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Abstract 

The world aquaculture industry seeks sustainable production strategies to respond to the needs 

of the growing world population for valuable food. Biofloc technology (BFT) is accepted as a 

novel sustainable method that reduces the pollution load on receiving water resources with its 

zero-water-discharge approach, eliminates extra water treatment costs with its biological 

cycles, and supports the growth performance of reared animals and thereby reduces feed costs. 

However, each BFT system has its own set of difficulties and obstacles. This review focuses 

on the advantages and disadvantages of BFT systems in terms of economy, sociability and 

applicability. The BFT shows more effective results in the conversion of toxic nitrogenous 

compounds to nontoxic compounds compared with the technologies based on nitrification 

processes. In addition, the growth performance and health of the cultured animals are generally 

better in BFT systems than those in conventional rearing systems (continuous water flow). The 

risk of common diseases occurrence due to pathogenic microorganisms appears to be lower in 

BFT systems compared to conventional aquaculture. It is also noteworthy that the immune 

system, biochemical stress indicators and antioxidant activities of organisms held in BFT 

systems are positively affected. In BFT systems based on microbial activity, the high water 

temperature demanded by bacteria is a limiter for the system. Moreover, a higher 

aeration/energy requirement is the case in BFT to meet the oxygen demand of all organisms 

including fish, shrimp, heterotrophic bacteria, nematodes, rotifers and others inside. There is 

also another concern about the acceptability potential of the cultured organism in BFT systems 

for consumption. Finally, since the high temperature demand of the system will create high 

energy costs, it should be considered as another restriction that forces the application. 

Considering the advantages and disadvantages of BFT systems as sustainable aquaculture, this 

review provides a guide for future studies and full-scale implementations. 
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 In 2020, global fisheries and aquaculture production has become a huge industry with 

an economic value of $424 billion (FAO, 2022). The global seafood production is higher than 

poultry and cattle-raising today. However, it will not response to meet the demand of the world 

population (probably 9 billion people) in 2050. Although a great bounce, the increase in 
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production between 2016 and 2018 is considered insufficient, and global aquaculture 

production should double (Vasava et al., 2020). In other words, the aquaculture production 

target should be achieved to meet the food demand of the world, where 3 billion people today 

do not have access to healthy food at the required level. 

 

 Seafood production, an important food sector, is facilitated via fisheries and 

aquaculture. Interest in aquaculture is increasing (Khanjani and Sharifinia, 2020) because the 

amount of production via fisheries (considering natural stocks) is insufficient (Boyd et al., 2020; 

Dawood, 2021). Thus, fish must be raised at increasing levels but through sustainable methods 

(Frankic and Hershner, 2003). Otherwise, environmental and economic problems are likely to 

arise in the long run (Piedrahita, 2003; Sharifinia et al., 2018).  

 

 The decrease in access to clear water sources limits the sustainable increase of 

aquaculture production. Moreover, existing water quality problems due to climate change such 

as sudden temperature changes, algal blooms and decreases in water flow rates, also endanger 

the growth of the aquaculture sector. Given the decrease in access to water resources, many 

alternative methods of sustainable water use in aquaculture are being studied, including the 

reuse of treated water (Turcios and Papenbrock, 2014). The flow-through system, which 

involves single-water-use, is a production model that has been under debate in recent years 

from a point of sustainable water utilization considering that water quality changes are difficult 

to control in flow-through systems (Cullis et al., 2018). Recirculating aquaculture systems 

(RASs) use significantly less water than traditional flow-through farming systems (Martins et 

al., 2010). However, the RAS systems are not preferred by many farmers due to their high 

installation and operating costs as well as management issues (Badiola et al., 2012). 

 

 In addition to the water requirement in aquaculture, another important issue is to provide 

better feed conversion ratios and thus reduce the feed usage. Feed accounts for 60%–70% of 

total production costs (Gutierrez-Wing and Malone, 2006). Fishmeal and fish oil remain one of 

the major narrow pass against aquaculture growth since their production has been fairly limited 

for decades. About 18 million tons of 156 million tons in production from capture fisheries 

were destined to produce fish meal and fish oil in 2018 (FAO, 2020). Therefore, researchers 

have been studying alternative feed resources in recent years to reduce the dependence on 

fishmeal and oil and thus promote sustainable aquaculture production. 

