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Abstract. In this paper, we give a generalization of the osculating curves to
the n-dimensional Euclidean space. Based on the definition of an osculating

curve in the 3 and 4 dimensional Euclidean spaces, a new type of osculating

curve has been defined such that the curve is independent of the (n − 3)th
binormal vector in the n-dimensional Euclidean space, which has been called ”a

generalized osculating curve of type (n−3)”. We find the relationship between
the curvatures for any unit speed curve to be congruent to this osculating curve

in En. In particular, we characterize the osculating curves in En in terms of

their curvature functions. Finally, we show that the ratio of the (n− 1)th and
(n − 2)th curvatures of the osculating curve is the solution of an (n − 2)th

order linear nonhomogeneous differential equation.

1. Introduction

Curve theory is a popular research interest in classical differential geometry and
osculating curves are a known example in this field. There are many studies on
osculating curves in the Euclidean 3-space E3. The significant property of these
curves is that the position vector of osculating curves always lie in their osculating
planes. The osculating curve α : I → E3 is defined by

α (s) = λ (s)T (s) + µ (s)N (s) ,

for some differentiable functions λ and µ of s ∈ I ⊂ R, where T (s) is the tangent
vector field and N (s) is the normal vector field. Similar curves are present in
curve theory such as normal curves, where the position vector always lies in the
normal plane, and the rectifying curves, where the position vector always lies in the
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rectifying plane [1]. B. Y. Chen has studied rectifying curves in his paper ”When
does the position vector of a space curve always lie in its rectifying plane?”. Since
this study, normal, rectifying and osculating curves have been studied from different
perspectives. Some of the studies in the literature have been listed below.

Chen and Dillen have studied rectifying curves in [2], where they established a
relationship between rectifying curves and centrodes in mechanics. They also show
that rectifying curves satisfy the equality case of a general inequality in their study.
The characterization of the rectifying curve in Euclidean 4−space and Minkowski
3−space are given in [3], [4] and [5]. Cambie et al. investigated rectifying curves
in an arbitrary dimensional Euclidean space using conditions on their curvature
[6]. Additionally, there are some papers on spacelike, timelike and null normal
curves in Minkowski space [7], [8]. Characterizations of an osculating curve in the
3-dimensional Euclidean space has been given in [9] and a specific osculating curve
has been defined in the Euclidean 4-space. Normal, osculating and rectifying curves
have been defined in the Euclidean and semi Euclidean space by using quaternion
algebra in [10], [11], [16] and [25]. Bi-null curves of these types have also been
analyzed in R6

3 and R5
2 in [12, 13]. Several studies in the literature on the topic of

interest of this study can be found in [14-18, 26, 27].
In this paper, using similar methods to those used in [6] and the definition of an

osculating curve as stated in [9], we investigate the properties of a generalized form
of osculating curves in the n−dimensional Euclidean space which are independent
of the (n − 3)th binormal vector. We call this osculating curve ”a generalized
osculating curve of type (n− 3)”. Firstly, basic concepts of curve theory in En are
given as preliminaries. Then, the characterization of the osculating curves is given
in En. The necessary and sufficient condition for a curve to be an osculating curve
in the n-dimensional Euclidean space is also obtained. Additionally, using this
necessary and sufficient condition, we show that if a curve is an osculating curve
in the n-dimensional Euclidean space, its curvatures define a differential equation.
Finally, we state the existence and uniqueness of the solution of this differential
equation and propose a general form for the general solution of the equation.

2. Preliminaries

Basic concepts of curve theory in the n-dimensional Euclidean space En are given
in this section. Let α : I ⊂ R → En, s ∈ I → α (s) be an arclength parameterized,
n times continuously differentiable curve. The curve α is called a unit speed curve
if ⟨α, α⟩ = 1, where ⟨ , ⟩ is the function that shows the standart inner product in
the n-dimensional Euclidean space En given by

⟨X,Y ⟩ =
n∑

i=1

xiyi

for each X = (x1, x2, ..., xn) and Y = (y1, y2, ..., yn) ∈ En. The norm of X is given

by ∥X∥ =
√

⟨X,X⟩. On the other hand, if ∥X∥ = 1, then X is an unit vector.
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Also, if the curve α in En is an arclength parameterized curve, then
∥∥dα

ds

∥∥ = 1.
The Serret Frenet formulas for En are given as the following equations (see [19]):

