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Abstract

In this study, we investigate the transmission dynamics of Hand-Foot-Mouth disease (HFMD) using a differential
equation system with random parameters. We transform the parameters of the existing deterministic model into random
variables with Normal and Laplace distributions. Using the results from the simulations of the random model, we analyze
the changes in the compartments of the total population. The random model, unlike the deterministic system, enables the
analysis of the variations in the transmission dynamics of the disease. Finally, the randomness of the system is interpreted
through the comparison of the results from the deterministic and random models.
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Bu ¢alismada, El-Ayak-Agiz Hastaligimin yayilim dinamikleri bir diferansiyel denklem sistemi ve rastgele parametreler
kullanarak incelenmektedir. Var olan deterministik modelin parametreleri Normal dagilim ve Laplace dagilimina sahip
rastgele degiskenler haline getirilmektedir. Rastgele modelin simiilasyonlarindan elde edilen sonuglarla toplam niifusun
kompartmanlarindaki degisimler analiz edilmektedir. Rastgele model, deterministik sistemin aksine, hastaligin yayilim
dinamiklerindeki varyasyonlarin analizine imkan saglamaktadir. Son olarak, sistemin rastgele yapisi deterministik ve
rastgele sonuclarin karsilastiriimasi ile yorumlanmaktadir.
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1. Introduction
1. Giris

Compartmental models date back to the pioneering
study of W. O. Kermack and A. G. McKendrick in
1927. The SIR model divides the population into
three compartments, namely Susceptible, Infected
and Recovered elements and monitors the course of
the disease through the changes in these
compartments. Diseases such as Hepatitis C, Ebola
and etc. have been modeled through SIR-based
models containing additional compartments and
parameters (Merdan et al., 2017; Merdan et al.,
2018). One of the diseases that have been modeled
using compartmental models is the Hand-Foot-
Mouth disease (HFMD).

Hand-Foot-Mouth disease is an infectious disease
that is often seen in children. However, adults can
also be affected from the disease. Although the
disease is mild in most cases, severe symptoms
may occur in some cases (World Health
Organization, n.d.). Hence, the disease has been
studied in detail by researchers, including
mathematical modeling studies. Some of the recent
modeling studies on HFMD can be listed as
follows. Chen et al. have modeled the
transmissibility of the disease by using a SIR-based
dynamic model and data from China (Chen et al.,
2019). Phonchan and Naowarat have made a
sensitivity analysis in a SEIQR type model
(Phonchan and Naowarat, 2019). Luo et al. have
used the SIR model to analyze the interaction of
main pathogens that cause HFMD (Luo et al.,
2020). Dai et al. have analyzed the spread of the
disease in Wenzhou, China using a SEIQRN type
model (Dai et al., 2019). Liao et al. have analyzed
the spread of the disease between genders with SIR
type models for the men and women populations
(Liao et al., 2019). Huang et al. have investigated
the seasonality of the disease transmission for
HFMD using a SEIAR type model (Huang et al.,
2019). Chadsuthi and Wichapeng have analyzed
the transmission in contaminated environments in
Bangkok, Thailand (Chadsuthi and Wichapeng,
2018). Tan and Cao have used a SEIVT type
compartmental model to analyze the transmission
dynamics of HFMD (Tan and Cao, 2018). Li et al.
have used a SEILR type model to investigate the
transmission of the disease in mainland China (Li
et al., 2019). Pongsumpun and Wongvanich have
used SEIR type models for children and grown-ups
to model the disease transmission in Thailand
(Pongsumpun and Wongvanich, 2018). Shi and Lu
have used SEIIRW type model with fractional
derivatives to analyze the disease spread (Shi and
Lu, 2020). Thus, it is seen that most of the recent

models on the transmission of HFMD are SIR and
SEIR based compartmental models. Modifications
of the SIR model like SEIR model, which contains
an extra compartment for exposed individuals, are
frequently used modeling various disease
transmission dynamics.

