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Abstract: This study was carried out to determine the presence of the main radionuclides from
natural and artificial radioactivity in the soil of Kosovo, using gamma-ray spectroscopy. The
mean activity concentration for Ra-226, Th-232, K-40, and Cs-137 was 22.32 ± 1.41, 22.14 ± 1.31,
358.16 ± 8.85, and 12.94 ± 0.44 Bq/kg, respectively. Radium equivalent activity ranged from 47 to
100 Bq/kg. The mean of calculated values for the gamma index (Iγ), external hazard index (Hex),
absorbed dose rate (ADR), annual gonadal dose rate (AGDE), annual effective dose rate (AEDE), and
excess lifetime cancer risk (ELCR) were 0.61, 0.22, 40 nGy/h, 275 µSv/year, 49 µSv/year, and 170, re-
spectively. In conclusion, the radiological parameters arising from the soil samples of Kosovo belong
to the normal range of radionuclides, compared to those compiled by UNSCEAR from worldwide
reports; therefore, health hazards are insignificant.
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1. Introduction

Radiation is found everywhere in the earth’s environment, and there is evidence that
it was so from the beginning of time and will continue to be present. Therefore, all human
beings are exposed to natural radiation sources and human-made sources daily. Natural
background radiation comes from cosmic, terrestrial, and internal radiation. The most
important source of man-made radiation exposure to the public is medical procedures,
such as diagnostic X-rays, nuclear medicine, and radiation therapy. Smaller contributions
to man-made radiation sources include nuclear weapons tests, nuclear reactor accidents,
and nuclear power plants. The artificial radionuclide 137Cs were spread to the soil of
Kosovo due to fallout after the Chornobyl nuclear power accident on 26 April 1986 [1,2].
Furthermore, during the Kosovo War in 1999, the North Atlantic Treaty Organization
(NATO) used depleted uranium (DU). Hence, some regions of Kosovo were radiologically
contaminated [3–6].

Humans are exposed to background radiation from cosmic radiation and the gamma
rays released in soils, building materials, water, food, and air. Some regions have been
identified as high background radiation areas (HBRAs), and possible harmful effects on
public health were detected [7]. Therefore, it is crucial to install an adequate system for
health protection. In recent years, these conditions have attracted more attention from
researchers, and much more researchers have been conducted on them [8–14]. Radioactivity
in soil directly impacts fruits and vegetables [15–17].

The present study is carried out as there is no study on determining radioactivity
levels in soil samples taken from all regions of Kosovo. In this context, the primarly purpose
of this study is to detect natural and artificial radioelements 226Ra, 232Th, 40K, and 137Cs in
soil samples. For the assessment of radiological hazards arising from natural radioactivity,
radium equivalent activity (Raeq), gamma index (Iγ), external hazard index (Hex), absorbed
dose rate in the air (D), annual gonadal dose rate (AGDE), the annual effective dose rate
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(AEDE), and excess lifetime cancer risk (ELCR) were calculated. The results were compared
with internationally recommended values.

2. Materials and Methods
2.1. Study Area

Kosovo is located in Southeast Europe, in the central part of the Balkan Peninsula.
It borders Serbia, Montenegro, Albania, and North Macedonia. Kosovo extends within
longitudes 41◦50′58′′ and 43◦15′42′′ and within latitudes 20◦01′30′′ and 21◦48′02′′. It covers
a surface area of approximately 10,900 km2, and it is characterized by elevations between
400 and 700 m above sea level but shows unexpected changes in relief and morphology.
These morphological changes are a consequence of the geological setting. The population of
Kosovo is almost 1.9 million, and the population density is 168 people per square kilometer.

