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1. Introduction
Phthalocyanines are all-purpose and durable compounds [1]. They have an extended π-conjugation system and different 
types of central metals [2]. In addition, their unique electronic and chemical properties, physical and optical properties, 
as well as chemical flexibility allow for the preparation of a variety of related structures and diverse applications ranging 
from industrial to biological areas [3,4]. Phthalocyanines have been used in different areas such as photodynamic therapy 
[5,6], nonlinear optical materials [7], electrochemical sensors [8,9], biosensors [10], solar cells [11,12], light-emitting 
devices [13], liquid crystals [14], electrocatalysts [15], and electropolymerization [16,17]. The solubility of unsubstituted 
phthalocyanines is very low in organic solvents. This condition affects the use of phthalocyanines in many areas. The 
solubility of phthalocyanines can be increased with substitution of phenoxy, alkyl, alkoxy, long chain, and bulky groups 
at peripheral, nonperipheral, or axial positions of the phthalocyanine [18–20]. Diethylamino groups can be used in many 
applications such as anticancer agents [21], DNA interactions [22], and photodynamic therapy [23]. In addition, the 
electrochemical features of diethylamino groups are significant. In the literature, it is shown that the introduction of 
diethylamino groups into the peripheral/nonperipheral positions of phthalocyanines increased their electrochemical and 
electropolymerization properties [24–27]. Here, we wondered how the presence of phthalocyanines in the nonperipheral 
positions of the diethylamino group affects the electrochemical properties of phthalocyanine compounds. For this reason, 
in this work, we combined these two functional compounds (diethylamino and phthalocyanine) into a single compound. 
In this study, we have synthesized nonperipherally tetra-[5-(diethylamino)-2-formylphenoxy] substituted n-TY-Co, 
n-TY-Cu, and n-TY-Mn, and investigated their electrochemical properties. 

2. Experimental details
Information about equipment, materials, and electrochemistry experiments is provided in the Supplementary Information 
section.
2.1. Synthesis
2.1.1. 3-[5-(diethylamino)-2-formylphenoxy]phthalonitrile (n-TY-CN)
4-(diethylamino)-2-hydroxybenzaldehyde (1 g, 5.2 mmol), 3-nitrophthalonitrile (0.9 g, 5.2 mmol), and dry K2CO3 (2.15 g, 
15.6 mmol) were dissolved in DMF (15 mL) at 55 °C under nitrogen atmosphere for 96 h. Then, the solution was estranged 
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and spilled into iced water (200 mL). n-TY-CN was crystallized from ethanol and purified using column chromatography 
on aluminum oxide with chloroform. Yield: 0.47 g (33%), m.p. 155–157 °C. IR (ATR), ν/cm−1: 3097 (Ar–H), 2974–2877 
(Aliph. C–H), 2225 (C≡N), 1674 (C=O), 1603, 1543, 1445, 1377, 1260, 1192, 1094, 1074, 844, 799, 689. 1H NMR (400 
MHz, DMSO-d6), (δ): 9.71 (s, 1H, =CH), 7.81–7.73 (m, 3H, Ar–H), 7.21 (d, 1H, Ar–H), 6.78 (d, 1H, Ar–H), 6.52 (s, 1H, 
Ar–H), 3.46–3.41 (m, 4H, CH2–N), 1.10 (t, 6H, CH3). 13C-NMR (100 MHz, DMSO-d6), (δ): 185.97, 160.97, 156.84, 154.05, 
136.34, 133.73, 128.13, 121.15, 116.17, 116.07, 115.46, 113.94, 109.59, 104.91, 103.36, 44.67, 12.73. MS (ESI), (m/z) calcl. 
319; found: 342.03 [M + Na]+.
2.1.2. 1(4),8(11),15(18),22(25)-tetrakis-[5-(diethylamino)-2-formylphenoxy]-phthalocyaninato cobalt (II) (n-TY-Co)
3-[5-(diethylamino)-2-formylphenoxy]phthalonitrile (150 mg, 0.36 mmol), CoCl2 (24 mg, 0.18 mmol), 1-pentanol (2.5 
mL), and DBU (3 drops) were stirred at 160 °C for 24 h under N2 atmosphere. The product was precipitated with hexane. 
n-TY-Co was obtained by column chromatography using basic aluminum oxide and CHCl3 as a solvent. Yield: 27 mg 
(17%), m.p. > 300 °C. IR (ATR), ν/cm–1: 3066 (Ar–H), 2959–2852 (Aliph. C–H), 1667 (C=O), 1590, 1517, 1400, 1353, 1238, 
1196, 1136, 1090, 985, 797, 746, 692. UV-vis (THF) λmax nm (log e): 678 (5.02), 621 (4.48), 311 (5.06). MALDI-TOF-MS 
(DIT) m/z: 1336.04 [M]+, 1508.00 [M + DIT–C4H6]