In this study, we will use a SEIVT-type
compartmental model given by Tan and Cao to
analyze the transmission dynamics of HFMD under
random effects (Tan and Cao, 2018). The original
study is a deterministic study. The system is a
SEIR-type based compartmental model with an
additional compartment for vaccinated individuals.
In our study, we transform the parameters of the
deterministic model into random variables to
analyze the random transmission dynamics of
HFMD. The deterministic model assumes that the
parameters are constant quantities, whereas the
disease dynamics represented with the parameters
can be random in nature. Hence, we will use a
random differential equation system to represent
this randomness. The motivation of this study is the
previous literature on random modeling of several
diseases (Merdan et al., 2017; Merdan et al., 2018).
Laplace and Normal (Gauss) distributions will be
used for the distributions of the random parameters.
These two distributions have similar properties,
such as being continuous and symmetrical around
the mean. The comparison of results from these
two distributions and the deterministic case will
provide useful insights into the random dynamics
of HFMD transmission.

2. The deterministic model of HFMD
transmission

2. El Ayak Agiz  hastaligmmin  yayiliminin
deterministik modeli

The compartmental model given by Tan and Cao in
2018 consists of five compartments that divide the
total population N(t) (Tan and Cao, 2018).

dz_if) = (1 =p)b = BSOI() — (u+ w)S) +
7V (t) + n,T(t),

L = pS(OI) — (1 + E(D), (M

d;_f) =aE(t)— (u+d+p)I),

d‘;_(tt) =pb—(u+w+n)V(0),

O — y1(t) — (u+ w + )T,
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Here, S(t) denotes the susceptible population, E (t)
denotes the exposed population, I(t) denotes the
total infected population, V(t) denotes the
vaccinated population and T(t) denotes the
recovered population. t is the time variable which
denotes the number of days. The deterministic

differential equation system (1) shows the changes
in the compartments S,E,[,V,T in time. The
parameters of the equation system, their
descriptions and numerical values are given in
Table 1.

Table 1. The parameters of (1) along with their descriptions and numerical values
Tablo 1. (1) modelinin parametreleri, tamimlart ve sayisal degerleri

Parameter Description Value
b birth rate 2
P vaccine rate 0.5
B transmission coefficient 0.04
U natural death rate 0.0017
a progression from latent to infectious 1.75
d disease induced death rate 0.0034
y treatment rate 0.4
w removal rate of population 0.125
M loss of immunity rate of vaccinated 0.5
1, loss of immunity rate of recovered 0.2

The initial values of system (1) are given as
(5(0),E(0),1(0),V(0), T(0)) =

(2,0.7,0.2,0.1,1) x 103. This set of initial values
simulates a population of 2000 susceptible, 700
exposed, 200 infected, 100 vaccinated and 1000
recovered people. The numerical values of the
parameters and the initial values have been
obtained from the referred study (Tan and Cao,
2018).

3. Random models
3. Rastgele modeller

The deterministic model (1) will be transformed
into a system of random differential equations
through the use of random parameters with Normal
and Laplace distributions. The random parameters
with Normal distribution are introduced as follows

b*=b+51Z, p'=p+53Z,, =L +53Z;3, W =pu+s,Z, 0" =w+s5Zs,

2

M =M1 +SeZe, Nz =M+ 5727, " =a+sgZy, d"=d+s9Zy, V" =V + S10Z10,

where  b,p, B, U, w,N1,M2,a,d,y  are  the
deterministic values of the parameters given in
Table 1, s;,i = 1,10 are the standard deviations of
the random parameters and Z;i= 1,10 are
independent standard Normally distributed random
variables. The standard deviations of the random

as@e)
dac

parameters are assumed to be 5% of their
deterministic values for this study. Hence, if the
random variables (2) are implemented in the
system (1), we obtain the first random model with
Normally distributed random effects.