 

 Sustainable aquaculture has three important goals. Firstly, producing more fish without 

increasing the use of basic natural resources, such as river and lake (Avnimelech, 2009). The 

two other goals are the development of sustainable aquaculture systems that will not damage 

the environment and the creation of systems that provide good cost/benefit ratios to support 

economic sustainability (Avnimelech, 2009; Naylor et al., 2000). In light of these goals, some 

improvements can be implemented socially, economically and environmentally in aquaculture 

via methods such as the use of alternative feed sources, use of RASs, treatment of discharge 

water and reduction of energy consumption (Boyd and McNevin, 2015). However, these 

approaches may still fail to fully meet the three goals. Biofloc technology (BFT) has potential 

to fulfil the majority of these requirements for aquaculture, given its low installation and 



 

 

operating costs, environmental friendliness, use in complex facilities and easy acceptance by 

farmers. 

  

The concepts of biofloc technology 

 BFT is a new emerging production system that creates protein-rich recycled feed in the 

form of biofloc based on heterotrophic bacteria growth in a suitable C/N ratio, which essentially 

removes ammonia from water (Avnimelech, 1999; Crab et al., 2012). An organic carbon source 

is introduced to the rearing unit to provide the necessary C/N ratio for the growth of 

heterotrophic bacteria. The cost and sustainability of the carbon source are crucial issues in BFT 

(Wilén et al., 2000). Different carbon sources, such as starch, tapioca, wheat, corn, rice, 

molasses, sucrose, dextrose and glycerol, have been used in BFT (Azim and Little, 2008; Crab 

et al., 2010; Emerenciano et al., 2012; Gaona et al., 2011; Megahed, 2010). The carbon source 

is added to water through various strategies in BFT: direct addition of the carbon source to the 

growing medium, the addition of vegetable flours to feed and adjustment of dietary C/N ratio 

(Azim and Little, 2008; Taw, 2010). The biofloc composition can differ depending on the 

carbon source used and the method of use. Hollender et al. (2002) and Oehmen et al. (2004) 

recorded changes in water quality and obtained different protein and amino acid values from 

the biofloc content when they used various carbon sources (Deng et al., 2018; Ekasari et al., 

2014; Wei et al., 2016). Goldman et al. (1987) reported 10:1 as the optimum C/N ratio for 

biofloc formation, but successful results have also been reported from other studies using ratios 

ranging between 10:1 and 20:1 (Panigrahi et al., 2018; Xu et al., 2016). The amounts of carbon 

source and feed for BFT should be calculated to maintain the desired C/N ratio. The C/N ratio 

is calculated by considering the amount of nitrogen and carbon entering the ambient from the 

feed needed by the organism in the culture medium. 

 

 BFT aims to facilitate aquaculture with zero or minimal water change by involving 

heterotrophic bacteria-driven aggregates including microalgae, zooplankton, algae, bacteria, 

protozoans and nematodes (De Schryver et al., 2008). The floc particles have sizes between 50–

2000 µm (De Schryver et al., 2008) and consist of approximately 10–1.000 million microbial 

cells per cubic centimeter (Kumar et al., 2018). Over time, due to the nitrogen uptake by 

organisms of increasing numbers and species, the amount of ammonium in the water, a toxic 

substance generated by the reared organism in the system as a waste of protein metabolism, 

naturally begins to decrease (Schneider et al., 2005), thereby reducing the ammonium 

concentration more rapidly than nitrification (Hargreaves, 2006). Thanks to this improvement 

in water quality, more intensive aquaculture farming can be applied without increasing the 

amount of water used (Krummenauer et al., 2011, 2014). That said, an important issue is the 

requirement of 24-hour continuous and strong aeration. Although the aeration system varies 

according to the species and the production system, they need to provide a homogeneous 

distribution of oxygen in the water, mix the water column and oxygenate the bottom sediment 

(Avnimelech, 2009). Generally, paddlewheel aerators, propeller aerators, vertical pump 

aerators and diffused air systems are used, but conventional aerators are preferred for ponds as 

they are inexpensive and easy to use (Lara et al., 2017 a). 

