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Abstract: Perovskite solar cells (PSC) have been identified as a game-changer in the world of photo-
voltaics. This is owing to their rapid development in performance efficiency, increasing from 3.5%
to 25.8% in a decade. Further advantages of PSCs include low fabrication costs and high tunability
compared to conventional silicon-based solar cells. This paper reviews existing literature to discuss
the structural and fundamental features of PSCs that have resulted in significant performance gains.
Key electronic and optical properties include high electron mobility (800 cm2/Vs), long diffusion
wavelength (>1 µm), and high absorption coefficient (105 cm−1). Synthesis methods of PSCs are
considered, with solution-based manufacturing being the most cost-effective and common industrial
method. Furthermore, this review identifies the issues impeding PSCs from large-scale commerciali-
sation and the actions needed to resolve them. The main issue is stability as PSCs are particularly
vulnerable to moisture, caused by the inherently weak bonds in the perovskite structure. Scalability of
manufacturing is also a big issue as the spin-coating technique used for most laboratory-scale tests is
not appropriate for large-scale production. This highlights the need for a transition to manufacturing
techniques that are compatible with roll-to-roll processing to achieve high throughput. Finally, this
review discusses future innovations, with the development of more environmentally friendly lead-
free PSCs and high-efficiency multi-junction cells. Overall, this review provides a critical evaluation
of the advances, opportunities and challenges of PSCs.

Keywords: perovskite solar cells; film fabrication; commercialization; issues; structure

1. Introduction

The ability to generate electricity from renewable energy sources is of great importance
in the fight against climate change. The solar radiation incident on the Earth’s surface is
often regarded as the most abundant and safe energy source [1], because the sun provides
the Earth’s surface with four million exajoules of solar radiation annually [2]. In fact, one
hour of sunlight on Earth provides more energy than what is used in one year, highlighting
its importance [3]. The demand for clean energy has grown exponentially over the last
decade, particularly in the area of solar photovoltaics (PV). This dramatic growth is shown
by an increasing quantity of solar PV installed each year: for the very first time over 100 GW
of solar PV was installed globally in the year 2018 [4], and is predicted to reach over 200 GW
of newly installed capacity in the year 2022 [5]. Overall, solar PV capacity has now reached
a total of 709 GW, representing 24.3% of overall global capacity [6]. The success of solar PV
can be attributed to its practicality, low maintenance, and long lifetime [7]. Solar PV can
also be installed and implemented in urban environments, unlike other renewable energy
sources. This can be in the form of building applied photovoltaic (BAPV) and building
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integrated photovoltaic (BIPV) [8,9]. This has led to a huge research effort to improve the
efficiency of solar cells to extract as much energy as possible from solar irradiance.

The United Nations sustainable development (UN SDG) goal provides a blueprint to
attain a better and sustainable future by 2030. This focuses upon several crucial aspects
vital for humanity, among which increment in global percent of energy generation using
renewables is one of the agendas. It is aimed to double the global rate of improvement
in energy efficiency by 2030. The PV technology is the most efficient renewable energy
capacity to meet future energy demands and has dragged the attention of researchers
worldwide. Currently, silicon PV technology dominates the market. However, silicon
PV technology alone cannot meet the energy demands in the future, and this has urged
researchers worldwide to find an alternative and efficient PV technology, dragging the
interest of researchers toward PSCs [10].

This inexhaustible resource can be converted into electricity via the photovoltaic effect
using a semiconductor material [11]. The general working principle involves electromag-
netic radiation from the sun, promoting an electron from the valence band to the conduction
band. The energy difference between the valance band and conduction band is known as
the bandgap and is a characteristic property of the semiconductor material. This creates
electron-hole pairs and if these excited electrons are fed through an external circuit back to
the valence band, an electrical current is created [12].

However, there is an upper limit to the power conversion efficiency (PCE) of a single
junction solar cell, known as the Shockley–Queisser limit [13]. S. Rühle used this theory to
calculate an up-to-date PCE for the global standard spectrum AM 1.5G [14]. The resulting
PCE was 33.16% corresponding to a bandgap of 1.34 eV. There has been a lot of research
into maximizing the PCE of the active materials used in photovoltaics.

The PV technology is progressing through generations of the cell, namely the first,
second and third generations of a cell. The first generation of cells is basically wafer-
based cells with thickness ranging from a few 100’s of µm. First-generation solar cells
are produced on silicon wafers. These solar cells dominate the market, having a global
share of 90% [15]. There are two main types of silicon-based cells: mono-crystalline
and polycrystalline. Monocrystalline solar cells are manufactured from single-crystal
silicon that is obtained through the Czochralski process [16], which is energy-intensive
and expensive. Monocrystalline solar cells are a mature technology and have achieved a
PCE of 26.6% [17]. Polycrystalline solar cells are composed of a number of different silicon
crystals. The manufacturing and processing costs are lower than for monocrystalline cells,
but polycrystalline cells are less efficient.

The wafers of monocrystalline and multicrystalline silicon cells are continuing to
dominate the industry. However, the production of ultra-pure semiconducting wafers is ex-
pensive in both finance and energy. The second-generation cells are based upon amorphous
and polycrystalline semiconducting material deposited over the substrate. These cells are
available at a low cost per unit of delivered energy as compared to the first generation
of cells. However, many issues such as environmental, production process, material and
scientific factors have hampered the market acceptance of the cell. The production share of
the thin film cells is declining whereas the first generation of cells owing to their mature
production technology is being produced cheaply in comparison to the second-generation
cell [18]. Second-generation solar cells are also known as ‘thin-film’; common examples
include cadmium telluride (CdTe), copper indium gallium diselenide (CIGS) and gallium
arsenide (GaAs). Thin-film cells are more economically viable as less material is required.
These cells generally have a thickness of around 1 µm compared to around 350 µm for
silicon wafers meaning they can even be utilized on curved surfaces [19,20]. The highest
efficiency recorded in this group of materials is by GaAs, reaching a PCE of 29.1% [21].
Other notable mentions with high efficiencies are CdTe and CIGS achieving 22.1% and
23.35%, respectively [22,23]. However, each of the materials mentioned shows disadvan-
tages in stopping commercialization on a major scale. GaAs have a difficult and expensive
manufacturing process making them only useful in high-efficiency applications [24]. CIGS
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and CdTe are restricted by their required materials, using rare elements such as indium
and tellurium along with toxic materials such as cadmium [25]. The thin film technology
is still under way in terms of attaining high performance at a low cost. Therefore, it can
be said that Si technology has successfully dominated thin film technology. Thin film
solar cells have the advantage of being rollable and foldable leading to minimal risk of
falling. They are lightweight cells with the ability to generate electricity under both low-
and high-intensity of incident illumination. Some of the established thin film solar cells are
gallium arsenide (GaAs), cadmium telluride (CdTe) and copper indium gallium selenide
(CIGs). Among all the existing thin film photovoltaic technologies, cadmium telluride
(CdTe) occupies more than 95% of the thin film solar cell market because of its mature
technology and minimum cost. Thin film solar cells are more widely used in wearable
devices and building integrated photovoltaics (BIPVs) than in PV plants [26].