2.2. Sample Collection and Preparation

For a homogeneous sampling process in the whole country, the cluster sampling
method was chosen [18]. The territory of Kosovo was divided into thirty equal surface
units with a rectangular shape. One cell represented around 363 km2, and a soil sample
was taken from each. A total of 30 soil samples were taken in the year 2020. Geographical
sampling locations were recorded by portable GPS during sampling time. The digital
map with the sampling location was prepared using free open-source QGIS. The location
distributions of the sampling are illustrated in Figure 1. The soil samples, were collected
using a shovel, from 0 to 5 cm in depth. The soil samples were removed from unwanted
redundancies (stones, vegetation, and roots) and were placed in clean, zip-locked bags
(1–2 kg). The samples were then transferred to the laboratory. They were dried in an oven
at 60 ◦C for 48 h, grained, passed through 2 mm sieves, weighed, and transferred into
uncontaminated, empty Marinelli beakers of uniform size. Finally, the samples were stored
for four weeks to allow the daughter products to come into radioactive secular equilibrium
with their parents, 226Ra and 222Rn.
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2.3. Experimental Methods

The radioactivity levels of the samples were analyzed using gamma spectrometry,
which is an equipped, high-purity germanium gamma-ray detector ORTEC, with a 55%
relative efficiency and a resolution of full width at half maximum (FWHM) of 1.90 keV at
1.33 MeV of peaks for the gamma of 60Co. The detector was shielded by a cylindrical lead
shield, with an average thickness of 10 cm, to achieve a background level as low as possible.
Efficiency and energy calibration of the detector was carried out with a 152Eu calibration
source (Amersham Company, Amersham, UK). As standard procedure the cylindrical
geometry of samples with constant volume and distance were applied to all samples.

2.4. Activity Concentration (A)

Each of the soil samples reaching the balance were placed on the detector and counted
for a period of 60.000 s. The obtained gamma spectra were analyzed using data acquisition
and analysis program named Gamma Vision [19]. The activity concentration of each sample
was subtracted from the activity concentration of an empty plastic container to remove the
contribution of the background radiation. To calculate the activity concentrations of the
soil samples by specific radionuclide (A), we used Equation (1):

A(Bq/kg) =
C

ε× P×m× t
(1)

where C is the net count (area) under the corresponding peak, ε is the detector efficiency at
the corresponding peak energy, P is the absolute transition probability of the specific γ-ray
at the corresponding peak energy, m is the mass of the sample (kg), and t is the counting
time in seconds.

To measure the activity concentration of 226Ra, 232Th, 40K, and 137Cs on soil sam-
ples, we used standard methodology, based on γ-ray energies of specific elements. This
procedure has been described elsewhere [20,21].

To calculate the uncertainty of the activity concentration (∆A), we used Equation (2) [22].

∆A = A

√(
∆C
C

)2
+

(
∆ε

ε

)2
+

(
∆P
P

)2
+

(
∆m
m

)2
(2)

where ∆C is the uncertainty of count rate, ∆P is the uncertainty of emission probability
found in the nuclear data tables, ∆ε is the uncertainty of efficiency, and ∆m is the uncertainty
of weighing.

To calculate the minimum detectable activity for each radionuclide, we used
Equation (3) [23]:

MDA(Bq/kg) =
1.645

√
B

ε× P×m× t
(3)

where 1.645 is the statistical coverage factor (confidence level 95%), and B is the background
for the related region of a specific radionuclide.

In addition, the accuracy of the measurements was obtained from the reference stan-
dard range of 95 to 98% for all radionuclides. The certified soil reference material (IAEA-375)
checked the measurement system for accuracy with a matrix similar to the samples.

2.5. Calculation of Radiological Hazards

Radium equivalent activity (Raeq) is a widely used hazard index and was calculated
through the relation given by Beretka and Mathew [24]. It was assumed that 370 Bq/kg of
226Ra, 259 Bq/kg of 232Th, and 4810 Bq/kg of 40K produced the same gamma-ray dose rate.
The calculation is shown in Equation (4):

Raeq = ARa + 1.43ATh + 0.077AK (4)

where ARa, ATh, and AK are the activity concentrations of related radionuclides, respectively.
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Gamma index (Iγ)—Gamma index (Iγ) was calculated by using the Equation (5):

Iγ =
ARa

150Bq/kg
+

ATh
100Bq/kg

+
AK

1500Bq/kg
(5)

where ARa, ATh, and AK were explained in Equation (4) of this paper [25].
External hazard indices (Hex) were calculated for the samples investigated using the

model proposed by Krieger [26], where the external hazard index is given by:

