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ABSTRACT: With the industrial revolution 4.0, machine learning methods are widely used in all 

aspects of manufacturing to perform quality prediction, fault diagnosis, or maintenance. In the steel 

industry, it is important to precisely detect faults/defects in order to produce high-quality steel plates. 

However, determining the exact first-principal model between process parameters and mechanical 

properties is a challenging process. In addition, steel plate defects are detected through manual, costly, 

and less productive offline inspection in the traditional manufacturing process of steel. Therefore, it 

is a great necessity to enable the automatic detection of steel plate faults. To this end, this study 

explores the capabilities of the following three machine learning models Adaboost, Bagging, and 

Random Forest in detecting steel plate faults. The well-known steel plate failure dataset provided by 

Communication Sciences Research Centre Semeion was used in this study. The aim of many studies 

using this dataset is to correctly classify defects in steel plates using traditional machine learning 

models, ignoring the applicability of the developed models to real-world problems. Manufacturing is 

a dynamic process with constant adjustments and improvements. For this reason, it is necessary to 

establish a learning process that determines the best model based on the arrival of new information. 

Contrary to previous studies on the steel plate failure dataset, this article presents a systematic 

modelling approach that includes the normalization step in the data preparation stage to reduce the 

effects of outliers, the feature selection step in the dimension reduction stage to develop a machine 

learning model with fewer inputs, and hyperparameter optimization step in the model development 

stage to increase the accuracy of the machine learning model. The performances of the developed 

machine learning models were compared according to statistical metrics in terms of precision, recall, 

sensitivity, and accuracy. The results revealed that AdaBoost performed well on this dataset, 

achieving accuracy scores of 93.15% and 91.90% for the training and test datasets, respectively. 

Keywords: Machine Learning, Classification, Ensemble Methods, Fault Detection, Artificial 

Learning. 
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1. INTRODUCTION  

A product must be manufactured to meet the defined permissible upper and lower limits of each 

attribute and any deviation from these specified limits is considered a defect (Ozkat et al., 2017a; Liu 

et al., 2019; Kahveci et al., 2022). Without an effective monitoring and control strategy, today's 

complex manufacturing systems tend to produce faulty parts more frequently. These defects, defined 

by undesirable system dynamics, can lead to serious consequences such as a reduction in production, 

great economic losses, and unwanted downtimes (Ozkat et al., 2017b; Bektas et al., 2019; Gao et al., 

2020). Early detection of defects and fault diagnosis is an important task in manufacturing to enhance 

the quality of the product and optimize the cost. With the integration of computer technology into 

production systems with Industry 4.0, the human factor has been minimized at every stage of 

production and it has enabled production to take place faster, with low cost and with a low margin of 

error (Xu et al., 2018; Kurt, 2019; Alkan & Bullock, 2021). 

Steel is one of the most widely used materials in most engineering applications due to its 

strength, ductility, and recyclability (Lennox et al., 2000; Backman et al., 2019). One of the major 

challenges for the entire steel industry is the quality assurance of steel during manufacturing since 

steel goes through many different manufacturing processes from casting to drawing, pressing, to 

rolling (Widodo & Yang, 2007; Nkonyana et al., 2019). As a result, there are usually several kinds 

of defects on the steel plate that need to be localized and classified. 

Traditionally, statistical processing control (SPC) methods have been deployed for monitoring 

quality during production, but they cannot predict the actual values relevant to product quality or 

estimate when the failure will occur. Because of this situation, machine learning (ML) models have 

been applied in a wide range in the field of manufacturing during recent years to solve real-world 

classification problems (Bektas et al., 2018; Ceryan et al., 2021; Özkat et al., 2021). The classification 

aims to accurately assign the sample to one of the predefined classes. 

One issue regarding the steel quality control problem is the lack of large-scale, high-quality, 

industry-level, open-source datasets (Zhang et al., 2020). Due to the limited datasets, the well-known 

steel plate failure dataset has been used in many studies. The dataset is provided by the Semeion, 

Research Centre of Sciences of Communication, via Sersale 117, 00128, Rome, Italy (Buscema et 

al., 2010, Kaggle, 2017). The aim of many research works using this dataset is to correctly classify 

faults in steel plates employing the traditional ML models, neglecting the applicability of the 

developed ML models to real-world problems. With the integration of good and accurate models into 

manufacturing, defective steel plates can be identified as plates as early in the manufacturing process 

as possible, saving time and cost. However, manufacturing is a dynamic process, and constant 

adjustments and improvements are made. If the ML models cannot be updated with new data, they 

will quickly become obsolete and suffer a decline in accuracy. Therefore, it is necessary to establish 

artificial learning processes that determine the best model based on the arrival of new information.  

