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H I G H L I G H T S

� Decision support systems that can predict the diagnosis of malignancy for pleural effusion will help physicians in patient management.
� Advances in computer-aided diagnostic analysis of CT images and obtaining a pre-diagnosis of pleural fluid may reduce the need for interventional procedures by
guiding physicians about which patients may have malignancy.
� Image-based decision support systems enable early diagnosis and treatment by saving cost and time in patient management.
A R T I C L E I N F O
*Corresponding author.
E-mail address: neslihan.ozcelik@erdogan.edu.tr

https://doi.org/10.1016/j.clinsp.2023.100210
Received 24 December 2022; Revised 1 April 2023; A

1807-5932/© 2023 HCFMUSP. Published by Elsevie
4.0/)
A B S T R A C T

Background: The pleura is a serous membrane that surrounds the lungs. The visceral surface secretes fluid into the
serous cavity and the parietal surface ensures a regular absorption of this fluid. If this balance is disturbed, fluid
accumulation occurs in the pleural space called “Pleural Effusion”. Today, accurate diagnosis of pleural diseases
is becoming more critical, as advances in treatment protocols have contributed positively to prognosis. Our aim is
to perform computer-aided numerical analysis of Computed Tomography (CT) images from patients showing
pleural effusion images on CT and to examine the prediction of malignant/benign distinction using deep learning
by comparing with the cytology results.
Methods: The authors classified 408 CT images from 64 patients whose etiology of pleural effusion was investi-
gated using the deep learning method. 378 of the images were used for the training of the system; 15 malignant
and 15 benign CT images, which were not included in the training group, were used as the test.
Results: Among the 30 test images evaluated in the system; 14 of 15 malignant patients and 13 of 15 benign patients
were estimated with correct diagnosis (PPD: 93.3%, NPD: 86.67%, Sensitivity: 87.5%, Specificity: 92.86%).
Conclusion: Advances in computer-aided diagnostic analysis of CT images and obtaining a pre-diagnosis of pleural
fluid may reduce the need for interventional procedures by guiding physicians about which patients may have
malignancies. Thus, it is cost and time-saving in patient management, allowing earlier diagnosis and treatment.
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Introduction

Pleural diseases and Pleural Effusion (PE) usually occur due to sec-
ondary causes affecting the pleura. Pneumonia, heart failure, pulmonary
embolism, and malignancies are the most common diseases that cause
effusion.1 Rarely, it may develop primarily due to local effects of the
pleura or mesothelioma, a primary malignant tumor. In general, PE
affects more than 0.3% of the world population in each year.2 The inci-
dence of pleural effusion is 3−5/1000 person-years in the literature.3 In
addition to this, 1.5 million new cases of PE are identified every year.
Moreover, almost 15% of all patients are diagnosed with Malignant
Pleural Effusion (MPE) as well.4 Patients with lung cancer as advanced
stage can be diagnosed with Pleural Effusion (PE).5 It is included lots of
etiologies classified as benign and malign.6 The two most common
causes of malignant pleural effusions were lung cancer (37%) and breast
cancer (16%).7 In Turkey, malignancies (23%−51%) are the leading
cause of effusions followed by pneumonia and tuberculosis.8 Literature
reviews have shown that mortality rates are high in effusions caused by
both malignant and benign etiologies.9

Computer-based decision support systems have recently been intro-
duced in the field of pleural diseases. Especially in the field of pathology,
computer-aided diagnosis systems have been established to detect
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malignant cancer cells in the cytopathology of pleural effusion and to elimi-
nate the interpretation difference between pathologists. High success has
been achieved in “object detection” studies with deep learning methods. In
this context, “core sensing” has become a very important field of study in
digital pathology.10 Studies in which CT images were evaluated using deep
learning methods for the diagnosis of tuberculosis pleurisy and malignant
pleural mesothelioma are available in the literature.[6,11] There are stud-
ies on the differentiation of malignant/benign and transudate/exudate on
CT (Hounsfield Unit) of pleural effusions,[11,12] but no study that classi-
fies effusions based on AI has been found in the literature.

This study aims to perform computer-aided numerical analysis of CT
images in patients with pleural effusion appearance on CT and to exam-
ine its prediction capacity in distinguishing malignant from benign by
comparing the quantitative analysis results of the pleural effusion
appearance with the cytology results.