T
′
(s) = κ1 (s)N (s)

N
′
(s) = −κ1 (s)T (s) + κ2 (s)B1 (s)

B
′

1 (s) = −κ2 (s)N (s) + κ3 (s)B2 (s)

B
′

i (s) = −κi+1 (s)Bi−1 (s) + κi+2 (s)Bi+1 (s) , 2 ≤ i ≤ n− 3

B
′

n−2 (s) = −κn−1 (s)Bn−3 (s) ,

(1)

where κ1, κ2, κ3,. . . ,κn−1 are the curvature functions of the curve and are positive.
For more information on curve theory, the reader is advised to see the liteature
[20-22].

3. Osculating curves of type (n-3) in the n−dimensional Euclidean space

In this section, generalizations of several fundamental definitions, theorems, and
results to generalized osculating curves of type (n-3) in the n-dimensional Euclidean
space are given. All of the mentions to osculating curves in our study refer to the
generalized osculating curves of type (n-3) from this point.

Definition 1. Let α : I ⊂ R → En, s ∈ I → α (s) be an arclength parameterized,
n times continuously differentiable curve. In En, a curve for which the position
vector always lies in the orthogonal complement B⊥

n−3 (s) of its (n− 3) th binormal

vector field Bn−3 (s) is called the osculating curve. B⊥
n−3 (s) is defined as

B⊥
n−3 (s) = {W ∈ En |⟨W,Bn−3 (s)⟩ = 0}

where ⟨ , ⟩ denotes the standard scalar product in En. Thus B⊥
n−3 (s) is a (n− 1)-

dimensional subspace of En, spanned by the tangent, the principal normal, the first
binormal, second binormal,...,(n− 4) th binormal and, (n− 2) th binormal vector
fields T ,N ,B1 (s),...,Bn−4 (s),Bn−2 (s) respectively. Therefore, the position vector
of an osculating curve with respect to a specific origin is given as

α (s) = µ1 (s)T (s) + µ2 (s)N (s) +

n−4∑
i=1

µi+2 (s)Bi (s) + µn−1 (s)Bn−2 (s) (2)

for some differentiable functions µi (1 ≤ i ≤ n− 3) of s ∈ I ⊂ R.

Theorem 1. Let α (s) be a unit speed curve in En with nonzero curvatures. Then
α (s) is congruent to a osculating curve in En if and only if

n−3∑
z=0

(
Γi,z (s)

dz

dsz

(
κn−1 (s)

κn−2 (s)

))′

− κ1 (s)

n−4∑
z=0

Γi,z (s)
dz

dsz

(
κn−1 (s)

κn−2 (s)

)
=

1

c
,

c ∈ R− {0}, where 1 ≤ i ≤ n− 1.
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Proof. Let α be an arclength parameterized osculating curve in the n-dimensional
Euclidean space. The derivative of (2) with respect to s for both sides of the
equation is

α
′
(s) = µ

′

1 (s)T (s) + µ1 (s)T
′
(s) + µ

′

2 (s)N (s) + µ2 (s)N
′
(s)

+

n−4∑
i=2

(
µ

′

i+2 (s)Bi (s) + µi+2 (s)B
′

i (s)
)

+µ
′

n−1 (s)Bn−2 (s) + µn−1 (s)Bn−2 (s) .

Implementing the Serret Frenet formulas for the n-dimensional Euclidean space and
rearranging the terms of the right hand side, we get

T (s) =
(
µ

′

1 (s)− µ2 (s)κ1 (s)
)
T (s)

+
(
µ1 (s)κ1 (s) + µ

′

2 (s)− µ3 (s)κ2 (s)
)
N (s)

+
(
µ2 (s)κ2 (s) + µ

′

3 (s)− µ4 (s)κ3 (s)
)
B1 (s)

+

n−5∑
i=2

(
µi+1 (s)κi+1 (s) + µ

′

i+2 (s)− µi+3 (s)κi+2 (s)
)
Bi (s)

+
(
µn−3 (s)κn−3 (s) + µ

′

n−2 (s)
)
Bn−4 (s)

+
(
µn−2 (s)κn−2 (s)− µn−1 (s)κn−1 (s)