Hex =
ARa

370Bq/kg
+

ATh
259Bq/kg

+
AK

4810Bq/kg
< 1 (6)

where ARa, ATh, and AK, were explained in Equation (4) of this paper
Absorbed dose rate in air (ADR) is the external terrestrial gamma radiation in the air

at 1 m above ground level, due to the presence of 226Ra, 232Th, 40K, and 137Cs in the soil
samples at each site. This was calculated using the following Equation (7) [27],

ADR = aARa + bATh + cAK + dACs (7)

where ARa, ATh, and AK, were explained in Equation (4) of this paper. The coefficients a, b,
c, and d are the dose conversion factors, and their values are 0.462, 0.604, 0.042, and 0.1243
in nGy/h per Bq/kg, respectively.

The annual gonadal dose rate (AGDE)—The activity of bone marrow and bone surface
cells are considered organs of interest by UNSCEAR [28]. Therefore, the AGDE, due to the
activity concentrations of 226Ra, 232Th, and 40K, was calculated using Equation (8) [29]:

AGDE(µSv/year) = 3.09ARa + 4.18ATh + 0.314AK (8)

where ARa, ATh, and AK, were explained in Equation (4) of this paper. The coefficients 3.09,
4.18, and 0.314 are conversion factors in (Sv/y)/(Bq/kg).

The annual effective dose rate (AEDE)—The annual effective dose equivalent is given
by using Equation (9):

AEDE(µSv/year) = D×DCF×OF× 8760h/year× 10−3 (9)

where DCF is the dose conversion factor absorbed in the air (0.7 Sv/Gy), and OF is the
outdoor occupancy factor (0.2) [28].

Excess lifetime cancer risk (ELCR) is given by using Equation (10):

ELCR = AEDE×DL× RF (10)

where DL is the life span (70 years) and RF is the risk factor (Sv−1), that is, mortal cancer risk
per sievert. As stochastic effects, the ICRP 60 used values of 0.05 for the community [30].

2.6. Spatial Interpolation and Mapping

The distribution maps created in this study were prepared according to the SGS-ANN
approach suggested by Yeşilkanat [31]. In this approach, different from the original litera-
ture, each spatial pixel (100 × 100 m2) was calculated separately, using in a hybrid manner
the conditional gauss simulation (SGS) and artificial neural network (ANN) methods in
order to predict local changes rather than general distribution characteristics. Therefore,
the population ratios and the radiological risks per pixel were calculated by weighting the
population. More details about the ANN model can be found in the cited source [31].

For all calculations and maps used in the study, SP [32], GSTAT [33], RSNNS [34], and
caret library files [35] were used together with the R programming language [36].
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3. Results and Discussion
3.1. The Activity Concentrations of the Radionuclides

It was observed that the mean activity concentrations of these radionuclides were
comparable with the worldwide average concentration [28]. In this context, all of the
concentrations of 232Th and 226Ra were found to be below the world average. The average
value of the 40K concentrations in the studied soil samples was lower than the world
average. However, the 40K concentrations of site-1 (Leposaviq), site-2 (Zubin Potok), site-3
(Mitrovicë), site-4 (Podujevë), site-8 (Podujevë), site-10 (Pejë), site-15 (Prishtinë), site-17
(Gjakovë), and site-30 (Dragash) samples were slightly higher than the worldwide average.
The difference in the activity values of the naturally occurring 40K in the soil samples had
been fertilized with artificial fertilizers and contained residues from animal carcasses.