 



 

 

 With regard to BFT, the aims lie in improving water quality and producing protein-rich 

recycled feeds from dissolved and particle wastes of fish or shellfish being cultured 

(Avnimelech, 2009). In recent years, many studies have been carried out on alternative feed 

ingredients and additives that increase growth and strengthen the fish immune system (Dawood 

et al., 2018; de Sousa et al., 2019; Roques et al., 2020). The main target ingredient to reduce in 

fish diets is fish meal because the amount of it used is higher than the amount produced (Naylor 

et al., 2000). Terrestrial plant-based or animal based-feedstuffs as well as live feeds and trash 

fish are used by some businesses as alternatives to reduce feed costs (Lim et al., 2003), but none 

of these options appears to have the capability to completely replace pellet feed. Therefore, 

BFT appears to be an attractive and effective option, as the reuse of wastes and unconsumed 

feed with flocs will support the reduction of the feed conversion ratio (FCR). As a result of high 

crude protein in biofloc, which ranges between 38–50% on dry-matter basis (Azim and Little, 

2008; Webster and Lim, 2002), many studies on fish and shrimp (Avnimelech et al., 1994; 

Burford et al., 2004) have observed significant improvements in growth and feed utilization 

performance. Biofloc contains higher levels of protein than many pellet feeds, meaning that it 

can be used as a bonus food source, helping reduce dietary protein levels of the feed formulated 

for the cultured species.  

 

 The advantages of BFT 

 Water quality 

 Today, the importance of protecting the environment and eliminating potential wastes 

at their sources is acknowledged by all food production methods. For example, new and 

environmentally friendly systems are encouraged in the aquaculture sector. Since the 

acceptance of BFT as a sustainable production method in aquaculture, studies have generally 

focused on rearing water quality. In intensive aquaculture with zero water discharge, a high 

nutrient input encourages dense microorganism communities (Minaz and Kubilay, 2021). 

While some of the nitrogen, carbon, and phosphorus from the feeds are used by organisms 

cultured, the majority of them are released into the aquatic environment (Avnimelech and Ritvo, 

2003; Cao et al., 2007). Heterotrophic bacteria in the water incorporate organic pollutants into 

their biomass at the appropriate C/N ratios (Khanjani and Sharifinia, 2020; Schneider et al., 

2005). The quality of water  maintains at an appropriate level without water renewal, as the 

bacterial communities that develop with the dissolved organics are consumed by fish and 

crustacea (Kuhn et al., 2010; Xu et al., 2016).  

 

 Any deterioration in the water quality negatively affects the stress indicators in fish 

physiology such as serum Na+, Ca+2, and cortisol (Kurtoğlu et al., 2021). In this regard and 

especially for fish welfare, nitrite, nitrate, and ammonium concentrations in the rearing water 

should be routinely monitored (Timmonsand and Ebeling, 2010). In RASs, ammonium is 

particularly subjected to the nitrification process in the biological filtration unit because it is 

very toxic for the cultivated species (Badiola et al., 2012). However, BFT systems do not have 

biological filtration. Instead, in these systems, ammonium is directly consumed by 

heterotrophic bacteria at much faster rate (Hargreaves, 2006). According to the Illumina 

sequencing analysis of ammonia-oxidizing bacteria in the V3 region in a study by Deng et al. 



 

 

(2018), the diversity of bacterial community in biofloc systems is much wider than in clear 

water systems, which accelerates the reduction of ammonia concentrations. 

 

 In many studies on BFT systems, it has been emphasized that water quality was 

improved in terms of ammonia nitrogen and nitrite nitrogen levels (Dauda et al., 2018; Kaya et 

al., 2019 b; Khatoon et al., 2016; Kumar et al., 2018; Luo et al., 2019; Menaga et al., 2019; 

Panigrahi et al., 2018, 2019; Panigrahi et al., 2020 a; G. Wang et al., 2015). However, in a 

limited number of studies, water quality parameters in BFT systems were not affected at all 

compared to control groups based on flow-through systems (Chen et al., 2020; Fleckenstein et 

al., 2018; Pérez-Fuentes et al., 2016). According to a study by Mansour & Esteban (2017), 

although water quality parameters including ammonia and nitrite in BFT system did not exceed 

toxic values for Nile tilapia, they were adversely affected compared to the control group. 