The learning process often includes four main stages: data preparation, dimension reduction, 

model development, and model selection. Dimension reduction deals with the elimination of non-

critical features without significant loss of information from the original dataset. This stage helps 

reduce computation time and develop a simpler structure in the machine learning model. Moreover, 

hyperparameter optimisation, which is one of the steps of the model development stage, is an 

important part of achieving a more accurate and updatable model. Regarding the studies using the 

steel plate fault dataset, the following ML models, namely: logistic regression (LR) (Fakhr and 
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Elsayad, 2012; Simić et al., 2014; Kharal, 2020; Gamal et al., 2021), support vector machine (SVM) 

(Simić et al., 2014; Tian et al., 2015; Nkonyana et al., 2019; Srivastava, 2019; Gamal et al., 2021; 

Tasar, 2022), k-nearest neighbour (kNN) (Srivastava, 2019; Gamal et al., 2021; Tasar, 2022), naive 

Bayes (NB) (Kazemi et al., 2018; Gamal et al., 2021), decision tree (DT) (Fakhr and Elsayad, 2012; 

Chen, 2018; Kazemi et al., 2018; Srivastava, 2019; Gamal et al., 2021; Tasar, 2022), random forest 

(RF) (Chen, 2018; Nkonyana et al., 2019; Srivastava, 2019; Kharal, 2020; Gamal et al., 2021; Tasar, 

2022), neural network (NN) (Fakhr and Elsayad, 2012; Simić et al., 2014; Zhao et al., 2015; Kazemi 

et al., 2018; Nkonyana et al., 2019; Gamal et al., 2021; Tasar, 2022) have developed to address the 

fault classification problem. However, among all these ML models, studies involving hyperparameter 

optimization are rarely addressed (Tian et al., 2015; Zhao et al., 2015; Nkonyana et al., 2019; Kharal, 

2020), while studies involving dimension reduction using feature selection step are not available. 

Instead, some studies have reduced the number of target classes (Zhao et al., 2015; Chen, 2018; 

Kazemi et al., 2018; Kharal, 2020; Gamal et al., 2021; Tasar, 2022). As a matter of fact, the 

description of the currently used dataset already states that the seventh target class is not unique. In 

addition, it is clearly stated in some studies that the data set is not divided into training and test data 

sets, and the success of the developed ML model is calculated over the entire data set (Srivastava, 

2019; Tasar, 2022). 

In contrast to the previous studies, this article provides a systematic modelling approach that 

includes the normalization step in the data preparation stage to reduce the effects of outliers, the 

feature selection step in the dimension reduction stage to develop an ML model with short 

computation time, and hyperparameter optimization step in the model development stage to increase 

the accuracy of the ML model. Furthermore, the ensemble machine learning model, which is a recent 

trend in the classification problems to overcome the individual drawbacks of each ML model (Yang 

et al., 2021; Pham et al., 2022; Xiong et al., 2022), was utilized to provide intelligent multi-class 

diagnostics for steel plates. The basic purpose of implementing ML models is to help operational 

decision-makers to organise effective and efficient manufacturing. The classification performances 

of the proposed models were computed using the following four statistical metrics: precision, recall, 

sensitivity, and accuracy score. 

The rest of the paper is organized as follows: Section 2 presents a brief overview of some of 

the studies conducted using the provided dataset. Section 3 introduces the methodology used in the 

presented study in detail. Section 4 provides the results and is followed by concluding remarks in 

Section 5. 

 

2. RELATED STUDIES ON THE STEEL PLATE FAULT DATASET 

Classification is the process of finding which classes that new data belong to in a given dataset. 

The steel plate fault diagnosis dataset has been widely studied in machine learning for automatic 

pattern recognition. In this regard, relevant literature is summarized below. 

Fakhr and Elsayad, (2012) employed a decision tree with boosting, a multi-perception neural 

network with pruning and logistic regression with step forward models, and tested their effectiveness 

using accuracy, specificity, and sensitivity. According to their results, the decision tree with boosting 

algorithm has achieved a remarkable performance with 97.25 and 98.09% accuracy on training and 

test sets. Similarly, Kazemi et al., (2018) studied decision tree, multi perception neural network, 

Bayesian network and ensemble random forest models. The data set is partitioned into 70% training 
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and 30% testing. It was indicated that the decision tree was superior to other models with reaching an 

accuracy score of 95.66 in both training and test. 

Simić et al., (2014) utilized a remarkable approach by hybridizing random forest and bagging 

algorithms, called as Treebagger, and compare this novel algorithm against support vector machine, 

logistic regression, and multi perception neural network classification algorithms. The dataset was 

divided into training and test by the ratio of 70:30 in percentage, respectively. It was demonstrated 

that the Treebagger outperformed the other models in both training and test. However, the time 

required to create the tree bagger model reached up to four minutes, which is the most time-

consuming task among others. A recent study conducted by Chen, (2018) reported that Adaboosting, 

another hybrid approach, could achieve 100% and 88.57% accuracy in the training and test set, 

respectively. In this study, ten-fold cross-validation was applied to each machine learning model, and 

other fault class was eliminated from the dataset in which the number of classes became 6.  