Third-generation solar cells are still under development but have achieved promising
results and are improving rapidly. These materials benefit from low-energy manufacturing
processes and low-cost materials, making them an attractive proposition. There are various
types of solar cells being tested such as dye-sensitized, quantum dot, and perovskite solar
cells. From the third-generation solar cells, perovskite solar cells are the most promising.
Over the last decade, solar devices based on perovskite have seen the PCE jump from 3.5%
obtained by Kojima et al. [27], to 25.8% by [28,29]. The third generation of cells is referred
to as ‘emerging technologies’. This generation includes organic photovoltaic technology
(OPVs), copper zinc tin sulfide (CZTs), quantum dot cells, dye-sensitized solar cells (DSSC),
and perovskite solar cells. This generation of cell has exhibited the potential of low cost
and easy production without compromising the performance of the cell [30]. In this work,
we focus on perovskite solar cells (PSCs). The performance and stability of OPVs are
limited, although researchers are working towards the improvement of performance and
stability. Ahsan Saeed et al. [31] replaced the conventional fullerene derivative-based ETL
(PCBM) due to its photo-instability and inefficient light absorption ability. They used
(poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)-benzo [1,2-b:4,5-b’]dithiophene))-alt-(5,5-
(1′,3′-di-2-thienyl5′,7′-bis(2-ethylhexyl)benzo [1′,2′-c:4′,5′-c’]dithiophene-4,8-dionz) and
a modified ITIC-based NFA (3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-
5,5,11,11-tetrakis (4-hexylmeta-phenyl)-dithieno [2,3-2′,3′-d’]-s indaceno [1,2b:5,6b] dithio-
pheneethylexyloxy) (m-ITIC-O-EH) a wide bandgap donor with alkoxy side chains. Owing
to better absorption properties of m-ITIC-O-EH, performance three times higher than that
of PCBM-based OPV is attained. Dye-sensitized solar cells are also used for indoor applica-
tions [32]. The popularity of DSSCs owes to their easy production process and low cost.
Natural dyes are also used as sensitizers which eliminate the use of a high-cost synthesis
process enabling a simple extraction process [33]. Organic photovoltaics (OPVs) are widely
used for indoor applications and self-powered electronic devices for internet-of-things (IoT)
applications [34].

The PSCs have the capability to attain high efficiency at a low cost as compared
to other established cells. PSCs seem to be the potential candidate for attaining high
efficiency at low material and low processing costs. The highest advantage that perovskite
material holds over conventional PV is its ability to react towards a different range of
wavelengths of light, such that maximum incident radiation is converted to electricity. The
fact that it can be fabricated over a flexible substrate enables its application in different
ways. The PSCs offer the advantage of being lightweight, comprising tailored form factor,
easy producible and scalability and many more. Despite being a potential candidate, it
is still at the beginning stage of commercialization as compared to other solar technology.
The efficient PSCs still contain Au as an electrode which increases the cost of the device.
Exploring the low-cost electrode can overcome this shortcoming. Most of the leading PSCs
are Pb based, making them toxic in nature. Studies are being conducted to replace the
toxic Pb, but still, none of the Pb-free PSCs has defeated the highest performance attained
by Pb-based PSCs. The scientific community is actively searching for Pb alternatives to
address the issue of toxicity. Metals such as Tin (Sn), germanium (Ge), rubidium (Rb),
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bismuth (Bi), and antimony (Sb) have all been reported to generate non-toxic or less-toxic
metal halide perovskite materials, and their use in PSCs has been proven to be effective [35].
Among all the alternatives, Sn has exhibited the best performance. The Sn-based PSCs
were lagging in performance as compared to Pb-based PSCs, due to poor stability of the
formed perovskite and improper energy level mismatch between the charge transport layer
and perovskite. These issues were combated by Nishimura et al. [36]. They controlled
the A-site cation of the perovskite to regulate the tolerance factor value by one. They
partially substituted formamidinium cation (FA) with ethylammonium cation (EA) which
not only helped attain the highest PCE of 13% to date but also enhanced the stability of
the device. Currently, the most efficient PSCs have attained the best performance by the
modification in the charge transport layer and at the interfaces. Min et al. [37] placed
an interface layer (IL) between ETL and absorber layer. A defect-free connection layer is
added. The presence of the IL eliminated the need for passivation. The IL has inherent
properties which improve charge carrier transport and extraction from the perovskite
layer. This modification also reduced interfacial defects. This work provides us with the
guidelines to design minimum defect interfaces between ETL and the perovskite layer.
With this modification, a high PCE of 25.5% is obtained with 90% of PCE retained after
500 h of operation. Researchers from the Swiss Federal Institute of Technology Lausanne
(EPFL) have enhanced the scalability by replacing ETL with quantum dots. Further high
PCE of 25.7% is obtained with high operational stability. The ETL material is replaced by
the quantum dots of Tin (IV) oxide. The ETL fabrication had a negative impact on the
scalability of the device. Until now, the most widely used ETL material is mesoporous-TiO2.
This widely used ETL has the drawback of low electron mobility and also is susceptible to
negative photocatalytic events under ultraviolet illumination. The usage of QDs as ETL has
enhanced the light trapping efficiency and reduced the charge carrier recombination [38].
Azam et al. [39] demonstrated the role of interfaces across the perovskite absorber layer
and perovskite layer defect passivation on the device performance and stability. They used
organic chlorinated salt (benzyl triethylammonium chloride) across the interfaces. This
led to better film morphology with proper band alignment across charge transport layers,
which rendered considerable improvement in device performance and stability.

2. Methods

This review focuses on perovskite solar cells, hailed as the most promising new-
generation solar cells. The structure of perovskite is investigated, identifying the key
features responsible for effective use in solar cells. The key advances along with the
processing, issues, and the future of perovskite solar cell technologies are outlined.