Similarly, in a study with carp, TAN, nitrite and nitrate levels of water managed with BFT 

groups were observed to be higher than in the control group (Bakhshi et al., 2018). Higher 

values for TAN observed in the BFT groups in the first 30-day period compared with the clear 

water control treatment decreased significantly in the following period (Aalimahmoudi and 

Mohammadiazarm, 2019). In another study, it was observed that ammonium and nitrite 

nitrogen peaked between the first 30–45 days, and decreased below 2 mg L-1 and 0.5 mg L-1, 

respectively, in the following period (Zhang et al., 2016). In another study conducted with 

common carp at different stock densities, TAN concentrations increased in the control groups 

after the 18th day, a trend which was opposite to the concentrations in the BFT (Adineh et al., 

2019). 

 

 In BFT systems with different configurations, as a result of the presence of flocs and 

aquatic animals in the same tank, the number of bacteria will increase rapidly in parallel with 

the concentration of suspended solids (Liu et al., 2019). High aeration in BFT ponds or tanks is 

important due to needing for ammonia assimilation by heterotrophic bacteria,  oxygen 

consumption by respiration of blooming growth of bacteria, and consumption of cultured 

organisms, moreover the carbon source added to the tank will result in a decrease in the 

dissolved oxygen concentration (El-Hawarry et al., 2021; Gaona et al., 2016).  

 

 Another parameter that is monitored in BFT systems to control the water quality is the 

total suspended solids (TSS) concentration (Schveitzer et al., 2013). Time-dependent biofloc 

volumes increased in connection with the shrimp biomass (Harun et al., 2019). It is noteworthy 

that high TSS concentrations had a positive effect on BFT cultivation. Although it is not always 

the case in BFT systems, Gaona et al. (2016) observed that increasing TSS concentrations 

significantly increased nitrite nitrogen while decreasing ammonia and nitrate nitrogen. 

Heterotrophic bacteria have a much higher growth rate and ability to reduce ammonium 

concentration per unit substrate than nitrifying bacteria (Hargreaves, 2006). In another study, 

while there was no significant difference between increasing TSS concentrations and water 

quality values, the weight gain of gibel carp increased significantly when the TSS was 800 and 

1000 mg L-1 (Qiao et al., 2018). In contrast to these studies, in another study, weight gain and 

survival rate were significantly reduced when the TSS was 745 mg L-1 (Gaona et al., 2017). 



 

 

The findings summarized suggest that relationships among the water quality parameters are not 

always the same in BFT systems due to highly dynamic factors. 

  

Growth performance 

 The main purpose of aquaculture is to develop and implement strategies allowing a high 

growth performance. The increase in stocking density will increase the dependence on fish 

feeds (Liu et al., 2019). This situation will lead to a soar in cost for the producer and nutrient 

loads to the environment. In this context, the BFT system appears to be a great alternative 

production method as it keeps the wastes in the culture unit and transforms them into biofloc as 

supplemental food for cultured species or shellfish (Azim and Little, 2008). The presence of 

heterotrophic bacteria, which is the most important working mechanism of BFT, improves the 

weight gain and feed conversion rates of aquatic organisms (Bossier and Ekasari, 2017). Studies 

on carp culture have reported that their growth performance is positively affected by the 

application of BFT systems compared to control group (clear water system) (Liu et al., 2019; 

Qiao et al., 2018). BFT in genetically enhanced tilapia was investigated using diets (containing 

biofloc meals). Growth performance and productivity were higher in BFT groups than in the 

control group (Menaga et al., 2019). Similarly, in fish fed with feeds with different protein 

ratios, the net yield was higher in BFT tanks regardless of the protein ratio in the feed (Azim 

and Little, 2008). 