137Cs do not exist in soil naturally, but it is a product of fallout radioactivity. It might
have been deposited in the soil of Kosovo, presumably due to the Chornobyl nuclear
power accident on 26 April 1986, a nuclear weapon tests, or a reprocessing of spent nuclear
fuel. The concentration of 137Cs in the trace level was reported on honey samples from
Kosovo [37]. The study findings were compared to the values of some works used in
other literature (Table 1). As shown in Table 1, the average activity value (22.32 Bq/kg)
found for 226Ra in this study is lower than the reported values in Italy (79 Bq/kg) [38],
Saudi Arabia (23.2 Bq/kg) [39], Lebanon (27 Bq/kg) [40], Yemen (44.4 Bq/kg) [41], Syria
(29 Bq/kg) [42], Artvin (42.2 Bq/kg) [12], and Croatia (44.7 Bq/kg) [43], while less results
were reported for Bolu (18.2 Bq/kg) [44], and Oman (14.4 Bq/kg) [45]. The average activity
value (21.1 Bq/kg) found for 232Th is higher than the reported values in Saudi Arabia
(7.7 Bq/kg), Oman (9.9 Bq/kg), and Turkey (17.3 Bq/kg), yet lower than the other val-
ues. The average activity value found for 40K is lower than the reported values in Italy
(640 Bq/kg), Yemen (822.7 Bq/kg), and Croatia (542 Bq/kg) but higher than other values.
In addition to these, the average activity value found for 137Cs in the soil samples is lower
than the reported values in Italy (25 Bq/kg), Lebanon (21 Bq/kg), Oman (2770 Bq/kg),
Syria (27 Bq/kg), and Croatia (30.8 Bq/kg) but higher than other values.

Table 1. Comparisons of specific radionuclide concentrations by countries (Bq/kg).

Country 226Ra 232Th 40K 137Cs References

Italy 79 48 640 25 [38]
Saudi Arabia 23.2 7.7 278.0 1.4 [39]

Lebanon 27 24 246 21 [40]
Yemen 44.4 58.2 822.7 4.8 [41]
Syria 29 21 310 27 [42]

Upper Egypt * 16.5 10.2 192 / [46]
Turkey (Bolu) 18.2 17.3 258.3 7.5 [44]

Turkey
(Artvin) 42.2 32.2 402 30.4 [12]

Croatia 44.7 42.3 542 30.8 [43]
Kosovo 22.3 21.1 358.2 12.9 Present study

* The values are presenting the average of the range.

The statistical summary information of the activity concentrations (actual data) ob-
tained from the Kosovo soils’ experimental measurement results and the simulation dis-
tributions obtained by the SGS-ANN method for each radionuclide is shown in Table 2,
comparatively. According to this, for the actual data, the activity concentrations of 226Ra,
232Th, 40K, and 137Cs varied from 8 Bq/kg to 30 Bq/kg, with a mean of 22 Bq/kg; 7 Bq/kg
to 31 Bq/kg, with a mean of 21 Bq/kg; 105 Bq/kg to 515 Bq/kg, with a mean of 358 Bq/kg;
and <MDA to 43 Bq/kg, with a mean of 13 Bq/kg, respectively. Similarly, for the simulation
data, the activity concentrations of 226Ra, 232Th, 40K, and 137Cs varied from 12 Bq/kg to
29 Bq/kg, with a mean of 23 Bq/kg; 11 Bq/kg to 29 Bq/kg, with a mean of 21 Bq/kg;
181 Bq/kg to 541 Bq/kg, with a mean of 370 Bq/kg; and 1 to 41 Bq/kg, with a mean of
10 Bq/kg, respectively.
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Table 2. Statistics of the actual measurement and simulation of radionuclide activity concentrations
in the soil of Kosovo.

Radionuclides Data Mean-SD Median Min–Max Percentiles
(25–75)