Computer-based decision support systems

The use of computer-aided decision systems in health sciences has
developed considerably in recent years.13,14 Studies on this topic have
especially focused on the field of radiological image analysis.15 Big data
analysis using Artificial Intelligence (AI) and Machine Learning (ML)
based classification algorithms in medical science provides an infrastruc-
ture for computer-aided diagnosis and clinical decision support sys-
tems.16 AI has a growing impact on diagnosis systems with the use of
deep neural networks to diagnose different diseases, such as lesion/nod-
ules detection, image classification, and image segmentation by pattern
recognition.17 AI plays a crucial role in the identification of cancer
patients by the diagnosis of heterogeneous diseases with an accurate
prediction rate. Especially to differentiate between malignant pleural
effusion and benign pleural effusion the Deep Learning (DL) technique
can be used.6 DL is a part of the ML tools that provide high performance
in medical imaging, especially for the detection, identification, and seg-
mentation of complex lesions that emerged in image processing and rec-
ognition.18 Additionally, DL provides highly accurate intelligent
diagnosis through medical image analysis.19 Whereas computer-aided
detection algorithms provide diagnosis systems to assist radiologists by
interpreting medical images, DL can learn by extracting effective fea-
tures from the medical images to differentiate between diseases. As a
subfield of ML, DL-based diagnosis models have an increased perfor-
mance compared to computer-aided detection systems due to improved
representations of the lesion features. It helps to improve the additional
diagnosis criteria in the diagnosis process by obtaining effective unob-
servable data from the extracted features from the medical images quan-
titatively.20 DL consists of multiple layers in the optimization process for
learning the detected and/or extracted features of lesions/nodules on
the related images.21 Specifically, DL-based algorithms are trained with
CT image data for obtaining the characteristics and diagnostic criteria of
related diseases through the extracted/detected features from CT
images.22

Methodology

Diagnostic procedures

While investigating the etiology of pleural effusion, medical treat-
ment is primarily planned in patients with heart failure and minimal
pleural effusion, thoracentesis is performed at the initial stage in the
other group of patients. Biochemical and cytopathological analysis of
the fluid sample by thoracentesis is the major laboratory test to be per-
formed. The separation of exudate/transudate and differentiation of
malignant/benign through cytological examination can be made by ana-
lyzing the fluid obtained from the pleural space using diagnostic thora-
centesis. Light criteria are used to differentiate transudates from
exudates.23 MPEs constitute 42%−72% of exudative fluids.1,24 In cases
where thoracentesis is not sufficient for the diagnosis, advanced invasive
2

procedures, such as pleural biopsy/video-assisted thoracoscopic biopsy
are used in the pathological diagnosis of malignant diseases.

Imaging methods

Posterior-anterior chest radiography is the common technique used in
patients with fluid detection followed by ultrasonography, which provides
guidance for thoracentesis. Thoracic ultrasonography helps in characteriz-
ing pleural fluid and determining localization while sampling. However,
Computed Tomography (CT) is the most preferred method because it gives
more information about the nature of the effusion (tumor, if any) and the
spread of the disease. In addition to showing the amount and location of
the effusion, CT can also detect the presence of diseases such as pneumonia
and malignancy underlying the etiology. Moreover, it is very easy to detect
and characterize the lesions in CT when contrast material is used. How-
ever, imaging findings are not always successful in definitively distinguish-
ing MPEs, mesothelioma, and other diseases. Findings of CT examination
have moderate sensitivity and high specificity in distinguishing malign/
benign pleural effusion/lesions.25,26

Deep learning

Image processing has a crucial role in many medical applications
fields.27 Deep learning can be used in image processing, image analysis,
image classification, image segmentation, feature/object detection, and
image retrieval.28−30 Recently it has provided great success in the detec-
tion of nodule regions on medical images and classification of the lymph
nodes. Major advances have been provided in the analysis of the sono-
graphic features of nodules on digital medical images for the identifica-
tion of malignancy by using deep learning.31 The core aim of deep
learning is to teach computers how to recognize an ideal pattern when
giving these approaches a set of data.32

Image-guided decision support for pleural diseases

Pleural disease is becoming more frequent and complex requiring
specialist management. Diagnosing and managing the pleural disease
can be complex and challenging.6 Artificial Intelligence (AI) has been
widely used in the field of modern medicine and can help pathologists
make more accurate diagnoses.2 Additionally, AI in the medical field
has become a research hotpot and holds the promise to automatically
diagnose heterogeneous diseases with high accuracy.4 In recent years,
many diagnostic deep-learning approaches such as image classification,
disease detection and lesion location have been developed by using
chest radiographic images.33