)
Bn−3 (s)

+µ
′

n−1 (s)Bn−2 (s)

Using the equality of both sides, we get the following expressions for the coefficients
of T (s), N(s), Bi(s) for i = 2, 3, . . . , n− 2:

µ
′

1 (s)− µ2 (s)κ1 (s) = 1 (3)

µ1 (s)κ1 (s) + µ
′

2 (s)− µ3 (s)κ2 (s) = 0 (4)

µ2 (s)κ2 (s) + µ
′

3 (s)− µ4 (s)κ3 (s) = 0 (5)

µi+1 (s)κi+1 (s) + µ
′

i+2 (s)− µi+3 (s)κi+2 (s) = 0, 2 ≤ i ≤ n− 3 (6)

µn−3 (s)κn−3 (s) + µ
′

n−2 (s) = 0 (7)

µn−2 (s)κn−2 (s)− µn−1 (s)κn−1 (s) = 0 (8)

µ
′

n−1 (s) = 0. (9)

Starting from (9), we integrate these expressions with respect to s to obtain the
coefficient functions

µn−1 (s) = c, c ∈ R. (10)
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Similarly, the integrations of (7) and (8) yield

µn−2 (s) = −κn−1 (s)

κn−2 (s)
(11)

and

µn−3 (s) = − c

κn−3 (s)

(
κn−1 (s)

κn−2 (s)

)′

. (12)

On the other hand, for i = n− 4, and n− 5, we get the following equations:

µn−4 (s) = −c
κn−3 (s)

κn−4 (s)

(
κn−1 (s)

κn−2 (s)

)
(13)

+
c

κn−4 (s)

(
1

κn−3 (s)

)′ (
κn−1 (s)

κn−2 (s)

)′

+
c

κn−4 (s)

(
1

κn−3 (s)

)(
κn−1 (s)

κn−2 (s)

)′′

and

µn−5 (s) = − c

κn−5 (s)

(
κn−3 (s)

κn−4 (s)

)′ (
κn−1 (s)

κn−2 (s)

)
(14)

−
[

c

κn−5 (s)

((
κn−3 (s)

κn−4 (s)

)
− κn−4 (s)

κn−3 (s)

)](
κn−1 (s)

κn−2 (s)

)′

+
c

κn−5 (s)

(
1

κn−4 (s)

(
1

κn−3 (s)

)′)′ (
κn−1 (s)

κn−2 (s)

)′

+
2c

κn−5 (s)

1

κn−4 (s)

1

κn−3 (s)

(
κn−1 (s)

κn−2 (s)

)′′

− c

κn−5 (s)

1

κn−4 (s)

1

κn−3 (s)

(
κn−1 (s)

κn−2 (s)

)′′′

.

The other curvature functions have expressions of a complicated structure. Hence,
we define the following functions to express these curvatures: The function Γn−4,0 (s)
is defined as

Γn−4,0 (s) = −κn−3 (s)

κn−4 (s)
, Γn−4,1 (s) =

1

κn−4 (s)

(
1

κn−3 (s)

)′

,

Γn−4,2 (s) =
1

κn−4 (s)

(
1

κn−3 (s)

)
,
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then we get

µn−4 (s) = cΓn−4,0 (s)

(
κn−1 (s)

κn−2 (s)

)
+ cΓn−4,1 (s)

(
κn−1 (s)

κn−2 (s)

)′

+cΓn−4,2 (s)

(
κn−1 (s)

κn−2 (s)

)′′

.

Similarly, Γn−5,0 (s), Γn−5,1 (s), Γn−5,2 (s), and Γn−5,3 (s) are defined as

Γn−5,0 (s) = − 1

κn−5 (s)

(
κn−3 (s)

κn−4 (s)

)′

,

Γn−5,1 (s) =

[
1

κn−5 (s)

((
κn−3 (s)

κn−4 (s)

)
− κn−4 (s)

κn−3 (s)

)]

+
1

κn−5 (s)

(
1

κn−4 (s)

(
1

κn−3 (s)

)′)′

,

Γn−5,2 (s) =
2

κn−5 (s)

1

κn−4 (s)

1

κn−3 (s)
,

Γn−5,3 (s) = − 1

κn−5 (s)

1

κn−4 (s)

1

κn−3 (s)
,

then we get

µn−5 (s) = cΓn−5,0 (s)

(
κn−1 (s)

κn−2 (s)

)
+ cΓn−5,1 (s)

(
κn−1 (s)

κn−2 (s)

)′

+cΓn−5,2 (s)

(
κn−1 (s)

κn−2 (s)

)′′

+ cΓn−5,3 (s)

(
κn−1 (s)

κn−2 (s)

)′′′

.