Academic peer-reviewed journal articles were used as the primary literature source
for the review. Appropriate articles were found through Google Scholar and ScienceDirect
search engines [40,41]. Searching keywords such as ‘perovskite’ often afforded a large num-
ber of publications. The search was then refined to only include papers published in recent
years in order to find the latest advances in technology. Following this, if more specificity
was needed the advanced search functions were utilized so that the keywords must appear
in the title of the paper. This method was an effective way of finding appropriate papers
for this review.

3. Results
3.1. Structure

The nomenclature for any material that has the same crystal structure as calcium
titanate (CaTiO3) is ‘perovskite’ [42]. Perovskite consists of a crystalline structure with
composition ABX3, in general A and B are cations and X is oxygen or a halogen anion. The
crystal structure of perovskite is pictured in Figure 1.
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Reprinted with permission from Ref [43]. Copyright (2020) ACS publications. 

Each B-cation is surrounded by six anions, creating [BX6]4− octahedra. These are con-
nected via corner-sharing and effectively form the ReO3 structure [44]. The difference be-
ing the cuboctahedral site is occupied by the A-cation in perovskite structures [45]. One 
of the major benefits of the perovskite structure is the ability to integrate elements with 
different valences into the structure. For example, if X is an oxygen anion (O2−), cations A 
and B would be divalent and trivalent, respectively. However, if X is a halogen anion (Cl−, 
Br−, I−), then the cations A and B would be monovalent and divalent [46]. This provides a 
great opportunity to easily modify the properties such as the bandgap of the material. 
Figure 2a exhibits the evolution of efficiency with progressive years of PSCs, Figure 2b 
exhibits the various cations and anions that can be used in perovskite materials with mid-
dle circle material depicting the widely used composition. 

 
Figure 2. (a) Certified PCEs of perovskite solar cells achieved by different groups, data collected 
from NREL website on 30 March 2022. (b) Schematic diagram of ABX3 perovskite with possible A-
and B-site (cations) and X-site (anions) dopant passivators (middle circles in blue color indicate the 
widely used composition of ABX3 PSCs). Reproduced with permission from ref [47]. 
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of this review. The ion sizes used in perovskites are an important factor dictating the final 
structure and stability [48]. The goldsmith tolerance factor is the most commonly used 
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Here rA is the radius of cation A, rB is the radius of cation B and rX is the radius of 
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framework. The limits for perovskite structure formation are: 0.8 𝑡 1, with the upper 
limit 1 describing the perfect fit [50]. For tolerance factors approaching the lower limit of 

Figure 1. Crystal structure of perovskite: A-cation (yellow), B-cation (blue octahedra), X-anion (red).
Reprinted with permission from Ref [43]. Copyright (2020) ACS publications.

Each B-cation is surrounded by six anions, creating [BX6]4− octahedra. These are
connected via corner-sharing and effectively form the ReO3 structure [44]. The difference
being the cuboctahedral site is occupied by the A-cation in perovskite structures [45]. One
of the major benefits of the perovskite structure is the ability to integrate elements with
different valences into the structure. For example, if X is an oxygen anion (O2−), cations A
and B would be divalent and trivalent, respectively. However, if X is a halogen anion (Cl−,
Br−, I−), then the cations A and B would be monovalent and divalent [46]. This provides
a great opportunity to easily modify the properties such as the bandgap of the material.
Figure 2a exhibits the evolution of efficiency with progressive years of PSCs, Figure 2b
exhibits the various cations and anions that can be used in perovskite materials with middle
circle material depicting the widely used composition.
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Figure 2. (a) Certified PCEs of perovskite solar cells achieved by different groups, data collected from
NREL website on 30 March 2022. (b) Schematic diagram of ABX3 perovskite with possible A-and
B-site (cations) and X-site (anions) dopant passivators (middle circles in blue color indicate the widely
used composition of ABX3 PSCs). Reproduced with permission from ref [47].

The tuning of perovskite structures will be discussed in more detail in a later section
of this review. The ion sizes used in perovskites are an important factor dictating the final
structure and stability [48]. The goldsmith tolerance factor is the most commonly used and
successful ratio [49].

The Goldsmith tolerance factor:

t =
rA + rX√
2(rB + rX)

(1)

Here rA is the radius of cation A, rB is the radius of cation B and rX is the radius
of anion. The tolerance factor is effectively a measure of how well the A-cation fits into
the framework. The limits for perovskite structure formation are: 0.8 ≤ t ≤ 1, with
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the upper limit 1 describing the perfect fit [50]. For tolerance factors approaching the
lower limit of 0.8, the structure will be distorted due to the tilting of the BX6 octahedra.
Tolerance factors above 1 indicate that the cation is too large to fit into the site, stopping
perovskite formation. The tolerance factor is an important consideration when designing
new materials for perovskite solar cells. Deviation from the specified range may result in
alternative structures that do not have the same properties as perovskites.