Another important aspect of machine learning methodology is hyperparameter optimization. It 

is possible to further improve the performance of the model by choosing an optimal combination of 

hyperparameters that minimizes a predefined loss function. For example, Tian et al., (2015) utilized 

genetic algorithm (GA), grid search (GS) and particle swarm optimization (PSO) optimization 

methods to obtain the optimum hyperparameters for the support vector machine classification model. 

In addition, the classification accuracy was improved by normalizing all features. The implementation 

of GS, GA, and PSO in SVM yielded accuracy scores of 94.6%, 95.2%, and 88% for training, and 

77.7%, 77.2%, and 78% for testing, respectively. Similarly, Zhao et al., (2015) integrated the local 

outlier factor (LOF) anomaly detection method with a back-propagation neural network to classify 

steel plate faults. Levenberg–Marquardt was employed to obtain optimal hyperparameters. As a 

result, the average training and test accuracy scores were 94.68% and 88.05%, respectively. 

Kharal, (2020) performed the classification of faults on steel surfaces by applying optimization. 

It was found that the features in this dataset were imbalanced and to handle this problem 

undersampling, oversampling and synthetic minority oversampling technique methods were 

employed to balance the dataset. The best classification performance was obtained from an optimized 

random forest with 10-fold cross validation. Gamal et al., (2021) utilized the most common 

classification machine learning algorithms namely, decision trees, k-nearest neighbour, random 

forest, support vector machine, naive Bayes, logistic regression, and multi-layer perceptron neural 

network. The dataset was divided in half (50:50%) as training and test sets, and 10-fold cross 

validation was applied to each machine learning model. It was demonstrated that the accuracy scores 

of the listed machine learning methods were 91.14%, 82.86%, 93.29%, 86%, 59%, 88.29% and 

73.86%, respectively. The lowest score was achieved using the naïve Bayes model, whereas the 

highest score was obtained using the random forest model. More interestingly, it was reported that 

the faults such as stains were easily classified, but other faults class could not be easily classified 

using any of these machine learning models. In addition, some faults such as Z scratch, and K scratch 

could be classified with less error depending on the performance of the machine learning. 

Srivastava, (2019) showed that the random forest algorithm using a 20-fold cross validation 

achieved 79.23 % accuracy with 0.203 root mean square error on contrary to the k-nearest neighbour, 

decision tree, support vector machine, and deep neural network. In a tremendously similar and the 

most recent study conducted by Tasar, (2022) investigated the performance of linear discriminant, k-

nearest neighbour, decision tree, support vector machine, random forest, and deep neural network 

machine learning model without applying data partitioning and feature selection. The accuracy score 

of each model was found as 90.136%, 91.7880%, 93.013%, 93.287%, 95.479%, and 96.986%, 
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respectively. The essential idea in machine learning is to test the performance of the developed model 

on a dataset completely independent of the data used during model development. In the presented, 

the data set was not divided into two as training and testing, and any feature selection method was 

not employed, but the cross-validation technique was applied for the developed models. In such a 

modelling method, it was thought that the models memorized the data set rather than learning. 

Therefore, the reliability of the obtained results is open to discussion.  

To sum up, Table 1 groups the listed publications in terms of the feature selection step in the 

dimension reduction stage and the hyperparameter optimization step in the model development stage 

to increase the accuracy of the ML model. 

 

Table 1. Comparison table for related studies on ML models for steel plate fault diagnosis 

Hyperparameters 

Optimization 

Feature 

Selection 

No Yes 

No 

Fakhr and Elsayad, 2012 

Simić et al., 2014 

Chen, 2018 

Kazemi et al., 2018 

Srivastava, 2019 

Gamal et al., 2021 

Tasar, 2022 

Tian et al., 2015 

Zhao et al., 2015 

Nkonyana et al., 2019 

Kharal, 2020 

Yes N/A Proposed in this study 

 

3. METHODOLOGY FOR MULTICLASS FAULT DIAGNOSIS IN STEEL PLATES  

The methodology flow used in the presented work is illustrated in Figure 1. The fishbone 

diagram consists of four main stages which are (i) data preparation, (ii) dimension reduction, (iii) 

model development (iv) model selection. The detailed information required for each stage is given in 

the following sections. 

 

 
Figure 1. The methodology flow used in this study 
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3.1 Dataset Description 

The dataset used in this study is a public dataset and it can be accessed through the online data 

science platform Kaggle (Kaggle, 2017). The dataset contains 1941 experiments. Each experiment 

has 27 independent features and one of 7 different types of classified steel surface defects, which are 

Dirtiness, Stains, Pastry, Z-Scratch, K-Scratch, Bumps, and Other Faults. The failure types and 

corresponding sample numbers are listed in Table 2, and detailed information on the 27 independent 

features is given in Table 3. 

