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Abstract. Başar and Braha [1], introduced the sequence spaces ˘̀∞, c̆ and c̆0 of Euler-
Cesáro bounded, convergent and null difference sequences and studied their some
properties. Then, in [2], we introduced the sequence spaces [`∞]e.r, [c]e.r and [c0]e.r of
Euler-Riesz bounded, convergent and null difference sequences by using the compo-
sition of the Euler mean E1 and Riesz mean Rq with backward difference operator ∆.
The main purpose of this study is to introduce the sequence space [`p]e.r of Euler-Riesz
p−absolutely convergent series, where 1 ≤ p < ∞, difference sequences by using the
composition of the Euler mean E1 and Riesz mean Rq with backward difference oper-
ator ∆. Furthermore, the inclusion `p ⊂ [`p]e.r hold, the basis of the sequence space
[`p]e.r is constucted and α−, β− and γ−duals of the space are determined. Finally, the
classes of matrix transformations from the [`p]e.r Euler-Riesz difference sequence space
to the spaces `∞, c and c0 are characterized. We devote the final section of the paper to
examine some geometric properties of the space [`p]e.r.

Key Words: Composition of summability methods, Riesz mean of order one, Euler mean of order
one, backward difference operator, sequence space, BK space, Schauder basis, β−duals, matrix
transformations.

AMS Subject Classifications: 40C05, 40A05, 46A45

1 Preliminaries, background and notation

By a sequence space, we understand a linear subspace of the space w = CN of all
complex sequnces which contains φ, the set of all finitely non-zero sequences, where
N = {0, 1, · · · }. We shall write `∞, c and c0 for the spaces of all bounded, conver-
gent and null sequences, respectively. Also by bs, cs, `1 and `p, we denote the spaces
of all bounded, convergent, absolutely and p−absolutely convergent series, respectively,
where 1 < p < ∞.

∗Corresponding author. Email addresses: hacer.bilgin@erdogan.edu.tr (H. Ellidokuzoğlu),
serkandemiriz@gmail.com (S. Demiriz)
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We shall assume throughout unless stated otherwise that p, q > 1 with p−1 + q−1 = 1
and 0 < r < 1, and use the convention that any term with negative subscript is equal to
naught.

Let λ, µ be two sequence spaces and A = (ank) be an infinite matrix of real or complex
numbers ank, where n, k ∈N. Then, we say that A defines a matrix mapping from λ into
µ, and we denote it by writing A : λ→ µ, if for every sequence x = (xk) ∈ λ the sequence
Ax = {(Ax)n}, the A−transform of x, is in µ; where

(Ax)n = ∑
k

ankxk, (n ∈N). (1.1)

By (λ, µ), we denote the class of all matrices A such that A : λ → µ. Thus, A ∈ (λ, µ) if
and only if the series on the right hand side of (1.1) converges for each n ∈ N and every
x ∈ λ, and we have Ax = {(Ax)n}n∈N ∈ µ for all x ∈ λ. A sequence x is said to be
A−summable to α if Ax converges to α which is called the A−limit of x.

Let X be a sequence space and A be an infinite matrix. The sequence space

XA = {x = (xk) ∈ w : Ax ∈ X} (1.2)

is called the domain of A in X which is a sequence space.
A sequence space λ with a linear topology is called a K− space provided each of the

maps pi : λ→ C defined by pi(x) = xi is continuous for all i ∈N. A K− space is called an
FK− space provided λ is a complete linear metric space. An FK− space whose topology
is normal is called a BK− space. If a normed sequence space λ contains a sequence (bn)
with the property that for every x ∈ λ there is a unique sequence of scalars (αn) such that

lim
n→∞
||x− (α0b0 + α1b1 + · · ·+ αnbn)|| = 0,

then (bn) is called a Schauder basis (or briefly basis) for λ. The series ∑ αkbk which has
the sum x is then called the expansion of x with respect to (bn), and written as x = ∑ αkbk.

A matrix A = (ank) is called a triangle if ank = 0 for k > n and ann 6= 0 for all n ∈ N.
It is trivial that A(Bx) = (AB)x holds for the triangle matrices A, B and a sequence x.
Further, a triangle matrix U uniquely has an inverse U−1 = V, which is also a triangle
matrix. Then, x = U(Vx) = V(Ux) holds for all x ∈ w.