(1-(0.5+0.025Z,))(2 + 0.1Z,) — (0.04 + 0.002Z5)S(0)I(t) — ((0.0017 + 0.000085Z,) + (0.125 +

0.00625Z5))S(t) + (0.5 + 0.025Z5)V (£) + (0.2 + 0.01Z,)T(t),

dE(t)
dat

art)
dac

avt) _
dac

ar(t) _
dc

202

3)

(0.04 + 0.002Z)S(£)I(t) — ((0.0017 + 0.000085Z,) + (1.75 + 0.0875Z5))E(t),
(1.75 + 0.0875Z5)E(¢) — ((0.0017 + 0.000085Z,) + (0.0034 + 0.00017Z,) + (0.4 + 0.02Z,,))I(¢),
(0.5 + 0.025Z,)(2 + 0.1Z,) — ((0.0017 + 0.000085Z,) + (0.125 + 0.00625Z5) + (0.5 + 0.025Z,))V (t),

(0.4 +0.02Z,)1(t) — ((0.0017 + 0.000085Z,) + (0.125 + 0.00625Z5) + (0.2 + 0.01Z,))T(¢).
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In order to obtain a realistic comparison of the
cases with Normal and Laplacian random effects,
we need to calibrate the Laplacian parameters so
that both cases have similar expected values and
standard distributions. Firstly, we give the
probability density functions of these distributions
as an introduction. A random variable X has
Normal (Gaussian) distribution if it has the
probability density function

f(x) = —=exp {—l(x;g)z},x € R. 4)

o2 2

In this case, the random variable has the expected
value E(X) = u and the variance Var(X) = o2.
Standard normal distribution is a special case of
Normal distribution where E(X)=0 and
Var(X) = 1. Similarly, a random variable X has
Laplace distribution if it has the probability density
function (PDF) (Forbes et al, 2011)

|x—al

f(x)=%exp{— > },xE]R. 5)

In the case for Laplace distribution, the random
variable has the expected value E(X) = a and the
variance Var(X) = 2b%. The standard Laplace

distribution is a special case of Laplace distribution
where E(X) = 0 and Var(X) = 2. The standard
cases of the probability density functions (4) and
(5) have been plotted below for a visual
comparison (Figure 1).
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Figure 1. PDF for standard Laplace and standard
normal distributions

Sekil 1. Standart Laplace ve standart Normal
dagilimlarin olasilik yogunluk fonksiyonlar

The random parameters with Laplace distribution are introduced as follows

b** = b + tlLl’ p** =D + tsz, ﬁ** = ﬁ + t3L3, M** =u + t4L4, (l)** =w+ t5L5, (6)

nt =M +tele, N =1yt t7Ly, @ =a+tglg, d =d+tolg, ¥ =V + t19L10,

where b,p, B, U, w,M1,M2,a,d,y are again the
deterministic values of the parameters whereas
t;,;i = 1,10 are the standard deviations of the
random parameters and L;i=1,10 are
independent standard Laplacian random variables.
The standard deviations of the parameters

b**’ p**,ﬁ**’ #**, w**’ n;*,n;*’ a**, d**’ y** are
introduced as follows so that they have the same
standard deviation as

*

b*,p*, B, u*, w1, my, 0, dY,y

t; =-=,i =1,10. (7)

Using these t;, the random model with Laplacian random effects are obtained as follows:

dt 200 200

5v2

0.0017L4) +(0.125 + 22 x 0.125L5)>S(t) + (0.5 +

200

dE(t) _ 5v2
at

art) _ 5v2
at

5v2

22 X 0.4L10) ) 1),

O <1 —(05+22 O.5L2)> (2422 x2L,) - (0.04 + 22 x 0.04L5)S(D)I(2) <(o.0017 452y

22 05LV(D) + (0.2 + 22 x 0.2L,)T(0),

5v2
(0.04 + == x 0.04L3)S (I (t) — ((0.0017 +-- % 0.0017L,) + (175 + 2= X 1.75L8)) E(b),

200

5v2
200

5v2

5v2

(1.75 + 22 X 1.75Lg)E(t) — ((0.0017 + 222 % 0.0017Ls) + (0.0034 + 2= x 0.0034Lo) + (0.4 +

®)
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av(e) _ 5v2 5v2
at 200 20
05 +22x 05L9) ) V(®),
ar(t) 5v2
dt
5v2
N2 0.2L7)> T(b).