3.2. Device Structure

The device structure of PSCs basically contains an absorber layer, an electron transport
layer (ETL), a hole transport layer (HTL), a transparent conductive oxide (anode) and a
metal contact (cathode). The incident light enters through the transparent conductive oxide
(FTO or ITO) towards the perovskite absorber layer. The schematic of the device structure
in both nip structure and pin structure is shown in Figure 3a,b, respectively. The absorber
layer upon absorption of the incident radiation creates electron and hole pairs. These
generated electrons and holes are transported via ETL and HTL, respectively, towards the
external circuit with the help of charge collecting contacts. The material to be used in ETL
and HTL must have the required band alignment with respect to the absorber layer to
ensure proper carrier collection [51,52]. In order to obtain the best possible performance
from the PSC, all three layers of materials must be wisely selected and fabricated. Roy
et al. [53], demonstrated the role of layer thickness and carrier concentration requirement
for all three layers. They revealed that the optimum transport layer (both ETL and HTL)
thickness must be as minimum as possible until it ensures proper film coverage across
the perovskite layer. The optimum absorber layer thickness is equivalent to the carrier
diffusion length of the perovskite. Roy et al. [54] further explained the role and requirement
of the energy level tuning across the perovskite/HTL and ETL/perovskite interfaces.
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The transport layers can employ both organic and inorganic materials. The organic
HTLs require extremely high purity and cost. The widely used HTL Spiro-OMeTAD costs
are ten times higher than Platinum and Gold. Moreover, certain studies suggest that the
organic HTLs actively participate in the process of degradation, which contributes to the
poor stability of PSCs. The future development of PSCs requires a wise selection of the HTL.
The inorganic HTLs seem to be a potential alternative. The inorganic P-type semiconductor
such as nanotubes, nanocrystal, quantum dots and nano powder contributes towards
the increment of the performance of the PSCs. The inorganic HTLs are low cost and
easy to synthesise with better stability. An appropriate energy level matching is required
with perovskite before selecting any particular material. The key points to be considered
while selecting an appropriate material for HTL are: (i) the highest occupied molecular
orbital (HOMO) energy level in inorganic p-type semiconductor should be at a proper
position with respect to the valance band of the perovskite layer to enable proper charge
transport and hole collection for better obtaining better current density; and (ii) there must
be less special contact between perovskite and HTL to reduce the carrier recombination
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as it reduces the open circuit voltage (Voc) of the cell. Various materials that can be used
as inorganic HTLs are: graphene oxide (GO), carbon (C), Copper thiocyanate (CuSCN),
Copper Zinc Tin Sulfide (CuZnSnS2), Copper indium disulfide (CuInS2), Copper iodide
(CuI), Cuprous oxide (Cu2O), Cupric oxide (CuO), Nickel oxide (NiO) and a few more [55].
Figure 4 exhibits the efficiency tree of PSC using different materials at HTLs. The ETL layer
also contributes significantly to the PCE and device stability. The most widely used ETL
is Titanium dioxide (TiO2), due to its superior stability. However, the fact that it requires
high annealing temperature and assists the process of ion immigration leading degradation
of the cell urges to find an alternative. Various ETL materials are ZnO, CdS, PCBM, SnO2
etc. Currently, the most popular ETL material is SnO2 due to its wide bandgap 3.6–4.1 eV
with deeper conduction band (CB) than TiO2. It is the most potential ETL due to: (i) higher
mobility 240 cm2/V, (ii) deeper CB leading to enhanced collection and transportation of
charge carrier, (iii) wider bandgap, (iv) low temperature fabrication and (v) high optical
transmittance and conductivity [56].
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A transparent conductive electrode (TCE) is the key component for the working of
a solar cell as it not only passes the incident radiation towards the absorber layer but
also it extracts the photo-generated charge carriers towards the external circuit. Proper
transparency and conductivity are the key features of TCEs [57]. There must be a proper
balance between transparency and conductivity for an efficient TCE. The selection of an
appropriate TCE is important and is determined by a parameter called Figure of Merit
(FOM). A novel FOM signifies Figure 4a as the proportionality of output power from PV
devices, while Figure 4b provides guidance for the development of advanced TCEs. On the
basis of exact FOM, the transition sheet resistance is defined which separates two operating
regimes of TCEs (transmittance and conductance) [58,59].

3.3. Fundamental Features

In order to design perovskite solar cells with the highest PCE possible, the funda-
mental properties of the material must be understood. This includes the optical and
electronic properties of the light absorber, along with how the photogenerated charges are
collected [60].

Perovskite materials contain unique properties that make them effective PV devices.
The high efficiency is credited to the high electron mobility (800 cm2/Vs) along with a
long diffusion wavelength (>1 µm) [61,62]. They also have a high absorption coefficient
(105 cm−1), caused by s-p antibonding coupling [63]. Another beneficial property of per-
ovskite materials is a low exciton binding energy, measured to be less than 10 meV. This
allows the excited carriers to migrate as free carriers. These characteristic properties and
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their associated values are summarised in Table 1. The combination of the beneficial
features described above makes perovskite an effective material for photovoltaic use.

Table 1. Summarising the optical and electronic properties of perovskite materials. Reprinted with
permission from Roy et al. [64].

Properties Value Rangege

Bandgap 1.5–2.5 eV

Absorption coefficient 105 cm−1

Exciton binding energy Less than 10 meV

Crystallization energy barrier 56.6–97.3 kJ mol−1

PL quantum efficiency 70%

Charge carrier lifetime Greater than 300 nm

Relative permittivity 3

Carrier mobility 800 cm2/Vs

Exciton Wannier type exciton

Trap-state density 1010 cm3 (single crystals),
1015–1017 cm3 (polycrystalline)

Table 1 shows that the bandgap for perovskite materials can have a large range, which
results from their easy tunability. The perovskite structure allows a large amount of change-
ability. The perovskite material CH3NH3PbI3 is the most commonly used and the amine,
metal and halide can all be altered to form different perovskite materials. Modification
of the amine from methylammonium (CH3NH3

+) to alternative amines has been investi-
gated. Using an extended alkyl chain such as ethyl ammonium (CH3CH2NH3

+) has been
successfully synthesized and showed a larger bandgap and lower PCE of only 2.4% [65].
An alternative amine substitution is to use the formamidinium cation (NH2CH=NH2

+).
This has shown very successful results with an experimentally determined bandgap as low
as 1.47 eV; this is better than the 1.55 eV achieved by methyl ammonium-based perovskites
and closer to the Shockley–Queisser limit [66]. This cell also achieved an impressive PCE
of 14.2% [67]. Additional work has been completed to create a mixed cation perovskite
using the formamidinium and methylammonium cations. This approach resulted in en-
hanced stability and an improved PCE of over 18% [68,69]. Table 2 encloses various PSC
configurations along with their attained performance parameters.

Additionally, the iodide anion can be substituted for other halides (Cl−, Br−) in order
to tune the bandgap. The general trend is that the bandgap decreases upon increasing
halide size, making iodide the closest to the ideal limit [70]. However, the opposite trend
is observed for stability with methylammonium lead iodide having the lowest reaction
enthalpy compared to equivalent chloride and bromide-based-perovskites, making it the
most unstable [71]. In order to achieve both stability and performance the mixed halide
perovskite CH3NH3PbI3−xBrx was tested; it had a tunable bandgap between 1.6–2.3 eV
depending on the bromide composition [72]. This can be an extremely useful feature that
can be used in tandem solar cells, discussed later in this review. Several different materials
(such as Sn, Ge, Bi, Sb, and a few more) are used in place of lead (Pb) metal cation to tackle
the issue of toxicity. However, the performance attained by lead-free perovskite-based
PSCs still lags behind the lead-based PSCs [73]. Attempts to replace the lead metal cation
still require more attention from the research community due to poor efficiencies [74].
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Table 2. Performance attained by various configurations of PSCs with progressive years.