Let us give the definition of some triangle limitation matrices which are needed in the
text. ∆ denotes the backward difference matrix ∆ = (∆nk) and ∆′ = (∆′nk) denotes the
transpose of the matrix ∆, the forward difference matrix, which are defined by

∆nk =

{
(−1)n−k, n− 1 ≤ k ≤ n,
0, 0 ≤ k < n− 1 or k > n,

∆′nk =

{
(−1)n−k, n ≤ k ≤ n + 1,
0, 0 ≤ k < n or k > n + 1,

for all k, n ∈N; respectively.
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Then, let us define the Euler mean E1 = (enk) of order one and Riesz mean Rq = (rnk)

enk =


(n

k)

2n , 0 ≤ k ≤ n,

0, k > n,
rnk =


qk

Qn
, 0 ≤ k ≤ n,

0, k > n,

for all k, n ∈ N and where (qk) be a sequence of positive numbers and Qn = ∑n
k=0 qk.

Their inverses E−1
1 = (gnk) and R−1

q = (hnk) are given by

gnk =

{
(n

k)(−1)n−k2k, 0 ≤ k ≤ n,
0, k > n,

hnk =

 (−1)n−k Qk

qk
, n− 1 ≤ k ≤ n,

0, otherwise,

for all k, n ∈N.
We define the matrix B̃ = (b̃nk) by the composition of the matrices E1, Rq and ∆ as

b̃nk =


(n

k)qk

2nQn
, 0 ≤ k ≤ n,

0, k > n,
(1.3)

for all k, n ∈N.
In the literature, the notion of difference sequence spaces was introduced by Kızmaz [8]

as
X(∆) = {x = (xk) ∈ w : ∆′x = (xk − xk+1) ∈ X}

for X ∈ {`∞, c, c0}. The difference space bvp, consisting of all sequences x = (xk) such
that ∆x = (xk − xk−1) is in the sequence space `p, was studied in the case 0 < p < 1
by Altay and Başar [22] and in the case 1 ≤ p ≤ ∞ by Başar and Altay [9], and Çolak
et al. [4]. Kirişçi and Başar [10] have introduced and studied the generalized difference
sequence space

X̂ = {x = (xk) ∈ w : B(r, s)x ∈ X},
where X denotes any of the spaces `∞, c, c0 and `p with 1 ≤ p < ∞, and B(r, s)x =
(s.xk−1 + r.xk) with r, s ∈ R \ {0}. Following Kirişçi and Başar [10], Sönmez [11] have
been examined the sequence space X(B) as the set of all sequences whose B(r, s, t)−
trasforms are in the space X ∈ {`∞, c, c0, `p}, where B(r, s, t) denotes the triple band
matrix B(r, s, t) = {bnk{r, s, t}} defined by

bnk{r, s, t} =


r, n = k,
s, n = k + 1,
t, n = k + 2,
0, otherwise,

for all k, n ∈ N and r, s, t ∈ R \ {0}. Quite recently, Başar has studied the spaces ˜̀ p of
p−absolutely B̃−summable sequences, in [6]. The reader can also review these references
to get more detailed information [12–14].
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Then, as a natural continuation of Başar [6], Başar and Braha [1] introduce the spaces
˘̀∞, c̆ and c̆0 of Euler-Cesáro bounded, convergent and null difference sequences by using
the composition of the Euler mean E1 and Cesáro mean C1 of order one with backward
difference operator ∆. In [2], we introduced the [`∞]e.r, [c]e.r and [c0]e.r of Euler-Riesz
bounded, convergent and null difference sequences by using the composition of the Eu-
ler mean E1 and Riesz mean Rq with backward difference operator ∆ and prove that the
inclusions `∞ ⊂ [`∞]e.r, c ⊂ [c]e.r and c0 ⊂ [c0]e.r strictly hold. Furthermore, we investi-
gated some properties and compute α−, β− and γ− duals of these spaces. Afterwards,
we characterized of some matrix classes of Euler-Riesz sequence spaces.

In the present paper, we introduce the [`p]e.r of Euler-Riesz bounded, convergent and
null difference sequence by using the composition of the Euler mean E1 and Riesz mean
R1 of order one with backward difference operator ∆. Furthermore, we investigate some
properties and compute α−, β− and γ− duals of these space. Afterwards, we character-
ize of some matrix classes of Euler-Riesz sequence space. We devote the final section of
the paper to examine some geometric properties of the space [`p]e.r

2 The Euler-Riesz sequence space

In this section, we shall give a new sequence space and we shall investigate its some
properties:

[`p]e.r =

{
x = (xk) ∈ w :

∞

∑
n=0

∣∣∣∣∣ n

∑
k=0

(n
k)qk

2nQn
xk

∣∣∣∣∣
p

< ∞

}
.