4. Simulation results
4. Simiilasyon sonuglar

The deterministic model (1) has been simulated
using the parameter values given in Table 1 and the
initial conditions (S(0), E(0),1(0),V(0),T(0)) =
(2,0.7,0.2,0.1,1) x 103. The results are shown in
the figure below (Figure 2).

2500
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Figure 2. Deterministic results for model (1)
Sekil 2. (1) modelinin deterministik sonuglari

The results suggest that the number of susceptible
people will assume the minimum value 3.404 at
t = 0.95 while the maximum value 2000 will be
obtained at t = 0. The number of exposed people
will vary between the minimum value 67.71
obtained at t = 20 and the maximum value 2097
obtained at t = 0.17. The number of infected
people will obtain the minimum value 200 at t =
0 and the maximum value 1987 at t = 1.24. The
number of vaccinated people will obtain the
minimum value 1.596 at t = 20 and the maximum
value 100 at ¢t =0. Lastly, the number of

0 = (04 + 22X 0.4L10) 1(2) - <(o.0017 + % x 0.0017Ly ) + (0125 + 2 x 0.125Lg ) + (02 +

204

5v2 5v2

(05 + 22X 0.5L,)(2 + o= X 2L;) — ((0.0017 + 222 % 0.0017Ly) + (0125 + 232 X 0.125Ls) +

5v2

recovered people will assume the minimum value
564.4 at t = 20 and the maximum value 1690 at
t = 3.58.

4.1. Simulation results for Normal parameters
4.1. Normal dagilima sahip parametreler igin
simiilasyon sonuglart

The random model (3) containing the random
parameters (2) with normal distribution has been
simulated 5 X 10* times in MATLAB and the
following numerical characteristics have been
obtained. The minimum and maximum values for
the expectations of the model (3) have been given
in the following table (Table 2). Additionally, the
graphs of the expectations have been given in the
figure below (Figure 3).

Table 2. The extremum values for the expectations
with Normal parameters

Tablo 2. Normal dagilima sahip parametrelerle
beklenen degerlerin ug¢ degerleri

Minimum (Time) Maximum (Time)

E(S(D) 3.414 (0.94) 2000 (0)
E(E(t)) 68.05 (20) 2094 (0.17)
E((t)) 200 (0) 1985 (1.28)
E(WV(t)) 1.597 (20) 100 (0)
E(T(0) 565.5 (20) 1688 (3.6)

The comparison between the deterministic results
given above and the extremum values for the
expected values given in Table 2 show the
similarity of the results for both cases. It is obvious
from this comparison that the random model (3)
with Normally distributed random effects 1is
perfectly capable of modeling the disease
transmission dynamics for Hand-Foot-Mouth
disease (HFMD).
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Figure 3. Expected values for model (3)
Sekil 3. (3) modeli icin beklenen degerler
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Figure 4. Coefficients of variation for model (3)
Sekil 4. (3) modeli i¢in degisim katsayilart

The results for the coefficients of variation are
given as below (Table 3 and Figure 4).

205
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Table 3. The minimum and maximum values for
the coefficients of variation

Tablo 3. Degisim katsayiart igcin minimum ve
maksimum degerler

Minimum (Time) Maximum (Time)

Note that the coefficient of variation is given as
100 x

(Standard Deviation)/(Expected Value). The
results for the confidence intervals of the
expectations are given below (Figure 5). Here,
three standard deviations are used to obtain the

CV(S(t)) 0 (0) 24.55 (0.24) confidence intervals and the dashed line shows the
CCII//(f ) g (g) 32;2 (gg) upper end of the confidence interval whereas the
CV((V((?))) 0 Eog L 1' 19 ((6 Oi) dash-dot lines are the lower ends of the interval.
CV (T (D) 0 (0 6 '693 (é 0) The extremum values within the confidence
intervals are given in the table below (Table 4).
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g - g 2000 ] E 2000
i) 4 y a8
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2 500 z % g
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Figure 5. Confidence intervals for the expectations of model (3)
Sekil 5. (3) modelinin beklenen degerleri icin giiven araliklart