 

Table 2. Types of faults and sample sizes 

Fault class Failure types Sample numbers 

1 Dirtiness 55 

2 Stains 72 

3 Pastry 158 

4 Z-Scratch 190 

5 K-Scratch 391 

6 Bumps 402 

7 Other Faults 673 

 

Table 3. Independent features of the faulty steel plates data set 

Number Feature Type Number Feature Type 

1 X Minimum Numerical 15 Edges Index Numerical 

2 X Maximum Numerical 16 Empty Index Numerical 

3 Y Minimum Numerical 17 Square Index Numerical 

4 Y Maximum Numerical 18 Outside X Index Numerical 

5 Pixels Areas Numerical 19 Edges X Index Numerical 

6 X Perimeter Numerical 20 Edges Y Index Numerical 

7 Y Perimeter Numerical 21 Outside Global Index Numerical 

8 Sum of Luminosity Numerical 22 Log of Areas Numerical 

9 Minimum of Luminosity Numerical 23 Log X Index Numerical 

10 Maximum of Luminosity Numerical 24 Log Y Index Numerical 

11 Length of Conveyer Numerical 25 Orientation Index Numerical 

12 Type of Steel A300 Categorical 26 Luminosity Index Numerical 

13 Type of Steel A400 Categorical 27 Sigmoid of Areas Numerical 

14 Steel Plate Thickness Numerical - - - 

 

3.2 Data Preparation 

3.2.1 Data split 

The most crucial item of data preparation in machine learning methodology, which should not 

be neglected, is the separation of data into training and test sets. Training data is utilized to learn the 

patterns in the data and develop the machine learning model. Testing data is employed to test the 

model on unseen data to validate the results across different models. The factor to be considered here 

is the separation rate. The training set should not only contain a large amount of data to enable 

learning, but also a small amount of data so that the pattern in the data is not memorized. For this 

purpose, the dataset has been randomly split into 80% training data and 20% test data. 

3.2.2 Normalization 

Another step that should be applied in the data preparation stage in order to improve the 

machine learning performance is normalization. The purpose of this step is to move the values of only 

the numerical data into a common scale, without distorting the differences in the value ranges of the 

numerical data. The Z-score normalization technique was applied in this study, each numerical feature 
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was centred and scaled by the corresponding weighted mean and standard deviation. The method of 

Z-score normalization is given in Equation 1. 

 

𝑥𝑖,𝑗
✳ =

𝑥𝑖,𝑗 − 𝜇𝑥,𝑖,𝑗

𝜎𝑥,𝑖,𝑗
 

(1) 

 

where i is the index of the feature, j is the index of the sample, 𝑥𝑖,𝑗 is the ith feature of the jth 

sample, 𝑥𝑖,𝑗
✳  is the ith normalized feature of the jth sample, 𝜇𝑥,𝑖,𝑗 is mean and 𝜎𝑥,𝑖,𝑗 is standard deviation 

of the ith feature of the jth sample. It is very important to emphasize that normalization was first 

applied to the training dataset. The mean and standard deviation of each feature obtained in the 

training dataset was utilized to normalize the test dataset. The reason behind this approach is that test 

data should be independent of the training data in terms of information content. 

3.3 Dimension Reduction 

3.3.1 Target class selection 

Traditionally, dimension reduction has been applied to features in machine learning, but in this 

study, it has been applied to both target classes and features. The reason for this is that target class 7 

(i.e., Other Faults), as stated in the dataset definition, is not a specific kind of fault but a combination 

of several faults that are different fault from 1 to 6. It is quite difficult to determine samples of the 7th 

failure class as samples belonging to this class do not share certain features, also it is difficult to find 

dominant features to train. In addition, some features in class 7 may have similar properties to features 

in other classes. There are 673 samples of Other Failures that are not clearly classified. For this reason, 

as in some studies in the literature (Tian et al., 2015; Kazemi et al., 2018; Gamal et al., 2021), class 

7 was excluded from the data set, as it would significantly affect the modelling. 

3.3.2 Feature selection 

It is not correct to use all the features in the model development stage. Since some features will 

cause errors and the developed model can diverge; hence, it is of great importance to detect and 

remove these features that are not relevant to the target class. Many methods are utilized to determine 

the features used in model development, among which the widely accepted method is Principal 

Component Analysis (PCA). Since it transforms high-dimensional data into low-dimensional data 

using the computationally simple linear algebra method, as it enables machine learning methods to 

converge faster when trained on the principal components rather than the original dataset. The main 

steps to be followed in PCA are standardization of the data, calculation of the covariance matrix and 

finding the eigenvalues and eigenvectors for the covariance matrix, respectively. While the 

eigenvector determines the principal component, the eigenvalue determines the magnitude 

corresponding to this principal component. Dimension reduction is performed by determining the 

eigenvectors corresponding to the eigenvalues with a magnitude above the pre-defined threshold 

value. 

3.4 Model Development 

Classification in machine learning is the problem of determining which class set a new 

observation belongs to, based on a training set containing examples of the known classes. Ensemble 

machine learning methods combine multiple ML models to obtain better predictive performance than 

could be obtained from any of the ML model alone. The final classification depends on the combined 

outputs of the individual models. The common ensemble classification techniques include boosting, 
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bagging and random forest. This section explains about different machine learning algorithms used 

in this study. All the proposed models were developed in the MATLAB R2022a environment. During 

model development, random seeds were used at training in hyperparameters optimization that 

performs reproducibility of models. 