Altogether, the following expression can be defined for the functions defined above:

µi (s) =

n−i−2∑
z=0

cΓi,z (s)
dz

dsz

(
κn−1 (s)

κn−2 (s)

)
, 1 ≤ i ≤ n− 1. (15)

Thus we get the following coefficient functions for i = 1, and i = 2

µ1 (s) =

n−3∑
z=0

cΓi,z (s)
dz

dsz

(
κn−1 (s)

κn−2 (s)

)
, (16)

and

µ2 (s) =

n−4∑
z=0

cΓi,z (s)
dz

dsz

(
κn−1 (s)

κn−2 (s)

)
. (17)
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Substituting (16) and (17) into (3), we obtain the relations below

n−3∑
z=0

(
Γi,z (s)

dz

dsz

(
κn−1 (s)

κn−2 (s)

))′

− κ1 (s)

n−4∑
l=0

Γi,z (s)
dz

dsz

(
κn−1 (s)

κn−2 (s)

)
=

1

c
, (18)

for c ∈ R− 0.
Conversely, consider an arbitrary unit speed curve in En for which the curvature

functions satisfy the relation (18). Then, we consider the the vector X ∈ En

defined by

X (s) = α (s) +

n−3∑
z=0

cΓi,z (s)
dz

dsz

(
κn−1 (s)

κn−2 (s)

)
T (s)

+

n−4∑
z=0

cΓi,z (s)
dz

dsz

(
κn−1 (s)

κn−2 (s)

)
N (s)

+...+

n−i−4∑
z=0

cΓi,z (s)
dz

dsz

(
κn−1 (s)

κn−2 (s)

)
Bi (s)

+...−

(
c

κn−3 (s)

(
κn−1 (s)

κn−2 (s)

)′)
Bn−5 (s)

−
(
κn−1 (s)

κn−2 (s)

)
Bn−4 (s)

+cBn−2 (s)

It can be seen that X
′
(s) = 0 through the relations (1) and (18). Thus, X is a

constant vector. This implies that α is congruent to an osculating curve. Hence,
the proof is complete. □

Theorem 2. Let α (s) be a unit speed osculating curve in En with nonzero curva-
tures. Then the following hold:

i) The tangential, the principal normal, the first, the second, ..., the i-th,..., the
(n− 5)th, and (n− 4)th binormal components of the position vector of the curve
are respectively given by

⟨α (s) , T (s)⟩ =
n−3∑
z=0

cΓi,z (s)
dz

dsz

(
κn−1 (s)

κn−2 (s)

)
, (19)

⟨α (s) , N (s)⟩ =
n−4∑
z=0

cΓi,z (s)
dz

dsz

(
κn−1 (s)

κn−2 (s)

)
. (20)

⟨α (s) , B1 (s)⟩ =
n−5∑
z=0

cΓi,z (s)
dz

dsz

(
κn−1 (s)

κn−2 (s)

)
, (21)
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⟨α (s) , B2 (s)⟩ =
n−6∑
z=0

cΓi,z (s)
dz

dsz

(
κn−1 (s)

κn−2 (s)

)
, (22)

...

⟨α (s) , Bi (s)⟩ =
n−i−4∑
z=0

cΓi,z (s)
dz

dsz

(
κn−1 (s)

κn−2 (s)

)
(23)

...

⟨α (s) , Bn−5 (s)⟩ = − c

κn−3 (s)

(
κn−1 (s)

κn−2 (s)

)′

, (24)

⟨α (s) , Bn−4 (s)⟩ = −κn−1 (s)

κn−2 (s)
. (25)

ii) The (n− 2)th binormal component of the position vector of the curve is a non-
zero constant.

Conversely, if α (s) is a unit speed curve in En with non-zero curvatures and one
of the statements (i), (ii) holds, then α (s) is an osculating curve or is congruent
to an osculating curve in En.