One of the main issues in the differential diagnosis of pleural effusion
is distinguishing exudates from transudates. Determining the nature of
pleural effusion (exudate or transudate) allows for reducing the list of
potential pleural causes and indicates the direction for further diagnosis.
Another important clinical issue is the etiology of effusion − malignant
or benign − is crucial for PE management and prognosis. Combining
clinical data using deep learning can enable the development of a novel
model for distinguishing the etiology of pleural effusion.34

Therefore, developing a useful method that can identify MPE as early
as possible with precision is highly important.35 Accurate identification
of patients with a high probability of MPE is critical to deploy optimal
interventions and thus improving patients’ clinical outcomes. Hence, a
convenient method with a minimum invasion that can accurately iden-
tify malignancy from BPE as early as possible is highly desirable. There-
fore, it is aimed to explore the applicability of deep learning techniques
to distinguish MPE from BPE.4

Proposed method: diagnosis of pleural effusion with deep learning

This study aimed to identify malignant and benign samples from CT
images. The general framework of the proposed method is in Figure 1.



Fig. 1. Full size Chest CT image with pleural effusion (1a), region of interest for pleural effusion (1b), extracted feature of pleural effusion (1c).
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The texture patches of the PE images were cropped manually by MAT-
LAB (version 9.3.0.713579 [R2017b]). The evaluation process of all
cropped PE images was performed by Microsoft Azure Machine Learning
Studio-Deep Learning Tool (version 1.6.4.0, release status 3/31/2021)
with a license from Recep Tayyip Erdogan University.

The authors conducted this diagnostic study following STARD
guidelines.36

Patients

The present study is a retrospective, single-center study using file and
image records. Between September 2021 and May 2022, 64 adult
patients (> 18 years) patients who were followed up in the clinic with
the diagnosis of pleural effusion were included. CT images of the
patients were examined, and 408 images of various sections from each
patient were recorded in JPEG format. In the next process, the region of
interest for pleural effusion is determined and features extracted from
chest CT images (Fig. 1). Patient characteristics such as age, sex, weight,
height, etiology, and effusion side were collected for further analysis.

Data characteristics of patients

The cytology results of the thoracentesis fluid samples of the patients
were obtained from the file records and were recorded for malignant or
benign characteristics. The images obtained were classified by deep
learning method within the scope of AI. It used 378 images for the train-
ing of the system and different 15 malignant and 15 benign CT images
were randomly selected that were used as a test data set. It obtained the
Fig. 2. Framework of the deep learning based diagno
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prediction output for diagnosis as malign or benign of the tested images
(Fig. 2 ‒ Adapted from37).

These values obtained by analyzing the diagnostic prediction results
of the tested images were compared with the pathology results and the
obtained data were evaluated statistically. Diagnostic accuracy, positive
predictive value, and negative predictive values were calculated for the
computer-aided program to predict the malignant or benign characteris-
tics of the fluid samples.

Inclusion and exclusion criteria

Patients over 18 years of age who underwent CT with a diagnosis of
pleural effusion in the last 5 years were included. Patients with pleural
effusion but without thoracentesis indication or who could not undergo
thoracentesis due to a contraindication and patients who underwent
thoracentesis but did not have cytology examination of thoracentesis
fluid were not included in the study. The pathology results of three con-
secutive thoracenteses were recorded. Especially in cytology results
with benign results, three consecutive thoracenteses was determined as
an inclusion criterion.

Statistical analysis

SPSS 17.0 (IBM, Armonk, NY, United States) was used for statis-
tical analysis. Normally distributed data were reported as the mean
(±SD), and non-normally distributed data were expressed as the
median (interquartile range). The prediction percentages (malignant
or benign) of a diagnostic algorithm created with a computer-aided
stic system for pleural effusion (adapted from 37).



Table 2
Receiver operating characteristics diagnostic yields and statistical significan-
ces values.

95% Confidence Interval

Performance Metric Lower Bound Upper Bound

Sensitivity 0.88 0.617 0.995
Specificity 0.93 0.661 0.998
Positive Predictive Value 0.93 0.667 0.989
Negative Predictive Value 0.87 0.638 0.960
Diagnostic Accuracy 0.90 0.735 0.979
AUC 0.791 (p = 0.007)
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decision system were determined in the tested pleural effusion
tomography images. The rates of malignant and non-malignant and
benign and non-benign lesions in the malignant and benign effusion
tomography images were compared using the Chi-Square test. The
receiver operating characteristic curve was constructed to evaluate
the diagnostic performance of the computer-aided decision system.
Sensitivity, specificity, positive predictive value, negative predictive
value, positive likelihood ratio, negative likelihood ratio, and the
corresponding 95% Confidence Intervals (95% CIs) were estimated
with these cut-off values. A p-value < 0.05 was considered statisti-
cally significant.