3.4.1 Hyperparameters optimization 

Adaptive Boosting (Adaboost) is an ensemble model in which different weak classifiers are 

trained on the same training set and then these weak classifiers are combined to create a stronger 

classifier with a certain weight. This weak classifier can be any algorithm such as decision tree, and 

k near neighbour. In addition, the weight of a classifier is calculated according to the accuracy error 

that the model will make during the training phase. The boosting algorithm adopts an iterative 

approach which will tend to give more weight to misclassified samples in the hope that the next model 

will be more accurate. In this study, the weak classifier is selected as decision tree and three 

hyperparameters, maximum number of splits, number of learners and learning rate. These 

hyperparameters were varied in the range of 1-1014, 10-500, and 0-1, respectively. 

Bootstrap Aggregation (Bagging) is another ensemble model which aims to create a set of 

classifiers having the same importance unlike boosting. The bagging and boosting algorithms appear 

the same, but the way to train the base classifier is completely different. For instance, given a data set 

containing “n” samples, select randomly one point from the training dataset and repeat this selection 

“N” times without replacement, eventually resulting in a new dataset in which some samples may 

appear several times while others may never appear. With this process, different training datasets and 

therefore different classifiers are created. Since the training method of each base classifier is 

independent and identical, an equal weighted strategy is used to vote by the classifier. Each model 

will vote on the outcome of the prediction and the overall output will be the class that has received 

the most votes. In this study, the weak classifier is selected as decision tree and three hyperparameters, 

maximum number of splits, number of learners and number of predictors to sample. These 

hyperparameters were varied in the range of 1-1014, 10-500, and 1-15, respectively. 

The random forest model is an ensemble method that operates by building several decision trees 

trained on randomly sampled training data using the bootstrap sampling method. For each decision 

tree, a dataset is created by the bootstrap procedure. Constructing a large number of trees and 

aggregating them reduces the overfitting problem of a single tree and thus improves the generalization 

ability of the random forest. Two hyperparameters, minimum number of leaf sizes, and number of 

trees need to be optimized to obtain a good model. These hyperparameters were varied in the range 

of 1–500 and the minimum number of leaf sizes was chosen using the Bayesian method. 

3.4.2 Cross validation 

Cross validation is a method that ensures that the developed machine learning model is 

independent of the separation of the data set into training and test sets. Typically, the training dataset 

is divided into k parts. The machine learning model is trained on k−1 parts of the data, and the rest of 

the data is used for validating the model. This process is repeated k times to reduce the variance. The 

k-fold cross-validation method gets its name from this process. The results of each k-fold can then be 

averaged to produce a single result of the machine learning model. In the presented work, 10-fold 

cross-validation was applied to each developed model. 

3.5 Model Selection 

The developed machine learning models aim to determine the failure types that a steel plate 

may have using the selected features as inputs. Since it is a classification problem, the models 



Ozkat, E. C. JournalMM (2022), 3(2) 240-256 

 

248 

 

developed are evaluated using the following statistical metrics: precision, recall, sensitivity and 

accuracy. These metrics explain how well a target class is predicted or how bad if a prediction has 

missed the class. In addition, these metrics are defined using the confusion matrix. It has two 

dimensions matrix; the rows of the matrix represent samples of the actual classes and the columns 

represent the samples of the class predicted by the machine learning model. Generally, the confusion 

matrix is a result of the binary classification problem, which has only two classes to be classified, 

preferably one positive class and one negative class. However, the presented work is a multi-class 

classification problem that classifies samples into one of six classes, and no generalized formulae are 

provided for calculating the precision, recall, specificity, and overall accuracy of the model, having 

many classes to consider. Let us suppose that N, i and j represent the number of samples, the actual 

and predicted classes, respectively. An example of the multi-class confusion matrix is given in Table 

4. 

 

Table 4. An example of the multi-class confusion matrix 

              Predicted 

                  Classes 

Actual 

Classes 

Class 1 Class 2  Class j 

Class 1 N11 N12 ⋯ N1j 

Class 2 N21 N22 ⋯ N2j 

⋮ ⋮ ⋮ ⋱ ⋮ 

Class i Ni1 Ni2 ⋯ Nij 

 

The numbers of true positive (TP), true negative (TN), false positive (FP), and false negative 

(FP) for each class i are computed in Equations 2-5., respectively (Markoulidakis et al., 2021). In 

addition, the formulation of the following metrics used in this study, precision (P), recall (R), and 

specificity (S) for each class i and the accuracy score (A) are given in Equation 6-9., respectively 

(Markoulidakis et al., 2021). 