PCE (%) Voc(v) Jsc(mA/cm2) FF Device Configuration Year Reference

2.02 0.24 22.7 0.37 FTO/Compact TiO2/Mesoporous TiO2/Perovskite/m-MTDATA/Au 2014 [75]

4.63 0.57 13.2 0.61 FTO/TiO2/Dye/Cs2SnI6 + Z907/Pt
2014 [76]6.32 0.63 14.7 0.68 FTO/TiO2/Dye/Cs2SnI6 + N719/Pt

6.94 0.62 16.9 0.66 FTO/TiO2/Dye/Cs2SnI6 + multiple/Pt

6.4 0.88 16.8 0.42 TiO2/m-TiO2/MASnI3/SpiroOMeTAD + LiTFSI + tBP/Au 2014 [77]

6.7 0.6 17.53 0.65 ITO/NiOx/FASnI3/PCBM/Ag 2018 [78]

7.11 0.63 18.61 0.606 FTO/PCBM/CsSn0.5Ge0.5I3/Spiro-OMeTAD/Au 2019 [79]

7.37 0.73 15.8 0.64 Au/TiO2/m-TiO2/MASn0.25Pb0.75/Spiro-OMeTAD/Au 2014 [80]

7.66 0.97 11.1 7.66 ITO/ZnO/MASnI3/spiro-OMeTAD/Au 2015 [81]

9 0.52 24.1 0.71 ITO/PEDOT:PSS/FASnI3/C60BCP/Ag 2017 [82]

9.2 0.61 21.2 0.72 ITO/PEDOT:PSS/GAxFA0.98−xSnI3–1% EDAI2/C60 (20 nm)/BCP/Ag 2018 [83]

9.8 0.76 19.1 0.66 ITO/PEDOT:PSS/MAPb0.85Sn0.15I3−yCly/PC61BM/Ag 2014 [84]

10.2 0.72 19.2 0.73 FTO/TiO2/N719 Dye/Perovskite/ZnO 2012 [85]

12.1 0.78 20.65 0.75 ITO/PEDOT: PSS/MASn0.6Pb0.4I3−xBrx/PCBM/Ag 2017 [86]

13.24 0.84 20.32 0.78 FTO/PEDOT PSS/EA0.98EDA0.01SnI3/C60BCP/Au 2020 [87]

14.06 0.79 22.8 0.78 ITO/PEDOTPSS/MA0.5FA0.5Pb0.75Sn0.25I3/PC61 BM/C60 /Ag 2016 [88]

10.2 0.7 21.9 0.66 ITO/PEDOT:PSS/FASn0.5Pb0.5I3 /C60 BCP/Ag
2016 [89]

14.1 0.74 26.1 0.71 ITO/PEDOT:PSS/C60 BCP/Ag

15.08 0.79 26.86 0.70 ITO/PEDOT:PSS/(CH3NH3)0.4[HC(NH2)2]0.6Sn0.6Pb0.4I3/C60/BCP/Ag 2016 [90]

17.55 1.03 21.9 0.78 ITO/PEDOT:PSS/MAPb0.85In0.15I3Cl0.15/PC61 BM/Bphen/Ag 2016 [91]

18 1.02 22.4 0.78 FTO/SnO2/Cs0.16FA0.84Pb(I0.88Br0.12)3/Spiro-OMeTAD/Au [92]

19.1 1.01 22.4 0.78 FTO/Poly-TPD/0.15 mol% Al3+-doped CH3NH3PbI3/PCBM/BCP/Ag 2016 [93]

22.3 1.71 24.1 0.81 ITO/PTAA/Cs0.05(FA0.92MA0.08)0.95Pb(I0.92Br 0.08)3/C60/BCP/Cu 2020 [94]

23 1.16 24 0.82 Glass/ITO/PTAA/(Cs0.05(FA5/MAI)0.95Pb(I0.9 Br0.1)3)/PCBM/BCP/Ag 2021 [95]

23.7 1.16 24.16 0.84 Glass/ITO/PTAA/PEAI/(Cs0.05(FA5/MAI)0.95Pb(I0.9
Br0.1)3)/PEAI/PCBM/BCP/Ag 2021 [96]

24.6 1.05 25.5 0.83 FTO/SnO2/(FAPbI3)0.95(MAPbBr3)0.05/P3HT/Au [97]

24.8 1.16 26.35 0.8 FTO/c-TiO2/m-TiO2/FAPbI3/Spiro-OMeTAD/Au 2020 [98]

25.4 1.19 25.09 0.84 FTO/SnO2/MAPbBr3/HTL/back contact 2021 [99]

25.5 1.18 25.74 0.83 FTO/SnO2-Cl/FAPbI3/Spiro-OMETAD/Au 2021 [37]

3.4. Perovskite Films Preparation

Perovskite solar cells use more abundant and cost-effective elements and have a
simpler manufacturing process than silicon-based solar cells [100]. The manufacturing of
silicon solar cells involves high temperatures in excess of 1000 ◦C in a highly evacuated
chamber [101]. In contrast, perovskites can be manufactured using simple wet chemistry,
with no requirement for an evacuated environment. The conditions and techniques used
to prepare the perovskite film are crucial for crystallinity, controlling the performance of
the cell. The factors that need to be strictly controlled have been identified as atmospheric
conditions during film growth, reagent stoichiometry, a method to deposit perovskite on
the substrate, annealing temperature/duration, and additives used. There are three main
methods for preparing perovskite films: solution processing, vapor deposition and hybrid
vapor-solution processing.