  

 Growth rate, FCR, and total productivity parameters in aquaculture are interrelated. 

Optimum levels of these parameters under suitable conditions can be achieved with the right 

feeding protocols. In BFT systems, feeding regimes can be improved by allowing the use of 

flocs as additional feed (Minaz and Kubilay, 2021). In a study, feeding frequency and feeding 

regimens were examined together in both BFT and control groups (Kaya et al., 2019 b). For 

each of the four scenarios tested, shrimp growth performance in BFT tanks was found to be 

significantly higher than in control groups (clear water system). A study aiming to examine 

biofloc as an additional nutrient source by gradually reducing the feeding rates found 

significantly higher growth performance in C. carpio was observed in the 100% fed control 

group and 75% fed BFT group (Najdegerami et al., 2016). This study clearly demonstrated the 

potential of biofloc as an additional nutrient source. The effects of feeds with gradually 

decreasing macroalgae and gradually increasing biofloc content in sea cucumber (Apostichopus 

japonicus) cultivation were investigated (Chen et al., 2018). The inclusions of biofloc at 20% 

or 30% in diets had a positive effect on the growth performance of the sea cucumber. Another 

study that examined BFT technology under a restricted feeding regimen reported that the SGR 

value was not adversely affected by reducing the feeding rate up to 85% (Aliabad et al., 2022). 

In addition, the BFT group showed a higher growth performance than the control group for all 

conditions. 

 

 Probiotic and symbiotic applications in aquaculture studies positively affect the growth 

performance and health conditions of aquatic organisms (Kathia et al., 2017; Sutthi et al., 2018; 

Yazıcı et al., 2015). In a study by Laice et al. (2021), two different BFT groups were compared 

in the BFT-based Nile tilapia culture: a probiotic BFT group and a symbiotic (commercial 

symbiotic additive) BFT group. In particular, the weight gains and SGRs were higher in the 



 

 

symbiotic group. Because, symbiotics are a combination of prebiotics and probiotics that 

positively affect the animal by stimulating health-promoting bacteria and thus improving 

production performance and animal welfare. In another study, the use of probiotics in water and 

feed in the BFT system significantly increased the growth performance and survival rates of L. 

vannamei  (Krummenauer et al., 2014). Putra et al. (2017) demonstrated that probiotic 

application at a 5-day interval was effective for the growth performance in a BFT-based African 

catfish culture. In contrast, some other studies that used probiotics showed no significant 

differences in growth performance in traditional BFT systems (Ferreira et al., 2015; Huerta-

Rábago et al., 2019), suggesting that this topic remains to be further studied in more detailed 

methods.  

 

 Disease resistance 

 The aquaculture environment for the cultured animals should be within the limits of 

health, immunity and resistance to pathogens. Especially in developing countries, there is an 

economic loss of approximately 50% in aquaculture due to fish diseases (Assefa and Abunna, 

2018). This loss negatively affects the producer directly and the consumer indirectly from an 

economic point of view. For sustainable production, it is necessary to focus on "prevention" 

instead of "treatment" of the diseases (Romero et al., 2012). For this purpose, BFT systems 

emerge as an innovative strategy, especially for disease resistance as can be deduced from the 

literature results summarized below. 

 

 Hostins et al. (2019) performed a challenge test against Vibrio parahaemolyticus with 

and without probiotic application using bacteria with different trophic levels in a BFT-based 

culture system. The challenge test was carried out in 3 different scenarios for Litopenaeus 

vannamei post-larvae; (1) replaced from BFT tank to BFT tank, (2) replaced from BFT tank to 

seawater tank, and (3) replaced randomly RAS to BFT tank. Transferred L. vannamei post-

larvae from the BFT tank to the seawater tank, the survival rates were observed to be quite low 

compared to the other two scenarios, showing the effectiveness of BFT on disease resistance. 