 

𝑇𝑃𝑖 = 𝑁𝑖,𝑖 (2) 

𝑇𝑁𝑖 =∑∑𝑁𝑗𝑘

𝑛

𝑘=1
𝑘≠𝑖

𝑛

𝑗=1
𝑗≠𝑖

 
(3) 

𝐹𝑃𝑖 =∑𝑁𝑗𝑖

𝑛

𝑗=1
𝑗≠𝑖

 
(4) 

𝐹𝑁𝑖 =∑𝑁𝑖𝑗

𝑛

𝑖=1
𝑖≠𝑗

 
(5) 

𝑃𝑖 =
𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑃𝑖
 (6) 

𝑅𝑖 =
𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑁𝑖
 (7) 
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𝑆𝑖 =
𝑇𝑁𝑖

𝑇𝑁𝑖 + 𝐹𝑃𝑖
 (8) 

𝐴 =
∑ 𝑇𝑃𝑖
𝑛
𝑖=1

∑ ∑ 𝑁𝑖𝑗
𝑛
𝑗=1

𝑛
𝑖=1

 (9) 

 

4. RESULTS AND DISCUSSION 

The quality and quantity of the dataset have a huge impact on the performance of machine 

learning models. In this regard, the features and target classes of the dataset were initially thoroughly 

examined. As stated in Table 2, the type of steel is a categorial feature so it is important to examine 

the errors that occur according to the steel type before data splitting. Figure 2 illustrates the radar plot 

of fault classes by steel type. Upon closer inspection, only one sample of K Scratch and Stains was 

found for type A300 steel. Additionally, Dirtiness is also infrequent for this type of steel. On the other 

hand, Z Scratch is a relatively rare class of failure for steel type A400. Therefore, these samples along 

with samples that contain other faults class were excluded from the data set in order to improve the 

performance of the machine learning methods before data splitting. 

 

 
Figure 2. Fault classes according to the steel type 

 

The dataset initially contains 1941 samples, after excluding samples with other faults class, 

along with samples with lesser fault classes when fault classes are classified according to the steel 

type, 1239 samples remained in the dataset. The dataset was randomly split into 80% training data 

(992 samples) and 20% test data (247 samples) before normalization. In the presented work, ‘Type 

of Steel’ and ‘Outside Global Index’ were considered as categorial features. The dimension reduction 

was conducted to the remaining features by ranking the metric and eliminating features that did not 

reach a certain score. In order to determine the most important feature influencing the target classes, 

PCA was conducted, and the importance score is presented in Figure. 3. It is evident that the elbow 

point is observed at ‘X Maximum’ feature which implies that the number of important features is 13, 
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and adding the two categorical features, the most important features obtained for modelling are 'Sum 

of Luminosity', 'X Minimum', 'Orientation Index', 'Minimum of Luminosity', 'Empty Index', 'Outside 

X Index', 'Y Minimum', 'Edges Y Index', 'Y Perimeter', 'Length of Conveyer', 'X Perimeter', 'X 

Maximum', ‘Type of Steel’ and ‘Outside Global Index’. 

 

 
Figure 3. Feature importance ranking for dimension reduction 

 

The optimum model was observed in the Adaboost model (i.e., ML1) with a learning rate of 

0.9851, number of learners was 311, and maximum number of splits was 59. Similarly, the values of 

optimal hyperparameters for the Bagging model (i.e., ML2) were 174 for the number of learners, 345 

for the maximum number of splits, and 15 for the number of predictors to sample. Moreover, the 

Random Forest model (i.e., ML3) performed best when the number of trees was 300, and the 

minimum number of leaf size was 1. The hyperparameters of each machine learning model were 

obtained during the training phase with 10-fold cross validation and, then, the trained models were 

utilized to predict the test set. Since the purpose of this study is to classify steel plate faults utilizing 

a machine learning model, it is important to determine the best models among the models developed. 

Three statistical metrics namely, precision, recall and specificity are introduced to access the 

performance of the models developed. The results of these metrics for the training and test datasets 

are given in Tables 4 and 5, respectively. Moreover, the results are given in percentages, which means 

that a value close to 100 represents a good correlation between actual and predicted classes. 

In brief, precision indicates the classifier’s certainty of correctly predicting a particular class. 

In other words, it is the ratio of the number of TP to the total positive prediction including TP and 

FP. Therefore, FP, which is the cost of the model, are represented as part of precision. Once the 

models are accessed based on the precision value, the model with the highest precision would be 

chosen as the final model. On the other hand, recall and specificity represent the number of correct 

positive (TP) and negative (TN) predictions out of the total true positive and negatives, respectively. 

They assess the usefulness of the model in a single class. In this regard, the results clearly confirm 

that Adaboost (i.e., ML1) is the most effective model in fault detection with respect to all the 
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performance measures. The second-best effective model for detecting the faults in steel plates is the 

Bagging (i.e., ML2) model.  