Ethics committee approval

The ethics committee approval was obtained from Recep Tayyip
Erdogan University Clinical Research Ethics Committee (Ethics Commit-
tee Approval no: 2021/90).

Results

General characteristics of patients

The mean age of 64 patients (40M, 24F) included in the study was
68 years. The p-values between the training and test sets for age and sex
were 0.1307 and 0.3837, respectively, which are greater than 0.05 and
indicate a balanced distribution between the two sets (Table 1).

The authors used 378 of the 408 CT images obtained from these
patients for training the system, and another 30 CT images for testing
the computer system. These 30 images contain 15 malign and 15 benign
images for testing the computer system. The training and test sets
achieved a balance in most of the characteristics.

Datasets of the patients

Training Dataset images: 13 patients with lung adenocarcinoma, 5
patients with ovarian cancer metastasis, 3 patients with squamous cell
lung cancer, 3 patients with prostate cancer metastasis, 2 patients with
breast cancer metastasis, 2 patients with small cell lung cancer, 1 patient
with renal cell cancer metastasis, 14 patients with parapneumonic effu-
sion, 7 patients had heart failure, 2 patients had pleural effusion second-
ary to peritoneal fluid, and 1 patient secondary to tuberculosis.

Test Dataset images: The diagnoses of 15 malignant patients from the
patients in the data set used for the test; 7 patients had lung
Table 1
Demographic, radiological and biochemical characteristics of patients.

Malign (n = 30) Benign (n = 34) p-value

Mean Age (years) 70.7 ± 11.1 (46‒97) 66.4 ± 15.5 (20‒95) 0.13
Gender 0.38
Male, (n = 40) 16 24
Female, (n = 24) 14 10
Diagnostic Origins
of Pleural
Effusion

Adenocarcinoma (n=13) Parapneumonic effusion
(n = 19)

Squamous cell lung
cancer (n = 3)

Heart failure (n = 7)

Large cell neuroendo-
crine tumor (n = 1)

Secondary to peritoneal
fluid (n = 2)

Small cell lung cancer
(n = 2)

Tuberculosis (n = 1)

Ovarian cancer
metastasis (n = 5)

Hypoalbuminemia(n=2)

Prostate cancer
metastasis (n = 3)

Renal failure (n = 2)

Breast cancer metastasis
(n = 2)

Liver failure (n = 1)

Renal cell cancer
metastasis (n = 1)
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adenocarcinoma, 1 patient had small cell lung cancer, 1 patient had
large cell neuroendocrine tumor, and 1 patient had squamous cell carci-
noma. And 5 patients had metastatic pleural effusion. Patients with
metastases had ovarian cancer metastasis in 2 patients, breast cancer
metastasis in 2 patients, and renal cell carcinoma metastasis in 1 patient.
The diagnoses of 15 benign patients from the patients in the data set
used for the test: parapneumonic effusion in 5 patients, heart failure in 4
patients, hypoalbuminemia in 2 patients, renal failure in 2 patients, liver
failure in 1 patient, pleural effusion due to tuberculosis in 1 patient.

Performance evaluation for the proposed method

The diagnosis was correctly predicted in 14 of 15 malignant patients
and 13 of 15 benign patients among 30 test images evaluated by the sys-
tem that is represented as Receiver Operating Characteristics diagnostic
yields (PPV: 93.3%, NPV: 86.67%, Sensitivity: 87.5%, Specificity:
92.86%) and statistical significances values (Table 2; Figs. 3 and 4). The
diagnostic accuracy calculated by deep learning is 90%.

The model had an Area Under the receiver operating Characteristic
Curve (AUC) of 0.791 with a 95% Confidence Interval (95% CI) of 0.623
−0.959; p-value = 0.007 (Fig. 5).

Discussion

Pleural effusion is a condition that may arise from various diseases
and affect many people worldwide, but the exact incidence is unknown.
Although mortality risk is high in all pleural effusions including malig-
nant or benign, 30-day mortality has been reported as 37% and 1-year
mortality as 77% in MPEs.9 Therefore, rapid diagnosis of malignancy in
patients with pleural effusion is the most critical factor that determines
the treatment decision and survival of the patient. If a pleural effusion is
detected in a patient, a decision support program that can quickly pres-
ent a pre-diagnosis, whether malignant or benign, will be an application
that meets a great need in this field. Analysis of CT images with deep
learning in the present study predicted malignant effusions with a diag-
nostic accuracy of 90%.

