H. Ellidokuzoğlu), serkandemiriz@gmail.com (S. Demiriz)