With the notation (1.2), we may redefine the space [`p]e.r as fallows:

[`p]e.r = (`p)B̃. (2.1)

Define the sequence y = (yk), which will be frequently used, as the B̃−transform of a
sequence x = (xk), i.e.,

yk =
k

∑
j=0

(k
j)qj

2kQk
xj, k ∈N. (2.2)

Throughout the text, we suppose that the sequences x = (xk) and y = (yk) are connected
with the relation (2.2). One can obtain by a straightforward calculation from (2.2) that

xk =
1
qk

k

∑
j=0

(
k
j

)
(−1)k−j2jQjyj, k ∈N. (2.3)

Theorem 2.1. The set [`p]e.r is linear space with coordinatewise addition and scalar multiplica-
tion, and it is a BK−space with norm ||x||[`p]e.r

= ||B̃x||p.
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Proof. The proof of the first part of the theorem is a routine verification, and so we omit
it. Furthermore, since (2.2) holds, `p is BK−space with respect to its natural norm, and
the matrix B̃ is a triangle, Theorem 4.3.2 of Wilansky [16] implies that the spaces [`p]e.r is
BK−space.

Therefore, one can easily check that the absolute property does not hold on the space
[`p]e.r, because ||x||[`p]e.r

6= |||x|||[`p]e.r
for at least one sequence in the space [`p]e.r, where

|x| = (|xk|). This says that [`p]e.r is the sequence space of nonabsolute type.

Theorem 2.2. [`p]e.r is linearly isomorphic to the space `p, i.e., [`p]e.r
∼= `p.

Proof. To prove this theorem, we should show the existence of a linear bijection between
the spaces [`p]e.r and `p. Consider the transformation S from [`p]e.r to `p by y = Sx = B̃x.
The linearity of S is clear. Further, it is obvious that x = θ whenever Sx = θ and hence S
is injective, where θ = (0, 0, 0, · · · ).

Let us take any y ∈ `p and define the sequence x = {xn} by

xn =
1
qn

n

∑
k=0

(
n
k

)
(−1)n−k2kQkyk for all n ∈N.

Then, we obtain in the case of 1 ≤ p < ∞ that

||x||[`p]e.r
=

[
∞

∑
n=0

∣∣∣∣∣ n

∑
k=0

(n
k)qk

2nQn
xk

∣∣∣∣∣
p]1/p

=

[
∞

∑
n=0

∣∣∣∣∣ n

∑
k=0

(n
k)qk

2nQn

1
qk

k

∑
j=0

(
k
j

)
(−1)k−j2jQjyj

∣∣∣∣∣
p]1/p

=

(
∑
n

∣∣∣∣∣ ∞

∑
k=n

δnkyk

∣∣∣∣∣
p)1/p

= ||y||`p < ∞.

Consequently, we see from here that S is surjective. Hence, S is a linear bijection which
therefore says us that the spaces [`p]e.r and `p are linearly isomorphic, as desired.

Theorem 2.3. The inclusion `p ⊂ [`p]e.r strictly holds for 1 ≤ p < ∞.

Proof. To prove the validity of the inclusion `p ⊂ [`p]e.r for 1 ≤ p < ∞, it suffices to show
the existence of a number K > 0 such that ||x||[`p]e.r

≤ K · ||x||`p for every x ∈ `p.
Let us take any x ∈ `p. Then we obtain, with the notation of (2.2), by applying the

Hölder’s inequality for 1 < p < ∞ that

|yk|p =

∣∣∣∣∣ k

∑
j=0

(k
j)qj

2kQk
xj

∣∣∣∣∣
p

≤
∣∣∣∣∣ k

∑
j=0

(k
j)Qk

2kQk
xj

∣∣∣∣∣
p

=

∣∣∣∣∣ k

∑
j=0

(k
j)

2k xj

∣∣∣∣∣
p

≤
[

k

∑
j=0

(k
j)

2k |xj|p
]
×
[

k

∑
j=0

(k
j)