The most common and cost-effective method of synthesizing the perovskite film is
solution processing. This can either be through a one-step method or a two-step sequential
method. The one-step method involves the spin-coating of a pre-mixed solution that is
typically prepared by blending CH3NH3X powder with PbX2 in a 1:1 molar ratio. The
two-step sequential method first spin-coats PbI2 over a TiO2 substrate before being dipped
in a CH3NH3X solution [102]. This method allows perovskite to be more effectively imple-
mented into the substrate’s mesoporous layer. Although the two-step method has produced
solar cells with higher PCEs to date, the one-step is preferred [103]. Figures 5 and 6 depict
the schematic illustration of one-step and two-step solution processing techniques, respec-
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tively. This method is less complex and allows superior control of the crystallinity and
morphology. Therefore, this technique provides the potential to control the grain growth
and hence achieve a much higher PCE in the future.
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Vapour deposition produces planar perovskite solar cells by evaporating CH3NH3X
and PbX2 at the same time. Liu et al. co-evaporated CH3NH3I and PbCl2 at 120 ◦C
and 350 ◦C, respectively, in a glovebox under inert nitrogen gas [104]. The perovskite
was deposited on a TiO2 layered FTO glass before annealing produced the crystalline
material. This technique produces high-quality uniform films, which reach high PCE’s.
However, this method requires high vacuum levels for thermal evaporation, and this
can be expensive. This presents a big barrier and impedes mass production as it is not
economically feasible [105]. Another notable mention is a hybrid method developed by
Chen et al. called vapour assisted solution process [106]. This technique involves first
depositing a thin PbI2 film on the substrate before reacting with CH3NH3I vapor. This
method produces excellent quality perovskite films in a more controllable process than
solution processes, but once again requires expensive conditions. Smecca et al. developed a
new film deposition technique, called low vacuum proximity space-effusion (LV-PSE). This
is a two-step method capable of fabricating high-quality film at minimum cost and wastage.
In this process, the conversion of PbI2 film into MAPbI3 film at a given temperature begins
from the top surface by an adsorption–incorporation–migration mechanism, followed
by the gradient of energetic MAI concentrations. Their work stated that with the use
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of this new film fabrication technique, better efficiency along with reduced cost can be
obtained. This method also addresses environmental concerns by reducing the usage of Pb
content within the device [107]. Vesce et al. developed a blade-coating strategy at ambient
air for fabricating stable triple cation (CsMAFA) PSCs. This is a two-step blade process
using the green antisolvent quenching technique. This method is industry compatible and
capable of producing efficient small area cells with high reproducibility [108]. Ming He
et al. demonstrated a low-temperature solution processing-based inkjet printing technique
for perovskite film fabrication. The cell fabricated using MASP (meniscus assisted solution
printing) technique enabled attaining efficiency of 20% by controlling the orientation and
crystal size of the perovskite molecules. This technique uses 300 µm apart two parallel
plates to form a meniscus of ink (comprising perovskite precursor). This MASP technique
generates perovskite of large crystal size typically of order 20–80 µm diameter. This
technique offers the advantage of fabricating films with a denser and lower number of
perovskite crystals. This leads to minimizing the gaps between the crystals which hinders
the current flow and also reduces the electron-hole recombination traps, enhancing the
charge carrier extraction from the cell [109]. Huang et al. produced a modified one-step
solution processing technique that can produce stable PSCs at a large scale and overcome
the issue of commercialization. Sulfolane is added as an additive in the precursor solution.
It can be added to the liquid material that aids the perovskite crystal formation via a
chemical reaction. The simple dipping method enabled the deposit of high-quality films
with uniform coverage at two mini-modules. The efficiency attained by both the modules
was 17.58% and 16.06%, respectively. The use of sulfolane enhances the processing window
of the precursor solution from 9 to 90 s. This leads to the formation of a compact layer
of high crystallinity over a large area [110]. Various modifications in the film deposition
process have a substantial impact on the stability and the performance of the cell.

Various methods of production for large area perovskite are solution processing and
vapor deposition based methods. The solution processing methods are vacuum flash-
assisted solution process, blade coating, slot-die coating, spin coating, ink-jet printing and
spray coating. The vapor deposition methods are chemical vapor deposition, vapor assisted
solution process, flash evaporation, sequential evaporation, co-evaporation, and vapor ther-
mal evaporation. Spray coating and blade coating processes were widely used initially and
have not lost its charm. The inkjet printing and slot-die coating processes are widely used
for the production of large area PSCs. The highest efficiency for large area PSCs is attained
by slot-die coating process [111]. Conventional 156 mm × 156 mm Si bottom cell is 20–22%
efficient. Upon using perovskites with Silicon in a tandem structure cell the efficiency
reaches about 30% [112,113]. Ashouri et al. [114] fabricated a monolithic perovskite/silicon
tandem cell with an efficiency of more than 29% with the help of enhanced hole extraction.
They stabilized the perovskite with 1.68 eV bandgap enabling proper charge transfer. The
formation of a self-assembled monolayer acted as an efficient hole selective contact which
reduced the non-radiative recombination enhancing the efficiency.

4. Discussion
4.1. Issues

The biggest issue facing the commercialization of perovskite solar cells is a lack of sta-
bility. These problems arise from the chemical interactions within the perovskite structure.
The interactions mostly consist of weak ionic bonds, e.g., the Pb-I bond has a bonding en-
ergy of 142 kJmol−1 [115]. Other secondary interactions are hydrogen bonding and van der
Waals forces, giving the material its soft nature [116]. Perovskite solar cells are inherently
sensitive to heat, light, moisture, electric fields and oxygen that can all degrade the cell [117].
Particular sensitivity to water and moisture was highlighted by Niu et al., concluding that
iodide perovskites have a negative standard Gibbs free energy with regards to moisture
degradation [118]. These stability issues must be addressed in order for perovskite cells to
have a long operational life and be commercialized. Further research must be conducted
to determine the exact degradation mechanisms, allowing appropriate stabilisation and
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encapsulation approaches to be developed. Figure 7 summarizes various strategies that
can be adopted to improve the device stability along with overall device performance.
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additive has the capability to enhance the performance of the PSC. Several studies have
been conducted and certain materials are proven beneficial for the PSCs. Additives can be
classified into two categories: (i) additives with precursor of one-step method; (ii) additives
with organic solvent at two-step solution method, and additives with antisolvents. This
is a broad research field and several reviews based on it can be easily obtained from the
literature [124]. The material used along with the quality of the charge transport layer
(CTL) affects the performance of the PSCs. The material for the electron transport layer
(ETL) must be selected such that the conduction band edge is either equal to or lower than
the conduction band of perovskite material, such that the photogenerated electrons from
the perovskite layer can be easily received. The valance band of the ETL must lie below
the perovskite layer, such that the generated holes can be blocked [125,126]. Similarly, the
material for the hole transport layer (HTL) must be selected such that the valance band
maxima of the material must be in the proper position to receive the photogenerated holes
and the conduction band must be at a high position to stop the photogenerated electrons.
In order to attain higher efficiency, proper band alignment between the perovskite layer
and CTLs must be done. Energy band tuning is the sole field of the study conducted in
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the PSCs to attain the best possible performance [127]. The proper energy band tuning
ensures minimal interfacial recombination [128]. Apart from proper band alignment of
the CTL other properties such as thermal stability, chemical reactivity, etc. impact the
performance of the cell to a great extent. Defect passivation is another important strategy
to overcome the issue of stability. Certain defect passivation techniques such as interlayer
engineering, perovskite film formation conditions, film post-treatment, grain boundary
passivation and more are being used by the researchers. The intrinsic stability of the
perovskite film is attributed to the crystallographic and molecular structure of the material.
The lattice imperfections within the material are dependent on stoichiometry, annealing
time, annealing temperature, film deposition method, deposition time, and more [129].
The existence of the defects is determined by the defect formation energy of the material.
All the above-stated conditions decide the defect formation energy of the material. Apart
from the synthesis conditions, external factors such as moisture, heat, temperature, oxygen,
etc. lead to the formation of the new defects during the operation of the PSCs, which in
turn has a degrading impact [130]. This rapid degradation of the PSCs has hampered the
commercialization of the PSCs despite attaining good performance.