In Table 5, it can be observed that the highest precision is obtained using the Adaboost (i.e., 

ML1) model. With the ML1 model, a score of 100% was obtained in Dirtiness, K-Scratch and Z-

Scratch, fault classes, and all the classes predicted as positive were found to be positive. For Recall, 

the highest scores were obtained with the ML1 model in the Bumps and Dirtiness fault classes, with 

the Bagging (i.e., ML2) model in the K-Scratch and Pastry fault classes, and with the Random Forest 

(i.e., ML3) model in the Stains and Z-Scratch fault classes. Accordingly, it was determined that the 

values estimated as TP in the fault classes related to each model were estimated correctly at the 

highest level. For specificity, the highest value in the Pastry fault class was obtained with the ML3 

model, but the highest value in other fault classes was obtained with the ML1 model. Thus, it was 

determined that the values estimated as TN by the ML1 method were estimated correctly at the highest 

level. 

 

Table 5. Precision, Recall and Specificity results for each fault class obtained from the training dataset 

Fault Class 

Training dataset 

Precision (%) Recall (%) Specificity (%) 

ML1 ML2 ML3 ML1 ML2 ML3 ML1 ML2 ML3 

Bumps 87.826 87.021 91.447 94.099 91.615 86.335 93.731 93.433 96.119 

Dirtiness 100 93.939 82.927 89.189 83.784 91.892 100 99.791 99.267 

K-Scratch 100 98.722 95.652 98.397 99.038 98.718 100 99.412 97.941 

Pastry 79.487 78.992 74.194 73.228 74.016 72.441 97.225 97.11 96.301 

Stains 96.364 94.444 91.525 94.643 91.071 96.429 99.786 99.679 99.466 

Z-Scratch 100 97.761 95.775 97.826 94.928 98.551 100 99.649 99.297 

ML1: Adaboost, ML2: Bagging, ML3: Random Forest Ensemble models 

 

The values of the statistical metrics, precision, recall, and specificity of each model were 

computed using the test dataset and presented in Table 6. According to the presented results, in 

particular, the ML1 model has come to the fore, similar to the results obtained with the training set 

for the recall and specificity values, while the ML2 and ML3 models have been put forward for the 

precision value, and this situation is evident for the stain fault class. However, the average precision 

is the highest for the ML1 model. Dirtiness has the highest precision, recall and the specificity values 

for the ML1 model. To sum up, the Adaboost (i.e., ML1) model is the most suited for detecting these 

fault classes. 

 

Table 6. Precision, Recall and Specificity results for each fault class obtained from the test dataset 

Fault Class 

Test dataset 

Precision (%) Recall (%) Specificity (%) 

ML1 ML2 ML3 ML1 ML2 ML3 ML1 ML2 ML3 

Bumps 88.608 89.474 95.522 87.5 85 80 94.611 95.21 98.204 

Dirtiness 100 88.889 72.727 88.889 88.889 88.889 100 99.58 98.739 

K-Scratch 97.468 98.701 93.902 98.718 97.436 98.718 98.817 99.408 97.041 

Pastry 79.310 77.143 73.529 74.194 87.097 80.645 97.222 96.296 95.833 

Stains 93.750 100 100 100 100 100 99.569 100 100 

Z-Scratch 94.444 94.286 89.474 100 97.059 100 99.061 99.061 98.122 

ML1: Adaboost, ML2: Bagging, ML3: Random Forest Ensemble models 
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In the current problem precision and accuracy are the key metrics to compare the models. 

Generally, the accuracy score is a measure of how often the model predicts correctly. The Adaboost 

model provides accuracy scores of 93.15% and 91.90% for training and testing, respectively. 

Similarly, the Bagging model provides accuracy scores of 91.83% and 91.90% for training and 

testing, respectively. In the same way, the Random Forest model provides accuracy scores of 90.93% 

and 90.28% for training and testing, respectively. According to the test set, which is the unseen data 

set, the accuracy scores of Adaboost and Bagging are the same. Since the precision of Adaboost is 

better than other models for both training and test sets, it is found to be better to utilize the Adaboost 

model in the classification of faults. 

The multiclass confusion matrix for the steel plate failure classification derived using the 

Adaboost model for both the training and test datasets is illustrated in Figure 4. The results of the 

statistical metrics presented for the ML1 model given in Tables 5 and 6 were calculated using the 

values given in Figure 4. The results in Figure 4 are parallel to the results in Tables 5 and 6. 

 

 
Figure 4. Multiclass confusion matrix for steel plate fault classification obtained from a) training dataset, b) test dataset 

 

The performances of the developed models are compared with the related studies in the 

literature using the steel plate fault dataset in Table 7. The performances of the developed machine 

learning models were compared according to statistical metrics in terms of precision, recall, 

sensitivity and accuracy. However, in most of the studies, the majority of the aforesaid metrics are 

not given, instead only the accuracy score can be easily obtained. In some studies, the data set is also 

not divided into two as training and testing. Therefore, the values that cannot be found are marked as 

Not Given (NG). 
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Table 7. Comparison of the performance of the ML models with respect to related studies 

References 
ML 

Model 

Training Dataset Training Dataset 

Metrics Metrics 

A (%) P (%) R (%) S (%) A (%) P (%) R (%) S (%) 