226Ra (Bq/kg)
Actual 22 ± 5 24 8–30 19–26

Simulation 23 ± 2 23 12–29 21–25

232Th (Bq/kg)
Actual 21 ± 5 21 7–31 19–25

Simulation 21 ± 2 21 11–29 20–22

40K (Bq/kg)
Actual 358 ± 106 368 105–515 289–447

Simulation 370 ± 48 369 181–541 337–406

137Cs (Bq/kg)
Actual 13 ± 12 10 <MDA–43 3–15

Simulation 10 ± 2 10 1–41 7–13

232Th/226Ra
Actual 0.95 ± 0.1 0.95 0.69–1.21 0.9–1.00

Simulation 0.93 ± 0.07 0.93 0.68–1.33 0.88–0.97

40K/226Ra
Actual 16.5 ± 5.1 16.9 7.75–30.4 12.8–18.5

Simulation 16.4 ± 2.4 16.3 9.75–29.4 14.7–17.8

40K/232Th
Actual 17.4 ± 5.2 18.5 7.13–29.9 13.4–20.5

Simulation 17.6 ± 2.3 17.7 9.83–27.6 15.9–19.3

In Table 2, statistics on the proportional changes of radionuclide activities are compar-
atively listed for both real data and simulation data. For the actual data, the 232Th/226Ra
ratios varied from 0.69 to 1.21, with an average of 0.95 in Kosovo. The correlation between
thorium and radium is lower than the world’s average (1.29). The 40K/226Ra ratios varied
from 7.75 to 30.4, with an average of 16.5 in Kosovo. Its value is higher than the average of
the world (11.77). Lastly, the 40K/232Th ratios varied from 7.13 to 29.9, with an average of
17.4 in Kosovo. The ratio value is greater than the world’s average (9.16). Similarly, for the
simulation data, the 232Th/226Ra, 40K/226Ra, and 40K/232Th ratios varied from 0.68 to 1.33,
with a mean of 0.93; 9.75 to 29.4, with a mean of 16.4; and from 9.83 to 27.6, with a mean of
17.6, respectively.

Correlations between natural radionuclide concentrations were also examined for real
and simulation data. A significantly positive and strong correlation was determined be-
tween 232Th and 226Ra radionuclides (Figure 2). The variance explained (R2) between 232Th,
and 226Ra radionuclides were calculated as 81% for actual data and 51% for simulation
data. On the other hand, the correlations between 40K and 226Ra and 40K and 232Th were
determined, and it was determined that there is a weak and positive relationship in both
cases. The variance explained between 40K and 226Ra radionuclides were calculated as 14%
for the actual data and 8.5% for the simulation data. Again, the variance explained between
40K and 232Th radionuclides were calculated as 10% for actual data and 7.3% for simulation
data. The presence of a significant correlation between the activity concentrations of 226Ra,
232Th, and 40K radionuclides shows that radionuclides in soils of the study area are derived
from the same natural source.

Figure 3 comparatively shows the histograms of both actual and simulation data
for the activity concentrations of 226Ra, 232Th, 40K, and 137Cs radionuclides. According
to the Shapiro–Wilk normality test results, 232Th and 40K distributions were found to
be normal (p > 0.05), while 226Ra and 137Cs distributions were log-normal (p > 0.05). In
addition, it was determined that the distribution structures of the real measurement data
and the simulation data were significantly similar (p > 0.05), according to the results of the
two-sample Kolmogorov–Smirnov test. From all these findings, it could be seen that the
simulation data, which reveal the radionuclide distribution for the entire study area, are
very effective in representing real data.
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Figure 3. Frequency distributions of 226Ra, 232Th, 40K, and 137Cs concentrations for actual and
simulation data.

Figure 4 shows the performance metrics of the SGS-ANN estimation results. Expla-
nations of these performance evaluation metrics are given in the Supplementary Material.
According to the results of cross-validation, the Pearson correlation coefficients (signifi-
cance, MAE in Bq/kg, RMSE in Bq/kg) for 226Ra, 232Th, 40K, and 137Cs were 0.34 (p < 0.05,
4.2, 5.0), 0.37 (p < 0.05, 3.9, 4.7), 0.42 (p < 0.05, 78.7, 95.6), and 0.40 (p < 0.05, 8.7, 11.4),
respectively.

Figure 5 shows the distribution maps of the activity concentrations of 226Ra, 232Th,
40K, and 137Cs for Kosovo, generated by the SGS-ANN method at 100 × 100 m spatial pixel
resolution. According to these distribution maps, it is noteworthy that natural radionuclide
activities are higher in the northern, southern, and western parts of Kosovo compared to
the inner and eastern parts. 137Cs artificial radionuclide activities are observed to be more
effective in the eastern parts of the country close to Chernobyl.