+, 1612.48 [M + DIT + 3H2O–4H]+, 1697.22 [M + DIT + 3K + H2O]+.
2.1.3. 1(4),8(11),15(18),22(25)-tetrakis-[5-(diethylamino)-2-formylphenoxy]-phthalocyaninato copper (II) (n-TY-Cu)
n-TY-Cu was synthesized similarly to n-TY-Co by using CuCl2 instead of CoCl2. Yield: 40 mg (38%), m.p. > 300 °C. IR 
(ATR), ν/cm–1: 3065–3035 (Ar–H), 2967–2867 (Aliph. C–H), 1664 (C=O), 1590, 1519, 1480, 1397, 1330, 1235, 1194, 1124, 
1078, 890, 799, 742, 630. UV-vis (THF) λmax nm (log e): 697 (5.03), 662 (4.36), 629 (4.35), 340 (4.87). MALDI-TOF-MS 
(CHCA) m/z: 1250.11 [M–C6H17]

+, 1319.48 [M–CH8]
+, 1339.70 [M]+, 1402.70 [M + Na + K + H]+, 1425.63 [M + 2Na + K 

+ H]+, 1511.27 [M + CHCA–H2O + H]+.
2.1.4. 1(4),8(11),15(18),22(25)-tetrakis-[5-(diethylamino)-2-formylphenoxy]-phthalocyaninato manganese (III) 
chloride (n-TY-Mn)
n-TY-Mn was synthesized similarly to n-TY-Co by using MnCl2 instead of CoCl2. Yield: 40 mg (37%), m.p. > 300 °C. IR 
(ATR), ν/cm–1: 3060 (Ar–H), 2965–2856 (Aliph. C–H), 1663 (C=O), 1594, 1518, 1482, 1326, 1239, 1093, 1067, 1013, 894, 
797, 741, 692. UV-vis (THF) λmax nm (log e): 795 (4.78), 755 (4.95), 527 (4.36), 345 (5.20). MALDI-TOF-MS (DIT) m/z: 
1308.54 [M–C4H11]

+, 1331.85 [M–Cl–H]+, 1348.80 [M–CH7]
+, 1417.65 [M + 2Na + K–Cl]+.