Table 4. The extremum values for the expectations within confidence intervals
Tablo 4. Beklenen degerlerin giiven araliklart icindeki u¢ degerleri

Minimum (Time)

Maximum (Time)

E(S(t)) + 3std(S(t)) 2.722 (0.95) 2000 (0)

E(E(t)) + 3std(E(t)) 47.68 (20) 2156 (0.17)

E(I(t)) £ 3std(I(t)) 200 (0) 2099 (1.23)

E(V(t)) + 3std(V(t)) 1.205 (16.95) 100 (0)

E(T(t)) £ 3std(T(t)) 452 (20) 1831 (3.54)
4.2. Simulation results for Laplacian similar expected values and variances to the case
parameters with Normal parameters. The model has been

4.2. Laplace dagilimina sahip parametreler igin
simitilasyon sonuglar

The random model (8) contains Laplacian
parameters that have been calibrated to have

206

simulated in MATLAB 5 X 10% times. The
minimum and maximum values obtained for the
expected values of the compartments have been
given in Table 5.
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Table 5. The minimum and maximum values for
the expectations with Laplacian parameters

Tablo 5. Laplace dagilimina sahip parametrelerle
beklenen degerlerin  minimum ve maksimum
degerleri

Minimum (Time)  Maximum (Time)

It can be seen that the results for the extremum
values are obtained similarly to the results for the
case with Normal parameters. The similarity
between the results of the case with Laplacian and
Normal parameters can also be seen in the figure
below (Figure 6). The results show that the random
behaviors of the compartments with Laplacian

E(S(®)) 3.414 (0.93) 2000 (0) random effects are in correspondence to the
E(E(t)) 68.1 (20) 2094 (0.17) deterministic results as well.
E((t) 200 (0) 1985 (1.25)
EW () 1.598 (20) 100 (0)
E(T(t)) 565.9 (20) 1688 (3.5)
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Figure 6. Expected values for model (8)
Sekil 6. (8) modelinin beklenen degerleri
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Figure 7. Coefficients of variation for model (8)
Sekil 7. (8) modeli igin degisim katsayilar
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The minimum and maximum values for the
coefficients of variation (Figure 7) for the random
model with Laplacian parameters have been given
in the table below (Table 6).

Figure 7 and Table 6 shows that, just like the case

Table 6. The minimum and maximum values for
the coefficients of variation

Tablo 6. Degisim katsayilart igin minimum ve
maksimum degerler

Minimum (Time) Maximum (Time)

for expected values, similar results have been CV(s(t)) 0 (0) 26.12 (0.25)
obtained for the coefficients of variation. CV(E(D) 0(0) 9.987 (20)
CV{I(t)) 0 (0) 9.704 (20)
CVV(t)) 0 (0) 11.36 (6.09)
CV(T (1)) 0 (0) 6.721 (20)
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: STnRnmEan = |
0 0 B il wn 0 L I -
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20)
Time (~ Days) Time (~ Days) Time (~ Days)
100 2000
| 1800 27T
i ~
E B8 ERCUT s
2 s T amaiS ¥
§ E uoob §7 YONS
o 60f 3 i N, ~
g 2 i &
- ﬁ 1200 - "‘- N, .
= sk H o F R Y
£ 40| 1000 N, .
] ¥ ., ~.
= = ~, .
g - = soof \\ Ssa
600 \"*»-.,._
0 15 20 4000 ; lb 15 20
Time (~ Days) Time (~ Days}

Figure 8. Confidence intervals for the expectations of model (8)
Sekil 8. (8) modelinin beklenen degerleri icin giiven araliklart

Table 7. The extremum values for the expectations within confidence intervals
Tablo 7. Beklenen degerlerin giiven araliklart i¢indeki ug degerleri

Minimum (Time)

Maximum (Time)

E(S(t)) + 3std(S(t)) 2.718 (0.94) 2000 (0)
E(E(t)) + 3std(E(t)) 47.7 (20) 2156 (0.17)
E(I(t)) + 3std(I(t)) 200 (0) 2100 (1.22)
EWV(t)) + 3std(V(t)) 1.205 (17.9) 100 (0)
E(T(t)) + 3std(T(t)) 451.8 (20) 1831 (3.5)

The results for the confidence intervals of the
expectations for the case with Laplacian
parameters are given below (Figure 8). Extremum
values of the expectations within the confidence
intervals are given in the table below (Table 7).