3.2. Assessment of Radiological Hazards

Statistical descriptors of Raeq, Iγ, and Hex radiological hazard indices were determined
according to SGS-ANN simulation data for all Kosovo. The smallest and highest average
Raeq, Iγ, and Hex values were determined in Gjilan (Raeq = 73 Bq/kg, Iγ = 0.55, Hex = 0.20)
and Mitrovica (Raeq = 87 Bq/kg, Iγ = 0.66, Hex = 0.24), respectively.
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In Kosovo soil samples, the mean value of Raeq was found to be 80.1 Bq/kg. This value
is lower than the worldwide average of 370 Bq/kg [28]. Additionally, when the average
Raeq values were compared with the values of other countries, they were found to be lower
than the obtained values of 166 Bq/kg in Fırtına Valley [47], 112 Bq/kg in Artvin [12],
and 232 Bq/kg in southwestern Nigeria [48]. The mean Iγ calculated for the Kosovo soil
samples had a mean value of 0.61, which is less than the mean value of the world, which
is 1, according to the European Commission (European Commission, 1999). The average
value of Hex was found to be only 0.22, so no harmful effects to the residents can happen
due to radiation hazards. Figure 6 shows distribution maps of radiological hazards for
Kosovo. When these maps were examined, it was seen that radiological hazards are at low
levels, especially in the province of Gjilan and in the inner parts of Prishtina. They are at
high levels in the Mitrovica province, north of Prishtina, south of Prizren, and western
parts of Gjakova and Peja.
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the soil.

3.3. Assessment of Radiological Health Risks

Statistical descriptors of AGDE, ADR, AEDE, and ELCR radiological health risk levels
were determined according to SGS-ANN simulation data for all of Kosovo. The smallest
and highest of the mean levels of AGDE, ADR, AEDE, and ELCR were determined in
the provinces of Gjilan (AGDE = 248 µSv/year, ADR = 37 nGy/h, AEDE = 46 µSv/year
and ELCR = 0.16 × 10−3) and Mitrovica (AGDE = 296 µSv/year, ADR = 43 nGy/h,
AEDE = 53 µSv/year and ELCR = 0.18 × 10−3), respectively.

The mean AGDE value was found to be 269.8 µSv/year. These values are lower
than the world mean (300 µSv/year) [49]. However, the maximum values calculated in
all provinces except Gjilan were found to be higher than the global average. The mean
of the absorbed dose rate (ADR) in the air, at 1 m above the ground, generated from
gamma radiation of 226Ra, 232Th, 40K, and 137Cs in the soil samples of Kosovo resulted in
39.3 nGy/h, and this is 27% lower than the recommended values by UNSCEAR [28].

In addition, the average AEDE of the soil samples that resulted was 48 µSv/y. It is
lower than the average world value of 70 µSv/y [28]. The calculated values of the excess
lifetime cancer risk (ELCR) for all soil samples ranged from 0.1 × 10−3 to 0.21 × 10−3, with
a mean of 0.17 × 10−3. The average world value of ELCR is 0.29 × 10−3 [28]. The average
ELCR acquired in this study was lower than the world’s mean values. Furthermore,
the distribution map of these parameters calculated for Kosovo is shown in Figure 7
and Table 3.
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Table 3. The values of radiologic hazard parameters calculated for the soil samples of Kosovo.

Statistics Raeq Ig Hex
AGDE
(µSv/y)

ADR
(nGy/h)

AEDE
(µSv/y)

ELCR
(×10−3)

Minimum 27.27 0.20 0.07 91.92 13.47 16.51 0.06
Maximum 100.40 0.74 0.27 335.11 48.77 59.81 0.21
Average 80.13 0.61 0.22 269.81 39.3 48.22 0.17

World average 370 ≤1 ≤1 300 60 70 2.9

4. Conclusions

This study aimed to determine the levels of natural (226Ra, 232Th, and 40K) and artificial
(137Cs) radioactivity of soil samples from Kosovo. It was done by using a high-purity
germanium gamma-ray detector. The reported activity concentrations in the present study
were within the proposed limits of international radiation protection agencies. In addition
to activity measurements, the radiological hazard parameters: radium equivalent activity
(Raeq), gamma index (Iγ), external hazard index (Hex), absorbed dose rate in the air (D),
annual gonadal dose rate (AGDE), the annual effective dose rate (AEDE), and excess
lifetime cancer risk (ELCR) were calculated, and the obtained results were lower than the
world means for each mentioned parameter. Therefore, radioactivity concentration in the
Kosovo soils is similar to the worldwide average and represents no radiological hazard
for the population. The results obtained by this study will serve as a reference for possible
future changes. Also, it provides a good baseline for the setting up of natural and artificial
radioactivity mapping for monitoring possible radioactivity pollution.
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