Proof. By using the relations (2) and (3)-(9), the position vector of the curve can
be written as follows:

α (s) =

n−3∑
z=0

cΓi,z (s)
dz

dsz

(
κn−1 (s)

κn−2 (s)

)
T (s) (26)

+

n−4∑
z=0

cΓi,z (s)
dz

dsz

(
κn−1 (s)

κn−2 (s)

)
N (s)

+...+

n−i−4∑
z=0

cΓi,z (s)
dz

dsz

(
κn−1 (s)

κn−2 (s)

)
Bi (s)

+...−

(
c

κn−3 (s)

(
κn−1 (s)

κn−2 (s)

)′)
Bn−5 (s)

−
(
κn−1 (s)

κn−2 (s)

)
Bn−4 (s) + cBn−2 (s)

From (19), we get (19)- (25). Thus, (i) and (ii) have been proved.
Conversely, assume that statements (i) and (ii) hold. By taking the derivative

of ⟨α (s) , Bn−4 (s)⟩ = −κn−1(s)
κn−2(s)

with respect to s and using (1) we get,

−κn−3 (s) ⟨α (s) , Bn−5 (s)⟩+ κn−2 (s) ⟨α (s) , Bn−3 (s)⟩ = −κn−1 (s)

κn−2 (s)
.
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By using ⟨α (s) , Bn−5 (s)⟩ = − c
κn−3(s)

(
κn−1(s)
κn−2(s)

)′

and κn−2 (s) ̸= 0, we get

⟨α (s) , Bn−3 (s)⟩ = 0, which means that this is an osculating curve.
If statement (ii) holds, then we have ⟨α (s) , Bn−2 (s)⟩ = c, c ∈ R − {0}. Differ-

entiating the previous equation with respect to s and using (1), we find
−κn−1 (s) ⟨α (s) , Bn−3 (s)⟩ = 0. It follows that ⟨α (s) , Bn−3 (s)⟩ = 0 and hence the
curve α is an osculating curve. □

Theorem 3. Let α (s) be a unit speed osculating curve in En with nonzero curva-
tures. The differential equation

n−3∑
z=0

(
Γi,z (s)

dz

dsz

(
κn−1 (s)

κn−2 (s)

))′

− κ1 (s)

n−4∑
z=0

Γi,z (s)
dz

dsz

(
κn−1 (s)

κn−2 (s)

)
=

1

c
, ,

where c ∈ R− {0} ., n > 4, i = 1, 2, . . . , n− 1 with the initial conditions

κn−1(s0)

κn−2(s0)
= k0,

[
κn−1(s0)

κn−2(s0)

]′

= k1, . . . ,

[
κn−1(s0)

κn−2(s0)

](n−3)

= k(n−3)

for s0 ∈ I ⊂ R has a unique solution on an open interval I ⊂ R if the functions

[Γ
′

i,0(s)− κ1Γi,0(s)], [Γi,0(s) + Γ
′

i,1(s)− κ1Γi,1(s)], . . . ,

[Γi,m−1(s) + Γ
′

i,m(s)− κ1Γi,m(s)], . . . , [Γi,n−4(s) + Γ
′

i,n−3(s)], [Γi,n−3(s)],
1

c

are continuous on I and [Γ
′

i,0(s)−κ1Γi,0(s)] ̸= 0, . . . , [Γi,n−3(s)] ̸= 0 for every s ∈ I.
This equation has a general solution of the form(

κn−1(s)

κn−2(s)

)
= c1

(
κn−1

κn−2

)
1

(s) + . . .+ cn−2

(
κn−1

κn−2

)
n−2

(s) +

(
κn−1

κn−2

)
p

where
(

κn−1

κn−2

)
1
(s),

(
κn−1

κn−2

)
2
(s), . . . ,

(
κn−1

κn−2

)
n−2

(s) form the fundamental set of so-

lutions for the homogeneous equation(
κn−1(s)

κn−2(s)

)(n−2)

+

(
Γi,n−4(s) + Γ

′

i,n−3(s)

Γi,n−3(s)

)(
κn−1(s)

κn−2(s)

)(n−3)

+ . . .