2k

]p−1

=
k

∑
j=0

(k
j)

2k |xj|p. (2.4)
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Using (2.4), we have that

∑
k
|yk|p ≤∑

k

k

∑
j=0

(k
j)

2k |xj|p ≤∑
k
|xk|p

k

∑
j=0

(k
j)

2k = ∑
k
|xk|p,

which yields us that

||x||[`p]e.r
≤ ||x||`p (2.5)

for 1 < p < ∞, as expected. Besides, let us consider the sequence u = {u(n)
k } defined by

u(n)
k =

{
0, 0, 0, · · · ,

Qn

qn︸︷︷︸
n−th

, · · ·
}

for all n ∈N. Then, we have

(B̃u)n =
n

∑
k=0

(n
k)qk

2nQn
u(n)

k =
1
2n .

For every n = 0, 1, · · · , (B̃u)n ∈ `p, but the sequence u = {u(n)
k } is not in `p. By the

similar discussions, it may be easily proved that the inequality (2.5) also holds in the case
p = 1 and so we omit the detail. This completes the proof.

Since the isomorphism S, defined in Theorem 2.1, is surjective, the inverse image of
the basis of the spaces `p is the basis of the new space [`p]e.r. Therefore, we have the
following theorem without proof.

Theorem 2.4. Define a sequence b(k) = {b(k)n }n∈N of elements of the space [`p]e.r for every fixed
k ∈N by

b(k)n =


(n

k)(−1)n−k2kQk

qn
, 0 ≤ k < n,

0, k ≥ n.

Let λk = (B̃x)k for all k ∈ N. Then, the sequence {b(k)}k∈N is a basis for the space [`p]e.r and
any x ∈ [`p]e.r has a unique representation of the form

x = ∑
k

λkb(k).

Remark 2.1. It is well known that every Banach space X with a Schauder basis is separa-
ble.

From Theorem 2.4 and Remark 2.1, we can give following corollary:

Corollary 2.1. The spaces [`p]e.r is separable.
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3 Duals of the new sequence spaces

In this section, we state and prove the theorems determining the α−, β− and γ− duals
of the sequence space [`p]e.r.

The set S(λ, µ) defined by

S(λ, µ) =
{

z = (zk) ∈ w : xz = (xkzk) ∈ µ for all x = (xk) ∈ λ
}

(3.1)

is called the multiplier space of the sequence spaces λ and µ. One can easily observe for
a sequence space ν with λ ⊃ ν ⊃ µ that the inclusions

S(λ, µ) ⊂ S(ν, µ) and S(λ, µ) ⊂ S(λ, ν)

hold. With the notation of (3.1), the alpha-, beta- and gamma-duals of a sequence space
λ, which are respectively denoted by λα, λβ and λγ are defined by

λα = S(λ, `1), λβ = S(λ, cs) and λγ = S(λ, bs).

For to give the α−, β− and γ− duals of the space [`p]e.r of non-absolute type, we need
the following Lemma;

Lemma 3.1 ([18]). A ∈ (`p : `1) if and only if

sup
K∈F

∑
k

∣∣∣∣∣∑n∈K
ank

∣∣∣∣∣
q

< ∞, (1 < p ≤ ∞).

Here and in what follows, we denote the collection of all finite subsets of N by F.

Lemma 3.2 ([18]). A ∈ (`p : c) if and only if

lim
n→∞

ank exists for each k ∈N, (3.2a)

sup
n∈N

∑
k
|ank|q < ∞, (1 < p < ∞). (3.2b)

Lemma 3.3 ([18]). A ∈ (`p : `∞) if and only if (3.2b) holds.

Now, we may give the theorems determining the α−, β− and γ−duals of the Euler-
Riesz sequence space [`p]e.r.

Theorem 3.1. Define the set aq as follows:

aq =

{
a = (ak) ∈ w : sup

K∈F

∞

∑
k=0

∣∣∣∣∣∑n∈K

(
n
k

)
(−1)n−k2k an

qn
Qk

∣∣∣∣∣
q

< ∞

}
.