4.2. Commercialization of PSCs

Long-term device stability is a vital parameter to determine the commercialization
of PSCs. The device stability is evaluated in terms of device lifetime tested under 1-sun
illumination at electric load. However, PSCs have not attained stability comparable to Si
PVs because of their van der Waals interaction causing ion immigration, photo-degradation
and phase segregation. Further, the poor intrinsic stability and soft ion lattice due to weak
H-bond lead to poor stability.

The various commercialization companies are Oxford PV GmbH (Brandenburg, Ger-
many), Swift solar (Sancarlos, CA, USA), Solaronix (Aubonne, Switzerland), Saule Technol-
ogy (Wroclaw, Poland), Microquanta Semiconductor (Hangzhou, China) etc. [131]. Oxford
PV developed the world’s first full-size 100MW production line [132]. Many commercial
companies in China and other countries are working on industrialization of PSCs such as
GCL perovskites, Microquanta and a few more. Table 3 summarizes the details of the large-
scale PSC modules. One potential issue for perovskite solar cells is the scalability needed
for commercialization. The spin-coating method used for the majority of laboratory-scale
tests is not effective for producing large-scale uniform coatings. This is because of the lack
of consistency in film thickness over a large area, large material waste and lack of compati-
bility with the roll-to-roll processing that has a high throughput [133,134]. Industrial-scale
techniques such as screen printing and slot-die coating have been identified as the most
promising solutions to this [135]. They have already been used successfully to fabricate
modules over 100 cm2.
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Table 3. Details of large-scale PSC modules fabricated by various companies or institutions.

Company/Institution
Name Country PCE Details Module Area Reference

Oxford
Photovoltaics

United
Kingdom 29.52% Silicon-perovskite bifacial

tandem cell 1 cm2 per cell [136]

Kaunas University of
Technology Lithuania 23.9% Using spin coating 26 cm2 active area

of module
[137]

Saule Technology Poland 10.2% Doctor blade coating 15.7 cm2 flexible
module

[138]

Imec Belgium 18.6% Perovskite solar cell 16 cm2 module [139]

NEDO and
Panasonic Japan 16.09% Using inkjet printing 802 cm2 module [140]

Toshiba and NEDO Japan 11.7% Perovskite solar cell
(adjusting crystal growth) 703 cm2 module [141]

Solliance Netherland 14.5% Using the slot die coating 144 cm2 per cell [142]

Chinese Academy of
Science (CAS) China 19.2% Using the slot die coating 16 cm2 module [143]

Microquanta China 24.1% Perovskite solar cell 20 cm2 module [144]

4.3. Future Outlook

For more than half a century, silicon PV technology dominates the largest PV market.
Studies suggest that in order to obtain the highest efficiency from tandem cells, a wide
bandgap perovskite material of bandgap of order 1.7 eV with a thickness of the order of
1 µm must be used. The synthesis of such perovskite material is a hot topic of research
among the researchers of the PV community. If a perovskite material of bandgap 1.7 eV is
obtained, then extracted voltage will reach about 1.3 V rendering the overall voltage of the
device to be 2.0 V. In order to extract similar currents from both the cells, the thickness of
the perovskite material must be of order 1 µm with a bandgap of about 1.7 eV. However,
preparing high-quality microns-thick perovskite material is still a challenge. Another way
to enhance the efficiency of the solar cells is to modify the tunnel junction material [145].
The widely used transparent conductive oxide (TCO) is indium tin oxide (ITO). ITOs are not
considered ideal due to their improper transmissivity. The ITOs exhibit parasitic absorption
at a range of 800 nm [146]. An ideal tunnelling junction must have high conductance and
high transmittance in order to minimize recombination loss. An appropriate refractive
index and thickness are also important to minimize the anisotropic conductance, and
internal reflection and avoid lateral breakdown. It can be said that industrialization of
tandem cells is completely dependent upon the development of perovskite materials.

Currently, state-of-the-art perovskite solar cells still require the use of lead (Pb2+) as
the B-cation site. Lead is a toxic element and its use could present problems if released into
the environment, eventually working its way into the human food chain [147]. Therefore, a
large amount of research has been conducted into alternative lead-free perovskite materials.
Perovskite solar cells based on different elements such as antimony, copper, germanium,
bismuth and others have all been tested [148–152]. The strongest candidate appears to
be tin, having both a similar ionic radius and electronic configuration. This allows direct
replacement of the lead ion in the B-site without a significant phase change. Tin-based
perovskite cells have a PCE of around 10–12%, which is significantly lower than lead-
containing perovskites [153,154]. It is also important to make sure that environmental
burden-shifting is not taking place, as studies have found the oxidation of Sn2+ to Sn4+ can
lead to the formation of toxic by-product hydroiodic acid [155]. Overall, Ju et al. state that
only once the degradation and toxicity mechanisms of current perovskites are understood
will lead-free, stable perovskites be fabricated [156]. Single-junction perovskite solar cells
are not the only technology that has seen a large jump in PCE over the previous decade.
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Tandem solar cells involving perovskite have been developed and are not constrained to
the single-junction Shockley–Quessier limit. The efficiency limit for a tandem solar cell is
47%, much higher than the 31% for single-junction [157,158]. This is possible as Tandem
solar cells better utilize small wavelength radiation from the spectrum. The tandem cell
will have a top layer with a large bandgap material; this will absorb the short wavelength
part of the spectrum. The longer wavelength radiation will pass through the top layer and
be absorbed by the smaller band-gap bottom layer [159]. Perovskites can be combined
with a variety of materials to create two-terminal tandem cells. Perovskite-Silicon has
shown good performance reaching a PCE of 29.15%, outperforming the highest achieving
monocrystalline silicon cell [160]. Perovskite–Perovskite cells have reached an impressive
PCE of 24.8% [161]. Another successful combination of materials is perovskite with second-
generation material CIGS, achieving 24.2% [162]. Overall, the high theoretical efficiency of
tandem perovskite solar cells is predicted to allow the price of PV to continue to fall over
the coming decades [163].