The similarity can be observed for the cases with
Normal and Laplacian parameters here too.

208

4.3. Comparison of deterministic and random
cases

4.3.  Deterministik
karsilastiriimasi

ve rastgele durumlarin

Results for the deterministic case given in Figure 2,
the random case with Normal random effects given
in Figure 3 and Table 2, and the random case with
Laplacian random effects given in Figure 6 and
Table 5 can be investigated further to show that the
random models (3) and (8) are perfectly capable of
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modeling the transmission dynamics of HFMD.
Comparison of the deterministic extremum values
for the compartments and the extremum values for

Table 8. The extremum values for all cases
Tablo 8. Tiim durumlar icin u¢ degerler

the random expectations are given in the table
below (Table 8).

Minimum Maximum

Deterministic = Normal results Laplacian Deterministic Normal Laplacian

results (Time) (Time) results (Time) results (Time) results (Time) results (Time)
S(t) 3.404 (0.95) 3.414 (0.94) 3.414 (0.93) 2000 (0) 2000 (0) 2000 (0)
E(t) 67.71 (20) 68.05 (20) 68.1 (20) 2097 (0.17) 2094 (0.17) 2094 (0.17)
I1(t) 200 (0) 200 (0) 200 (0) 1987 (1.28) 1985 (1.28) 1985 (1.25)
V(t) 1.596 (20) 1.597 (20) 1.598 (20) 100 (0) 100 (0) 100 (0)
T(t) 564.4 (20) 565.5 (20) 565.9 (20) 1690 (3.58) 1688 (3.6) 1688 (3.5)

The behaviors of the compartments are obtained
similarly for all three cases with similar extremum
values as seen in the table above (Table 8). Note
that the random results are for the expectations.

Coefficients of variation (CV) show that the
compartment S(t) has the highest randomness with
a maximum CV of 26.12% for Laplacian
parameters and 24.55% for Normal parameters.
Note that the random parameters (2) and (6) have
5% CV because of their random definitions. This
is because the standard deviations of the random
parameters have been assigned a value that equals
to 5% of their deterministic values and hence their
expectations. The CV for the compartments E (t)
and /(t) obtain a maximum value of almost 10%
for both cases. The maximum value of the CV for
V(t) is obtained around 11%, whereas the
maximum CV for T (t) is obtained around 6.7% for
both cases.

The models (1), (3) and (8) show that the number
of susceptible people will decrease rapidly in the
beginning of the process and maintain a level close
to zero until the end of the process. The number of
exposed people gets its peak value in the beginning
of the process and decreases until the end.
Similarly, the number of infected and recovered
people increases in the beginning and start
decreasing once they have obtained their maximum
values. The number of vaccinated people decreases
through the process.

5. Conclusion
5. Sonug

In this study, a deterministic model of Hand-Foot-
Mouth disease (HFMD) transmission has been
analyzed under Normal and Laplacian random
effects. The random effects with Normal and
Laplacian distributions have been calibrated to
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obtain the same expected value and standard
deviation for the random parameters. This
approach enables an accurate comparison of the
results for the deterministic and random cases. The
comparison shows that the random models (3) and
(8) give expected values similar to the
deterministic results obtained from the model (1).
This means that the models under random effects
are capable of modeling the disease transmission
dynamics. In addition to the expected values, the
random models enable the analysis of other
numerical characteristics of the results. Results for
variations, standard deviations, coefficients of
variation and confidence intervals for expected
values enable the analysis of the changes in the
deterministic results. This analysis cannot be done
by using the deterministic model. Hence, the
random model offers much more than the random
model does. Note that this approach of obtaining
random models through the use of random effects
can be generalized to any compartmental model
used for analyzing various disease dynamics.
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