Then,
{
[`p]e.r

}α
= aq.
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Proof. We chose the sequence a = (ak) ∈ w. We can easily derive that with the (2.3) that

anxn =
n

∑
k=0

(
n
k

)
(−1)n−k2k an

qn
Qkyk = (By)n, (n ∈N), (3.3)

where B = (bnk) is defined by the formula

bnk =

 (n
k)(−1)n−k2k an

qn
Qk, (0 ≤ k ≤ n),

0, (k > n),
(n, k ∈N). (3.4)

It follows from (3.3) that ax = (anxn) ∈ `1 whenever x ∈ [`p]e.r if and only if By ∈ `1

whenever y ∈ c0. This gives the result that
{
[`p]e.r

}α
= aq.

Theorem 3.2. The matrix D(r) = (dnk) is defined by

dnk =

 ∑n
j=k (

j
k)(−1)j−k2k aj

qj
Qk, (0 ≤ k ≤ n),

0, (k > n),
(3.5)

for all k, n ∈N. Then, {[`p]e.r}
β = b1 ∩ b2 where

b1 =
{

a = (ak) ∈ w : lim
n→∞

dnk = αk

}
,

b2 =

{
a = (ak) ∈ w : sup

n∈N
∑

k
|dnk|q < ∞

}
.

Proof. We give the proof for the space [`p]e.r. Consider the equation

n

∑
k=0

akxk =
n

∑
k=0

[
k

∑
j=0

(
k
j

)
(−1)k−j2j 1

qk
Qjyj

]
ak

=
n

∑
k=0

[
n

∑
j=k

(
k
j

)
(−1)k−j2j ak

qk
Qj

]
yk = (Dy)n, (3.6)

where D = (dnk) defined by (3.4).
Thus, we deduce by with (3.6) that ax = (akxk) ∈ cs whenever x = (xk) ∈ [`p]e.r if

and only if Dy ∈ c whenever y = (yk) ∈ `p. Therefore, we derive from (3.2a) and (3.2b)
that

lim
n→∞

dnk exists for each k ∈N,

sup
n∈N

n

∑
k=0
|dnk|q < ∞, (1 < p < ∞),

which shows that {[`p]e.r}
β = b1 ∩ b2.

Theorem 3.3. {[`p]e.r}
γ = b2.

Proof. This is obtained in the similar way used in the proof of Theorem 3.2.
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4 Matrix transformations related to the new sequence spaces

In this section, we characterize the matrix transformations from the space [`p]e.r into any
given sequence space µ and from the sequence space µ into the space [`p]e.r.

We known that, if [`p]e.r
∼= `p, we can say: The equivalence x ∈ [`p]e.r, if and only if

y ∈ `p holds.
In what follows, for brevity, we write,

ãnk =:
n

∑
k=0

(
n
k

)
(−1)n−k2k Qk

qn
ank

for all k, n ∈N.

Theorem 4.1. Suppose that the entries of the infinite matrices A = (ank) and E = (enk) are
connected with the relation

enk =: ãnk (4.1)

for all k, n ∈ N and µ be any given sequence space. Then, A ∈ ([`p]e.r : µ) if and only if
{ank}k∈N ∈ {[`p]e.r}

β for all n ∈N and E ∈ (`p : µ).

Proof. Let µ be any given sequence space. Suppose that (4.1) holds between A = (ank)
and E = (enk), and take into account that the space [`p]e.r and `p are linearly isomorphic.

Let A ∈ ([`p]e.r : µ) and take any y = (yk) ∈ `p. Then, EB̃ exists and {ank}k∈N ∈
b1 ∩ b2 which yields that {enk}k∈N ∈ `1 for each n ∈N. Hence, Ey exists and thus

∑
k

enkyk = ∑
k

ankxk

for all n ∈N.
We have that Ey = Ax which leads us to the consequence E ∈ (`p : µ).
Conversely, let {ank}k∈N ∈ {[`p]e.r}

β for each n ∈ N and E ∈ (`p : µ) hold, and take
any x = (xk) ∈ [`p]e.r. Then, Ax exists. Therefore, we obtain from the equality

∞

∑
k=0

ankxk =
∞

∑
k=0

[
k

∑
j=0

(
k
j

)
(−1)k−j2j Qj

qk
akj

]
yk

for all n ∈ N, that Ey = Ax and this shows that A ∈ ([`p]e.r : µ). This completes the
proof.