3. Results and discussion
3.1. Synthesis and characterization
In this study, 3-[5-(diethylamino)-2-formylphenoxy]phthalonitrile (n-TY-CN), nonperipherally tetra-[5-(diethylamino)-
2-formylphenoxy] substituted metallophthalocyanines (n-TY-Co, n-TY-Cu, n-TY-Mn) were synthesized for the first time 
and characterized with IR, NMR (only for n-TY-CN), mass and UV-vis (except n-TY-CN) spectroscopy. The synthesis of 
n-TY-Co, n-TY-Cu, and n-TY-Mn is shown in Figure 1. The detailed synthesis of 3-[5-(diethylamino)-2-formylphenoxy]
phthalonitrile (n-TY-CN) and metallophthalocyanines (n-TY-Co, n-TY-Cu, n-TY-Mn) is given in Supplementary 
Information. Stretching vibrations of C=N groups at 2225 cm–1 were observed in the IR spectrum of n-TY-CN. In 
1H-NMR spectrum of n-TY-CN, aldehyde and aromatic protons were detected at 9.71 and 7.81–6.52 ppm. Also, the 
aliphatic CH2–N and –CH3 protons were observed at 3.46–3.41 ppm as a multiplet, 1.10 ppm as a triplet. The aromatic and 
aliphatic carbon signals were observed at 185.97–103.36 and 44.67–12.73 ppm. In the IR spectra of n-TY-Co, n-TY-Cu, 
and n-TY-Mn, the sharp CºN stretching vibration disappeared. Also, C=O stretching vibrations of n-TY-Co, n-TY-Cu, 
and n-TY-Mn were shown at 1667, 1664, and 1663 cm–1, respectively. NMR spectra of n-TY-Co, n-TY-Cu, and n-TY-Mn 
could not be obtained owing to paramagnetic Co(II), Cu(II), Mn(III) ions [28]. MALDI-TOF mass spectra were obtained 
in dithranol (DIT) for n-TY-Co, n-TY-Mn, and alpha-cyano4-hydroxycinnamic acid (CHCA) for n-TY-Cu as MALDI 
matrix materials. The molecular ion peaks of n-TY-CN, n-TY-Co, n-TY-Cu, and n-TY-Mn were observed as 342.03 [M 
+ Na]+, 1336.04 [M]+, 1339.70 [M]+, and 1331.85 [M–Cl–H]+, respectively (Figure 2). In the UV-vis spectra of n-TY-Co, 
n-TY-Cu, and n-TY-Mn in THF, the characteristic Q band (678 nm for n-TY-Co, 697 nm for n-TY-Cu, 795 nm for n-TY-
Mn) and B band (311 nm for n-TY-Co, 340 nm for n-TY-Cu, 345 nm for n-TY-Mn) were observed (Figure 3). As shown 
in Figure 3, n-TY-Mn showed aggregation in THF, but n-TY-Co and n-TY-Cu did not show any aggregation in THF.
3.2. Voltammetric studies
Voltammetric analysis of n-TY-Co, n-TY-Cu, and n-TY-Mn was achieved in DCM using a (DCM)/(TBAP) electrolyte 
system on a Pt working electrode. The voltammetric data is shown in Table. Figures 4a and 4b show the CV and SWV 
responses of n-TY-Co, n-TY-Cu, and n-TY-Mn. As shown in Figure 4, n-TY-Co showed metal-based reversible and 
Pc-based quasireversible reduction reactions labeled as R1 (E1/2 = –0.33 V), R2 (E1/2 = –1.53 V). Also, n-TY-Cu gave two 
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reversible, Pc-based reduction reactions (E1/2 = –0.82 V, –1.25 V). On the other hand, n-TY-Mn illustrated reversible 
(R1 E1/2 = –0.13 V) and quasireversible (R2 E1/2 = –0.97 V, R3 E1/2 = –1.46 V) reduction processes, which were assigned 
to [Cl–MnIIIPc–2] / [Cl–MnIIPc–2]–1, [MnIIPc–2] / [MnIPc–2]–1, [MnIPc–2]–1 / [MnIPc–3]–2 couples. The ligands containing 
diethylamino groups polymerize during the oxidation reaction [29,30]. For this reason, n-TY-Co, n-TY-Cu, and n-TY-
Mn containing [5-(diethylamino)-2-formylphenoxy] groups were electropolymerized during the oxidation reaction. 
Figure 5 shows the CV responses of n-TY-Co, n-TY-Cu, and n-TY-Mn during repetitive CV cycles. Figure 5a shows the 
repetitive CV responses of the n-TY-Co recorded at 0.100 V s–1 scan rate within a positive potential window of DCM/

Figure 1. The synthesis of n-TY-Co, n-TY-Cu, and n-TY-Mn containing [5-(diethylamino)-2-formylphenoxy] 
groups. (i) DMF, K2CO3, 55 °C; (ii) n-pentanol, DBU, metal salts, 160 °C. 
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Figure 2. MALDI-TOF MS spectrum of n-TY-Co, n-TY-Cu, and n-TY-Mn.
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TBAP. During the first anodic CV cycle, n-TY-Co shows two oxidation peaks at 0.81 and 1.18 V. During the second to 
fifteenth CV cycles, the anodic waves increase with potential shifts at 0.92 and 1.27 V. After this point, the potentials 
decrease with the ultimate disappearance of current intensity after the 20th cycle. Figure 5b illustrates CV responses of 
n-TY-Cu during repetitive CV cycles. During the first anodic scan, an anodic wave at 1.05 V and its reverse cathodic 
couple is recorded at 0.92 V. During the second to seventeenth CV cycles, the anodic waves increase with a potential shift 
at 1.20 V. Also, during the consecutive third CV cycle, two new cathodic waves are recorded at 0.48 and 0.89 V. These new 
waves increase in current intensity with a negative potential shift to 0.33 and 0.84 V during the 20th CV cycle. Figure 
5c shows the repetitive CV cycles n-TY-Mn. During the first CV cycle, an oxidation peak at 1.10 V is observed. During 
the second to ninth CV cycles, this peak increases in current intensity with a positive potential shift. After this point, the 
potentials decrease with the ultimate disappearance of current intensity after the 20th cycle. These voltammetric responses 
show the electropolymerization of the n-TY-Co, n-TY-Cu, and n-TY-Mn on the working electrode due to the oxidation 
of diethylamino groups of the metallophthalocyanines. In order to prepare a composite electrode, electropolymerization is 
required [31]. Also, electropolymerization necessitates electroactive groups, for example, morpholine [32], diethylamino 
[33], and thiophene [34] in the monomer system. For these reasons, the electropolymerization feature may allow the 
synthesized phthalocyanines (n-TY-Co, n-TY-Cu, n-TY-Mn) to be used in different electrochemical areas, for example as 
electrocatalyts, electrochromic materials, and electrochemical sensors [35]. 