BFT may have an effect on the quorum sensing regulation of Vibrio, reducing its activity and 

virulence towards the host (Crab et al., 2010). On the other hand, the BFT formed by autotrophic 

bacteria without probiotics resulted in low survival rates. Another study investigated the 

survival rates of L. vannamei maintained in BFT and clear water systems against Vibrio harveyi 

(Aguilera-Rivera et al., 2019). As a result of 10-day exposure, the survival rate of shrimp in the 

clear water group was observed to be lower than those in BFT. In another study, it was reported 

that the best survival rate for O. niloticus exposed to V. harveyi for 14 days was seen in fish 

raised by the BFT with stock densities of 166 and 333 individual/m3 (Liu et al., 2018). In a 

study on gibel carp, the BFT rearing system showed a higher survival rate when challenged 

with Cyprinid herpesvirus 2 compared to the control group (Qiao et al., 2018). In a study, it 

was observed that the survival rate of Nile tilapia larvae obtained from the broodstock fish 

grown in the BFT system was quite high compared with the larvae from broodstocks grown in 

the control group (clear water system) when exposed to Streptococcus agalactiae (Ekasari et 

al., 2015). African catfish reared in the BFT systems with C/N ratio of 15 or 20 had significantly 

higher survival rates against Aeromonas hydrophila than those in the control group (Dauda et 

al., 2018).  



 

 

 

 Fish diseases are the most critical narrow pass in the aquaculture industry. Therefore, 

every development in the fish diseases will make more comfortable to aquaculture facilities.  

Because the losses caused by fish diseases in aquaculture are considered to be at the highest 

level. We supported that BFT can play a major role for decreasing of mortality against pathogen 

microorganisms. 

 

 Enzyme activities, immune response, stress and antioxidant parameters 

 Compared to clear water aquaculture systems, BFT systems are advantageous not only 

in terms of water quality or growth performance but also in the improvement of the immune 

system, antioxidant, and stress parameters of raised organisms. The flocs in these systems 

contain high amounts of bioactive compounds in different compositions. For instance, one 

group of these compounds, carotenoids, improves aquatic animals’ immunity and increases 

their stress tolerance and antioxidant function (Babin et al., 2015). A study performed on Nile 

tilapia maintained in the BFT system examined the digestive enzyme activities, immune 

response, stress, and antioxidant parameters at different stock densities of fish (Liu et al., 2018). 

The results showed that stocking densities of 166 and 333 individuals/m3 had a significantly 

positive effect on all parameters compared with the control group. In another study that 

examined digestive activity, antioxidant, and stress parameters in genetically improved tilapia, 

no significant differences in alkaline phosphate, lysozyme, and glucose levels were observed 

between fish in the BFT and control groups, while the total superoxide dismutase level was 

higher in the BFT tank (Luo et al., 2014). In addition, protease activity did not differ 

significantly between the BFT and control groups, while lipase activity in the BFT was lower 

in the intestine and higher in the stomach. In a study, the specific amylase protease, lipase, and 

cellulase activities in the hepatopancreas, stomach, and intestines of shrimps (L. vannamei) 

grown in the BFT tank were similar to or significantly higher than those in the control (Wang 

et al., 2016). Another study on common carp (C. carpio) reported that the amylase and protease 

activities of fish grown in the BFT system were higher than in the control group (Adineh et al., 

2019). High levels of catalase, SOD, malondialdehyde, and glutathione peroxidase were noted 

particularly in fish reared at the high-densities than those in the control group. Further, the 

prophenoloxidase activity and SOD value for two different shrimp species (Penaeus vannamei 

and Penaeus indicus) were higher in the BFT group than in the control group (Panigrahi et al., 

2020 b).   

 

 As a result of this section, BFT system has physiologically, histologically, 

immunologically, and economically numerous and different type of positive effect on fish. Fish 

farming facilities should be raised an awareness in terms of sustainable aquaculture techniques 

such as BFT. The most important way of this approach is directly related to increased economic 

value of facility. As an scientist and researcher in fisheries and aquaculture, we need to consider 

this issue in the agenda. 