Theorem 4.2. Suppose that the elements of the infinite matrices A = (ank) and B = (bnk) are
connected with the relation

bnk =:
k

∑
j=0

(k
j)qj

2kQk
ajk for all k, n ∈N. (4.2)

Let µ be any given sequence space. Then, A ∈ (µ : [`p]e.r) if and only if B ∈ (µ : `p).
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Proof. Let z = (zk) ∈ µ and consider the following equality.

m

∑
k=0

bnkzk =
k

∑
j=0

(k
j)qj

2kQk

(
m

∑
k=0

ajkzk

)
for all m, n ∈N,

which yields as m→ ∞ that (Bz)n = {B̃(Az)}n for all n ∈N. Therefore, one can observe
from here that Az ∈ [`p]e.r whenever z ∈ µ if and only if Bz ∈ `p whenever z ∈ µ. This
completes the proof.

The following results were taken from Stieglitz and Tietz [18]:

lim
n→∞

ank = 0, (4.3a)

sup
K

∑
n

∣∣∣∣∣∑k∈K
ank

∣∣∣∣∣
p

< ∞. (4.3b)

Lemma 4.1. Let A = (ank) be an infinite matrix. Then

(i) A = (ank) ∈ (c0 : `p) = (c : `p) = (`∞ : `p) if and only if (4.3b) holds.

(ii) A = (ank) ∈ (`p : c0) if and only if (3.2b) and (4.3a) hold.

(iii) A = (ank) ∈ (`p : c) if and only if (3.2a) and (3.2b) hold.

(iv) A = (ank) ∈ (`p : `∞) if and only if (3.2b) holds.

Now, we can give the following results:

Corollary 4.1. Let A = (ank) be an infinite matrix. The following statements hold: (1 < p <
∞)

(i) A ∈ ([`p]e.r : `∞) if and only if {ank}k∈N ∈ {[`p]e.r}
β for all n ∈N and (3.2a) holds with

ãnk instead of ank.

(ii) A ∈ ([`p]e.r : c) if and only if {ank}k∈N ∈ {[`p]e.r}
β for all n ∈ N and (3.2a) and (3.2b)

hold with ãnk instead of ank.

(iii) A ∈ ([`p]e.r : c0) if and only if {ank}k∈N ∈ {[`p]e.r}
β for all n ∈ N and (3.2a) and (4.3a)

hold with ãnk instead of ank.

Corollary 4.2. Let A = (ank) be an infinite matrix. The following statements hold: A = (ank) ∈
(c0 : [`p]e.r) = (c : [`p]e.r) = (`∞ : [`p]e.r) if and only if (4.3b) holds with bnk instead of ank.
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5 Some geometric properties of the space [`p]e.r

In this section, we study some geometric properties of the space [`p]e.r.
A Banach space X is said to have the Banach-Saks property if every bounded sequence

(xn) in X admits a subsequence (zn) such that the sequence {tk(z)} is convergent in the
norm in X [24], where

tk(z) =
1

k + 1
(z0 + z1 + · · ·+ zk), (k ∈N). (5.1)

A Banach space X is said to have the weak Banach-Saks property whenever given any
weakly null sequence (xn) ⊂ X and there exists a subsequence (zn) of (xn) such that the
sequence {tk(z)} strongly convergent to zero.

In [25], Garcı́a-Falset introduce the following coefficient:

R(X) = sup
{

lim inf
n→∞

||xn − x|| : (xn) ⊂ B(X), xn w−→0, x ∈ B(X)
}

, (5.2)

where B(X) denotes the unit ball of X.

Remark 5.1. A Banach space X with R(X) < 2 has the weak fixed point property, [26].

Let 1 < p < ∞. A Banach space is said to have the Banach-Saks type p or property
(BS)p, if every weakly null sequence (xk) has a subsequence (xkl) such that for some
C > 0, ∥∥∥∥∥ n

∑
l=0

xkl

∥∥∥∥∥ < C(n + 1)1/p (5.3)

for all n ∈N (see [27]).
Now, we may give the following results related to the some geometric properties,

mentioned above, of the space [`p]e.r.

Theorem 5.1. The space [`p]e.r has the Banach-Saks type p.

Proof. Let (εn) be a sequence of positive numbers for which ∑ εn ≤ 1/2, and also let (xn)
be a weakly null sequence in B([`p]e.r). Set b0 = x0 = 0 and b1 = xn1 = x1. Then, there
exists m1 ∈N such that ∥∥∥∥∥ ∞

∑
i=m1+1

b1(i)e(i)
∥∥∥∥∥
[`p]e.r

< ε1.