4. Conclusion
In this work, nonperipherally tetra-[5-(diethylamino)-2-formylphenoxy] substituted n-TY-Co, n-TY-Cu, and n-TY-Mn 
were synthesized and characterized. Voltammetric analysis of n-TY-Co, n-TY-Cu, n-TY-Mn was defined by using cyclic 
and square wave voltammetry. Voltammetric results show that n-TY-Co and n-TY-Cu give two reduction processes, 
but n-TY-Mn gives three reduction processes during the cathodic scans. Also, n-TY-Co, n-TY-Cu, and n-TY-Mn 
revealed electropolymerization responses during the anodic scans because the ligands containing [5-(diethylamino)-2-
formylphenoxy] groups polymerize during the oxidation reaction.

Figure 3. UV-vis spectra of n-TY-Co, n-TY-Cu, and n-TY-Mn in THF.

Table. Electrochemical results of the n-TY-Co, n-TY-Cu, n-TY-Mn. All data were 
given versus SCE.

Pcs Oxidation of substituent R1 R2 R3

n-TY-Co aE1/2 0.81 1.18 –0.33 –1.53 -

n-TY-Cu aE1/2 1.05 - –0.82 1.25 -

n-TY-Mn aE1/2 1.10 - –0.13 –0.97 –1.46

a: E1/2 values ((Epa+Epc)/2)  were given versus SCE at 0.100 V s–1 scan rate.
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Figure 4. (a) CV graph of n-TY-Co, n-TY-Cu, and n-TY-Mn in TBAP/DCM electrolyte system on platin working electrode. 
(b) SWV graph of n-TY-Co, n-TY-Cu, and n-TY-Mn in TBAP/DCM electrolyte system on platin working electrode.
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Figure 5. (a) Repetitive CVs of n-TY-Co in TBAP/DCM electrolyte system on platin working electrode at 0.100 mV s–1 scan rate. (b) 
Repetitive CVs of n-TY-Cu in TBAP/DCM electrolyte system on platin working electrode at 0.100 mV s–1 scan rate. (c) Repetitive CVs 
of n-TY-Mn in TBAP/DCM electrolyte system on platin working electrode at 0.100 mV s–1 scan rate.
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SUPPLEMENTARY INFORMATION 
 
1. Materials and equipment  

 

4-(diethylamino)-2-hydroxybenzaldehyde and 3-nitrophthalonitrile were purchased from 

commercial suppliers. All reagents and solvents were of reagent grade quality and were 

obtained from commercial suppliers. The IR spectra were recorded on a Perkin Elmer 

1600 FT-IR spectrophotometer using KBr pellets. 1H and 13C-NMR spectra were 

recorded on a Bruker Avance III 400 MHz spectrometers in DMSO-d6 and chemical 

shifts were reported (d) relative to Me4Si as an internal standard. MALDI-MS of 

complexes were obtained in dithranol (DIT), α-cyano-4-hydroxycinnamic acid (CHCA) 

as MALDI matrices using nitrogen laser accumulating 50 laser shots using Bruker 

Microflex LT MALDI-TOF mass spectrometer (Bremen, Germany). Optical spectra in 

the UV-vis region were recorded with a Perkin Elmer Lambda 25 spectrophotometer. 

 

2.  Electrochemical measurements  

 

The cyclic voltammetry (CV) and square wave voltammetry (SWV) measurements were 

carried out with Gamry Interface 1000 potentiostat/galvanostat controlled by an external 

Pc and utilizing a three-electrode configuration at 25 °C. The working electrode was a Pt 

disc with a surface area of 0.071 cm2. A Pt wire served as the counter electrode. Saturated 

calomel electrode (SCE) was employed as the reference electrode and separated from the 

bulk of the solution by a double bridge. Electrochemical grade TBAP in extra pure DCM 

was employed as the supporting electrolyte at a concentration of 0.10 mol dm–3.  
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Figure S1. IR spectra of n-TY-CN. 
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Figure S2. 1H-NMR spectrum of n-TY-CN in DMSO-d6. 
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Figure S3. 13C-NMR spectrum of n-TY-CN in DMSO-d6. 
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Figure S4. Mass of n-TY-CN. 
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Figure S5. IR spectra of n-TY-Co. 
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Figure S6. IR spectra of n-TY-Cu. 
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Figure S7. IR spectra of n-TY-Mn. 

 