Computer-based decision support systems are now used in many
health disciplines to assist physicians and continue to be investigated.
There are examples in literature for the usage areas of these applications
in pleural diseases and pleural effusions. Computer-aided diagnostic
approaches in this area have been studied in various fields since the
early 2000s. For example, there are studies using deep learning to auto-
matically detect pleural effusions and pneumothorax in the evaluation
of chest radiographs.38−41

Tuberculosis is another disease for which computer-based decision
support systems are used in the field of pleural diseases. Seixas et al. has
achieved over 90% diagnostic accuracy for tuberculosis diagnosis in
adult patients by using an artificial neural networks model containing
Human Immunodeficiency Virus positivity and pleural effusion labora-
tory results (smear, culture, adenosine deaminase, serology, and nucleic
acid amplification tests). ANN achieved greater diagnostic accuracy
than any individual test considered.42 Concerning mesothelioma, which
is the primary malignant tumor of the pleura, the focus has been on



Fig. 3. Testing of tomography images of malignant effusions and com-
parison of predicted diagnosis of malignancy and benign based on the
analysis.
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diagnosis and staging with computer-aided models.43 Early-stage pleural
mesothelioma is automatically detected by measuring the pleural thick-
ness on CT.44 Over time, with the increasing use and experience of AI
and DL methods in the field of health, deep convolutional neural net-
works have come into use for the segmentation of malignant pleural
mesothelioma in CT scans.11,21,45,46

Computer-based decision support systems are used in the field of
pathology to detect MPEs with “core detector” deep learning methods.
Win et al. has achieved 87.97% sensitivity, 99.40% specificity, and
98.70% accuracy rate by using an object detector for pleural effusion
cytology.47

In the literature, there are previous diagnostic predictive studies with
the analysis of Positron Emission Tomography (PET) images to differen-
tiate malignant and pleural effusion.48 It has been concluded that PET/
CT integrated imaging is a more reliable method in distinguishing
5

malignant effusions from benign pleural effusions compared with PET
imaging or CT imaging alone. They have also conducted a study to
develop an automated system that enables the interpretation of lung
ultrasound images. In this study, the data set consisting of 99,209 2D
images and 623 videos from 70 patients was interpreted by both the
deep learning system and the clinician, and comparable accuracy rates
of 92.4% and 91.1% were obtained in the test sets, respectively.49 How-
ever, to the best of our knowledge, no study has been found in the litera-
ture to distinguish between malignant and benign effusions in CT
images of the effusions using computer-aided diagnosis algorithms.

The decision-making process of Computer-Aided Diagnosis systems
should be explainable to users to obtain their trust in the model. It
should be highlighted how computer-based analysis of image features is
crucial as more transparent decision-making for diagnosis to final users
in healthcare applications.50 Computer-based decision support systems
Fig. 4. Testing of tomography images of benign effusions
and comparison of predicted diagnosis of malignancy and
benign based on the analysis.



Fig. 5. ROC plot with pointwise 95% confidence bounds
with the malign and benign pleural effusion CT images
train and test with computer-aided decision system.
AUC: 0.791; p-value = 0.007.
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as a subset of AI in medicine can become an integral part of the authors’
everyday practice. Therefore, medical specialists, clinical experts, physi-
cians, and medical practitioners should use AI and their role as a deci-
sion-support mechanism rather than a competitor.51 AI scientific
evidence in thoracic imaging has potential clinical utility, implementa-
tion and costs, training requirements and validation, its’ effect on the
training of new radiologists, post-implementation issues, and medico-
legal and ethical issues.52

Limitations of the present study and suggestions for further studies

The most significant limitation of the present study is that it is a sin-
gle-center and retrospective study. In prospective studies with larger
case series, higher diagnostic power, and accuracy can be obtained with
better-trained systems by using more test data.

Conclusion

Advances in computer-aided diagnostic analysis of CT images and
obtaining a pre-diagnosis of pleural fluid may reduce the need for inter-
ventional procedures by guiding physicians about which patients may
have malignancies. The prevalence of such studies and their availability
in daily practice can facilitate and accelerate the diagnosis of malignant
pleural effusion. Thus, cost and time savings in patient management are
achieved in patient management and it can be allowed early diagnosis
and treatment.
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