Since (xn) is a weakly null sequence implies xn → 0 coordinatewise, there is an n2 ∈ N

such that ∥∥∥∥∥m2

∑
i=0

xn(i)e(i)
∥∥∥∥∥
[`p]e.r

< ε1, (5.4)
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where n ≥ n2. Set b2 = xn2 . Then, there exists an m2 > m1 such that∥∥∥∥∥ ∞

∑
i=m2+1

b2(i)e(i)
∥∥∥∥∥
[`p]e.r

< ε2. (5.5)

By using the fact that xn → 0 coordinatewise, there exists an n3 > n2 such that∥∥∥∥∥m2

∑
i=0

xn(i)e(i)
∥∥∥∥∥
[`p]e.r

< ε2, (5.6)

where n ≥ n3.
If we continue this process, we can find two increasing subsequences (mi) and (ni)

such that ∥∥∥∥∥
mj

∑
i=0

xn(i)e(i)
∥∥∥∥∥
[`p]e.r

< εj, (5.7)

for each n ≥ nj+1 and

∥∥∥∥∥ ∞

∑
i=m1+1

b1(i)e(i)
∥∥∥∥∥
[`p]e.r

< ε1, (5.8)

where bj = xnj . Hence

∥∥∥∥∥ n

∑
j=0

bj

∥∥∥∥∥
[`p]e.r

=

∥∥∥∥∥∥
n

∑
j=0

mj−1

∑
i=0

bj(i)e(i) +
mj

∑
i=mj−1+1

bj(i)e(i) +
∞

∑
i=mj+1

bj(i)e(i)

∥∥∥∥∥∥
[`p]e.r

=

∥∥∥∥∥ n

∑
j=0

(mj−1

∑
i=0

bj(i)e(i)
)∥∥∥∥∥

[`p]e.r

+

∥∥∥∥∥∥
n

∑
j=0

 mj

∑
i=mj−1+1

bj(i)e(i)

∥∥∥∥∥∥
[`p]e.r

+

∥∥∥∥∥∥
n

∑
j=0

 ∞

∑
i=mj+1

bj(i)e(i)

∥∥∥∥∥∥
[`p]e.r

≤

∥∥∥∥∥∥
n

∑
j=0

 mj

∑
i=mj−1+1

bj(i)e(i)

∥∥∥∥∥∥
[`p]e.r

+ 2
n

∑
j=0

εj.
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On the other hand, it can be seen that ‖xn‖[`p]e.r
< 1. Therefore, ‖xn‖p

[`p]e.r
< 1. We have

∥∥∥∥∥∥
n

∑
j=0

 mj

∑
i=mj−1+1

bj(i)e(i)

∥∥∥∥∥∥
p

[`p]e.r

=
n

∑
j=0

mj

∑
i=mj−1+1

∣∣∣∣∣ i

∑
k=0

( i
k)qk

2iQi
xj(k)

∣∣∣∣∣
p

≤
n

∑
j=0

∞

∑
i=0

∣∣∣∣∣ i

∑
k=0

( i
k)qk

2iQi
xj(k)

∣∣∣∣∣
p

≤n + 1.

Hence, we obtain ∥∥∥∥∥∥
n

∑
j=0

 mj

∑
i=mj−1+1

bj(i)e(i)

∥∥∥∥∥∥
[`p]e.r

≤ (n + 1)1/p.

By using the fact 1 ≤ (n + 1)1/p for all n ∈N, we have∥∥∥∥∥ n

∑
j=0

bj

∥∥∥∥∥
[`p]e.r

≤ (n + 1)1/p + 1 ≤ 2(n + 1)1/p.

Hence, [`p]e.r has the Banach-Saks type p. This completes the proof of the theorem.

Remark 5.2. Note that R([`p]e.r) = R(`p) = 21/p, since [`p]e.r is linearly isomorphic to `p.

Hence, by the Remarks 5.1 and 5.2, we have the following.

Theorem 5.2. The space [`p]e.r has the weak fixed point property, where 1 < p < ∞.
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[4] R. Et M.Çolak and E. Malkowsky, Some topics of sequence spaces, Lecture Notes in Mathe-
matics, Fırat Univ. Press, (2004), 1–63, ISBN: 975-394-0386-6.

[5] B. Choudhary and S. K. Mishra, A note on Köthe-Toeplitz duals of certain sequence spaces
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