+

(
Γi,m−1(s) + Γ

′

i,m(s)− κ1(s)Γi,m(s)

Γi,n−3(s)

)(
κn−1(s)

κn−2(s)

)(m)

+ . . .

+

(
Γi,0(s)− κ1(s)Γi,0(s)

Γi,n−3(s)

)(
κn−1(s)

κn−2(s)

)
= 0.

satisfying the condition

W

((
κn−1

κn−2

)
1

,

(
κn−1

κn−2

)
2

, . . . ,

(
κn−1

κn−2

)
n−2

)
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=

∣∣∣∣∣∣∣∣∣∣∣∣

(
κn−1

κn−2

)
1

(
κn−1

κn−2

)
2

. . .
(

κn−1

κn−2

)
n−2(

κn−1

κn−2

)′

1

(
κn−1

κn−2

)′

2
. . .

(
κn−1

κn−2

)′

n−2

. . . . . . . . .(
κn−1

κn−2

)(n−3)

1

(
κn−1

κn−2

)(n−3)

2
. . .

(
κn−1

κn−2

)(n−3)

n−2

∣∣∣∣∣∣∣∣∣∣∣∣
̸= 0,

(
κn−1

κn−2

)
p
is a particular solution of the initial value problem and c1, c2, . . . , cn−2 are

arbitrary constants.

Proof. If the summation operators are expanded in the differential equation, we get(
Γi,0(s)

κn−1(s)

κn−2(s)

)′

+

(
Γi,1(s)

(
κn−1(s)

κn−2(s)

)′)′

+

(
Γi,2(s)

(
κn−1(s)

κn−2(s)

)′′)′

+

(
Γi,3(s)

(
κn−1(s)

κn−2(s)

)′′′)′

+ . . .+

(
Γi,n−5(s)

(
κn−1(s)

κn−2(s)

)(n−5)
)′

+

(
Γi,n−4(s)

(
κn−1(s)

κn−2(s)

)(n−4)
)′

+

(
Γi,n−3(s)

(
κn−1(s)

κn−2(s)

)(n−3)
)′

−κ1

[
Γi,0(s)

(
κn−1(s)

κn−2(s)

)
+ . . .+ Γi,n−4(s)

(
κn−1(s)

κn−2(s)

)(n−4)
]
=

1

c
.

Applying the derivations in the first summation and collecting the derivatives of
same order yields

[Γ
′

i,0(s)− κ1Γi,0(s)]

(
κn−1(s)

κn−2(s)

)
+ [Γi,0(s) + Γ

′

i,1(s)− κ1Γi,1(s)]

(
κn−1(s)

κn−2(s)

)′

+[Γi,1(s) + Γ
′

i,2(s)− κ1Γi,2(s)]

(
κn−1(s)

κn−2(s)

)′′

+ . . .

+[Γi,n−5(s) + Γ
′

i,n−4(s)− κ1Γi,n−4(s)]

(
κn−1(s)

κn−2(s)

)(n−4)

+[Γi,n−4(s) + Γ
′

i,n−3(s)]

(
κn−1(s)

κn−2(s)

)(n−3)

+ Γi,n−3(s)

(
κn−1(s)

κn−2(s)

)(n−2)

=
1

c
.

This equation is a nonhomogeneous linear differential equation of the order n −

2. Considered along with the initial conditions, κn−1(s0)
κn−2(s0)

= k0,
[
κn−1(s0)
κn−2(s0)

]′
=

k1, . . . ,
[
κn−1(s0)
κn−2(s0)

](n−3)

= kn−3, it defines an initial value problem. The conti-

nuity of the coefficients of the higher order linear differential equation [Γ
′

i,0(s) −
κ1Γi,0(s)], [Γi,0(s) + Γ

′

i,1(s) − κ1Γi,1(s)], . . . , [Γi,m−1(s) + Γ
′

i,m(s) − κ1Γi,m(s)], . . .,
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[Γi,n−4(s) + Γ
′

i,n−3(s)], [Γi,n−3(s)] and the function 1
c guarentees the existence and

uniqueness of the solution for the initial value problem on I ⊂ R since [Γ
′

i,0(s) −
κ1Γi,0(s)] ̸= 0, . . . , [Γi,n−3(s)] ̸= 0 for every s ∈ I [23]. Division of the equation by
the coefficient of the highest order derivative gives(