Fakhr and Elsayad, (2012) 
DT 98.09 NG NG NG 97.25 NG NG NG 

NN 79.14 NG NG NG 74.79 NG NG NG 

Tian et al., (2015) 

GS-SVM 94.6 NG NG NG 77.7 NG NG NG 

GA-SVM 95.2 NG NG NG 77.2 NG NG NG 

PSO-SVM 88 NG NG NG 78.0 NG NG NG 

Zhao et al., (2015) NN 94.67 NG NG NG 88.05 NG NG NG 

Chen, (2018) 

DT 93.57 NG NG NG 85.43 NG NG NG 

RF 100 NG NG NG 90.29 NG NG NG 

Adaboost 100 NG NG NG 88.57 NG NG NG 

Bagging 96.30 NG NG NG 90.00 NG NG NG 

Srivastava, (2019) 

DT NG NG NG NG 76.04 NG NG NG 

RF NG NG NG NG 79.9 NG NG NG 

kNN NG NG NG NG 71.35 NG NG NG 

Adaboost NG NG NG NG 78.41 NG NG NG 

SVM NG NG NG NG 74.90 NG NG NG 

Nkonyana et al., (2019) 

SVM NG NG NG NG 73.6 NG NG NG 

NN NG NG NG NG 69.6 NG NG NG 

RF NG NG NG NG 77.8 NG NG NG 

Kharal, (2020) 
LR 89.13 NG NG NG 70.56 NG NG NG 

RF 94.18 NG NG NG 91.25 NG NG NG 

Gamal et al., (2021) 

DT NG NG NG NG 91.14 91.29 NG 91.14 

RF NG NG NG NG 91.29 91.86 NG 91.29 

SVM NG NG NG NG 86.00 74.57 NG 86.00 

LR NG NG NG NG 88.29 86.71 NG 88.29 

Tasar (2022) 

kNN 91.78 86.00 87.15 87.05 NG NG NG NG 

SVM 93.28 88.02 89.28 88.44 NG NG NG NG 

DT 93.01 88.47 89.30 88.82 NG NG NG NG 

RF 95.47 92.09 93.17 92.37 NG NG NG NG 

NN 96.98 94.75 95.54 94.87 NG NG NG NG 

This study 

Adaboost 93.15 93.95 91.23 98.46 91.90 92.26 91.55 98.21 

Bagging 91.83 91.81 89.08 98.18 91.90 91.42 92.58 98.26 

RF 90.93 88.59 90.73 98.07 90.28 87.53 91.38 97.99 
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5. CONCLUSION  

This article presents a comparative study of ensemble machine learning models such as 

Adaboost, Bagging, and Random Forest for multiclass fault classification of steel plates. The 

classification performance of the proposed models is presented using statistical metrics precision, 

recall, sensitivity and accuracy. The dataset provided in this study contains 27 independent features 

and 7 different failure classes. The dimension reduction method PCA was applied before training 

machine learning models. It is found that removing 12 insignificant features improves the 

performance of models. In addition, the other failure class, which was one of the failure classes, was 

excluded from the dataset since it was not a specific kind of failure class, but it was a combination of 

several classes. In conclusion, it can be said that the innovations and main contributions of this article 

are two-folds. First, this work discusses existing ML models using a steel plate failure dataset, and 

then, this work provides a comprehensive modelling approach to construct a computationally cheaper 

and more accurate ML model by applying the feature selection and hyperparameter optimization 

steps. Thus, it is thought that the developed model can more accurately adapt to sudden changes 

during production by determining the best model based on new information. Furthermore, in contrast 

to the previous studies, this article provides a systematic modelling approach that includes the 

normalization step in the data preparation stage to reduce the effects of outliers, the feature selection 

step in the dimension reduction stage to develop an ML model with a short computation time, and 

hyperparameter optimization step in the model development stage to increase the accuracy of the ML 

model. As the basic conclusion, this work determines that the Adaboost model is the most suitable 

model for fault detection problems. It can achieve high accuracy compared with the Bagging and 

Random Forest models. The Adaboost model achieves accuracy scores of 93.15% and 91.90% for 

training and test datasets, respectively. The second-best model is the Bagging model, which shows 

accuracy scores of 91.83% and 91.90% for training and test datasets, respectively. In conclusion, this 

study shows that ensemble machine learning models have the ability to accurately classify faults that 

occur during manufacturing, and they can replace manual inspection in decision support systems 

despite potential problems in practice. 
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9. NOMENCLATURE 

A accuracy score NB naive Bayes 

DT decision tree NN neural network 

FN false negative P precision 

FP false positive PCA principal component analysis 

GA genetic algorithm PSO particle swarm optimization 

GS grid search R recall 

i the index of actual class RF random forest 

j the index of predicted class RMSE root mean square error 

kNN k-nearest neighbour S specificity 

LOF local outlier factor SPC statistical processing control 

LR logistic regression SVM support vector machine 

ML machine learning TN true negative 

N number of sample TP true positive 
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