Two-dimensional (2D) Perovskites have also been explored as light absorbers for solar
cells due to their wide structural diversity and superior stability compared to conventional
3D perovskites [164]. 2D perovskites are produced by using larger ammonium or diammo-
nium cations. These cations are too large and divide the perovskite structure into 2D layers.
The layered structures are placed into several categories, with Ruddlesden–Popper (RP)
and Dion–Jacobson (DJ) being by far the most common [165–168]. RP structures are stacked
so that they have two offset layers per unit cell having pairs of monovalent interlayer spacer
cations. DJ structures can be stacked directly on top of each other and only require one di-
valent interlayer spacer per formula unit [169]. A successful example of a RP 2D-perovskite
(PEA)2(MA)2[Pb3I10] was synthesized and showed excellent resistance to moisture and
allowed high-quality films to be produced after just 1-step [170,171]. However, this material
only achieved a PCE of 4.73% [172]. Further improvement of the efficiency was made by
improving the charge transport mechanism, reaching a PCE of 12.52% [173]. Although,
2D-perovskites show excellent stability they still lack the efficiency of 3D-perovskite cells.
For this reason, they are not suitable for single-junction cells but may be an excellent option
for use as the high band-gap absorber in a tandem cell [174]. The applications of per-
ovskite material in PV involve usage in electric vehicles and building integrated technology
because of its flexibility and tunable bandgap [175,176]. The increment in stability and
performance enables the researchers to work not only on performance enhancement but to
seek new applications as well. The proper surface engineering and interface engineering
improved the efficiency and stability to a great extent. The performance improvement
occurred due to a reduction in defect density within the material leading to a decrement in
non-radiative recombination. The performance of PSCs is further improved by the surface
passivation using hydrophobic molecules. Liang et al. used organic hydrophobic molecules
(Benzylamine) with a side chain to enhance the performance of Formamidinium lead iodide
(FAPbI3) films. This modification not only enhanced the voltage from 1 to 1.12 V but the
stability improved from three days to four months [177,178]. It can be said that deposit-
ing high-quality perovskite film with minimum defects can enhance the performance of
the PSCs.

Building integration of perovskite-based PV is probably one of the promising ap-
proaches. Building energy currently consumes significant energy which must be reduced
by employing an energy-positive building envelope [179–183]. For decades, PV technology
is placed in a building in terms of roof integrated or wall integrated technology. These are
mainly known as building attached or applied PV. Building integrated type PV application
semitransparent PV is a precondition [184,185]. However, previously most investigation
was devoted based on first-generation silicon [186–188] or second-generation thin film-
based PV [189–191]. However, the booming Perovskite industry gives high hope for the
building industry [192,193]. Perovskite which can have variable [194] or static [195] trans-
parency is the most suitable for building window or façade applications. The recent trend
is to include a smart switchable or adaptive window in a building [196–203]. However,
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these most effective windows can only reduce energy consumption [204–208]. In the future,
switchable perovskite can be a dominant player in the building industry which can have
the potential to generate benign electricity and also tune the transparency concomitantly.

5. Summary

The strive to generate electricity from renewable energy sources has highlighted the
importance of using the abundant solar resources incident on the Earth. Photovoltaics are
used to generate electricity using the photovoltaic effect. As solar PV capacity continues to
increase across the globe, research has focused on maximizing the efficiency and decreasing
the manufacturing costs of solar cells. Third-generation solar cells are currently in devel-
opment and have great potential to dominate the solar PV market in the future. The most
promising candidate identified is perovskite solar cells, reaching a PCE of 25.8% in under
10 years. Other features such as low material and processing costs make them an exciting
development and the focus of this review.

The key structural and fundamental features that make perovskites such effective
solar cells have been identified in this review. The structure of perovskite allows elements
within it to be interchanged, as long as it stays within the Goldsmith tolerance factor. This
provides great flexibility and also an ability to easily tune the bandgap of the material to
a required value. Perovskite materials also have high efficiencies in photovoltaic appli-
cations. Key electronic and optical properties responsible for this include high electron
mobility (800 cm2/Vs), long diffusion wavelength (>1 µm), and high absorption coeffi-
cient (105 cm−1). This review also discussed solution-processing and vapor deposition
techniques for manufacturing perovskite solar cells. The most cost-effective and common
method was solution-processing as vapor deposition requires expensive high vacuum
levels for thermal evaporation. Overall, a one-step solution-based method was identified
as the most effective. This allows grain growth to be controlled more effectively, resulting
in a higher PCE.

There are still some major issues stopping large-scale commercialization of perovskite
solar cells. The first is the stability of perovskite solar cells, they are inherently sensitive to
light, heat, moisture, and oxygen. These issues must be addressed in order for perovskite
solar cells to have a long operational lifetime competitive with silicon-based solar cells.
Another issue facing perovskites is the current manufacturing techniques used in lab-scale
projects are not suitable for large-scale production. This is being addressed with a search
for techniques that are compatible with roll-to-roll processing allowing high throughput.

Finally, this paper addresses where future research should focus its attention. The
first suggestion is to investigate lead-free perovskites, due to the negative impacts of lead-
use. The most promising results have been found for tin-based perovskites achieving
a PCE of 10–12%. Unfortunately, this cannot compete with lead-based perovskites that
achieved PCE of 25% so further research is needed. The final topic addressed is tandem
and multijunction cells, which capture a larger range of radiation from the spectrum. Not
only do tandem cells increase the PCE, but also address the stability issues of perovskite
cells. A perovskite-silicon tandem cell was synthesized and achieved a high PCE of 29.15%.
Tandem cells involving 2D-perovskites as the high band-gap absorber have the potential
to achieve a high PCE along with excellent stability. Overall, this review demonstrates
the impressive features of perovskite solar cells along with the challenges that must be
overcome for large-scale commercialization.
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