κn−1(s)

κn−2(s)

)(n−2)

+

[
Γi,n−4(s) + Γ

′

i,n−3(s)

Γi,n−3(s)

](
κn−1(s)

κn−2(s)

)(n−3)

+

[
Γi,n−5(s) + Γ

′

i,n−4(s)− κ1Γi,n−4(s)

Γi,n−3(s)

](
κn−1(s)

κn−2(s)

)(n−4)

+

[
Γi,0(s) + Γ

′

i,1(s)− κ1Γi,1(s)

Γi,n−3(s)

](
κn−1(s)

κn−2(s)

)′

+

[
Γ

′

i,0(s)− κ1Γi,0(s)

Γi,n−3(s)

](
κn−1(s)

κn−2(s)

)
=

1

cΓi,n−3(s)
,

such that Γi,n−3 ̸= 0. The continuity of the new coefficients comes from the con-
tinuity assumption of the theorem and the fact that [Γi,n−3(s)] ̸= 0. Hence, The
homogeneous version of this linear differential equation has a fundamental set of

solutions on I ⊂ R containing solutions of the form
(

κn−1

κn−2

)
k
for k = 1, 2, ... [23].

The fundamental set of solutions is linearly independent if and only if

W

((
κn−1

κn−2

)
1

,

(
κn−1

κn−2

)
2

, . . . ,

(
κn−1

κn−2

)
n−2

)

=

∣∣∣∣∣∣∣∣∣∣∣∣

(
κn−1

κn−2

)
1

(
κn−1

κn−2

)
2

. . .
(

κn−1

κn−2

)
n−2(

κn−1

κn−2

)′

1

(
κn−1

κn−2

)′

2
. . .

(
κn−1

κn−2

)′

n−2

. . . . . . . . .(
κn−1

κn−2

)(n−3)

1

(
κn−1

κn−2

)(n−3)

2
. . .

(
κn−1

κn−2

)(n−3)

n−2

∣∣∣∣∣∣∣∣∣∣∣∣
̸= 0

for every s ∈ I and the superposition principle suggests that the homogeneous
linear differential equation has a general solution of the form(

κn−1(s)

κn−2(s)

)
= c1

(
κn−1

κn−2

)
1

(s) + c2

(
κn−1

κn−2

)
2

(s) + . . .+ cn−2

(
κn−1

κn−2

)
n−2

(s).

for arbitrary constants ci, i = 1, 2, ...., n − 2 [23]. Using the initial conditions, the
particular solution can be found as(

κn−1(s)

κn−2(s)

)
= c1

(
κn−1

κn−2

)
1

(s) + . . .+ cn−2

(
κn−1

κn−2

)
n−2

(s) +

(
κn−1

κn−2

)
p

.

□
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There are several methods in the literature for analyzing the solutions of higher
order linear differential equations. For instance, the variation of parameters method
proposes a particular solution for the nonhomogeneous differential equation in the
form of (

κn−1(s)

κn−2(s)

)
=

n−2∑
m=1

(
κn−1

κn−2

)
m

(s)

∫
(cΓi,n−3(t))

−1Wm(t)

W (t)
dt

where
(

κn−1

κn−2

)
m
(s) form the fundamental set of solutions and Wm(t) are obtained

by replacing the m-th column of the Wronskian by (0, 0, . . . , (cΓi,n−3(t))
−1) [24].

4. Conclusion

In this paper, we have investigated some concepts of osculating curves, defined
on 3- and 4-dimensional Euclidean spaces, on the n-dimensional Euclidean space.
This generalization of osculating curves to En has been called ”generalized oscu-
lating curve of type (n − 3). A total of n − 2 generalizations of osculating curves
to En can be found by using the other binormal vectors. However, we have used
the (n− 3)th binormal vector for the generalization since the relations between the
curvatures provide meaningful results. Since the differential equation that gives the
relation between curvature functions of the osculating curve in the n-dimensional
Euclidean space is a higher order differential equation, we have invesitaged the ex-
istence and uniquness of a general solution for the initial value problem of order
n − 2. The differential equation of order n-2 is a linear differential equation with
variable coefficients. Several methods in the literature can be used for analyzing
the particular solution of the higher order differential equation.
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