 



 

 

 The disadvantages of biofloc technology and its minimization approach 

 Cultured species 

 The BFT, due to its working principles, focuses on the welfare of the heterotrophic 

bacterial community in the environment to keep the water quality within the optimum ranges 

for fish or shellfish being cultivated. Therefore, BFT strongly influences harvest yield by 

providing suitable water quality over the culture period (Crab et al., 2012). The water 

temperature required for the bacterial community within BFT limits the species available for 

the system. The BFT systems work more efficiently at higher water temperatures and are mostly 

studied in tropical regions. Therefore, cold-water fish species or fish farms functioning in 

northern countries may have difficulty with the application of BFT systems. In other words, to 

keep up with the development of aquaculture trends, it is necessary to focus on alternative 

species in terms of suitability for the BFT. In this context, BFT systems can make it possible to 

support sustainable farming in many countries and for others to turn to alternative farming 

types. BFT application in species grown in cold waters might raise awareness for cultivating 

alternative species. Considering the adverse effects of climate change on aquaculture globally, 

BFT systems, combined with greenhouse pools, can be innovative and applicable technologies 

for northerly countries for warm water fish and shellfish species (Crab et al., 2012).  

 

 To provide the living environment of heterotrophic bacteria in the BFT system, the 

appropriate C/N ratio is provided by adding carbon to the culture water. This causes an abrupt 

drop in the dissolved oxygen concentration in the water (Gaona et al., 2016). Sudden 

fluctuations in water quality and concentrations of the suspended solids in the BFT systems can 

stress cultured organisms. As a result, BFT culture is not suitable for oligotrophic species such 

as salmonids. However, various crustacea and fish species can potentially be cultivated in BFT 

systems. It is known that some parts of dietary fat, minerals and vitamins required for shrimp 

farming can be met with biofloc formed in the BFT. Several studies examine the effect of BFT 

on different shrimp species such as L. vannamei (da Silveira et al., 2020; Emerenciano et al., 

2013; Furtado et al., 2015; Gaona et al., 2017; Xu and Pan, 2013), Penaeus vannamei (Kumar 

et al., 2018; Ponce-Palafox et al., 2019), P. indicus (Das et al., 2022; Panigrahi et al., 2021), 

Metapenaeus monoceros (Kaya et al., 2019 a, b), Farfantepenaeus paulensis (Emerenciano et 

al., 2011; Fóes et al., 2011), P. monodon (AftabUddin et al., 2020; Anand et al., 2014, 2017), 

F. brasiliensis (De Souza et al., 2014 a; Hostins et al., 2015)  and Marsupenaeus japonicus 

(Kim et al., 2015, 2021; Zhao et al., 2012). In addition to shrimp farming in BFT systems, 

studies have been conducted on fish such as Nile tilapia (Azim et al., 2008; Ekasari et al., 2015; 

El-Hawarry et al., 2021; Pérez-Fuentes et al., 2016; De Souza et al., 2019; Van Doan et al., 

2022), common carp (Azimi et al., 2022; Ebrahimi et al., 2020; Manzoor et al., 2020; Tabarrok 

et al., 2020), African catfish (Dauda et al., 2018; Diatin et al., 2021; Romano et al., 2018), Mugil 

cephalus (Hoang et al., 2020; Vinatea et al., 2018), Labeo rohita (Ahmad et al., 2019; Debdauda 

et al., 2020; Kamilya et al., 2017; Mahanand et al., 2013; Vadhel et al., 2020)  and Carrassius 

auratus (Besen et al., 2021; da Cunha et al., 2020; Yu et al., 2020). Therefore, it is possible to 

produce the first two most cultivated species globally (Nila tilapia and common carp) with a 

sustainable aquaculture production method, the BFT. Culturing these species at high volumes 

with BFT systems will create ecological and economic added values. In addition, in societies 

where species that cannot be cultivated with BFT systems are produced intensively, BFT 



 

 

systems will allow the production of alternative new species and their consumption by humans. 

For instance, there is a study in which BFT experiments are carried out on Piaractus 

mesopotamicus (Sgnaulin et al., 2021). However, before scaling up the BFT production method 

in those species, more studies are required to better understand the dynamics of the BFT systems 

in larger systems and to be better prepared for the management issues and risks that can be met 

during the culture periods.  

 

 Energy cost 

 Floc formation in BFT systems is observed as a result of continuous aeration of the 

culture medium and agitation of the water column (Hargreaves, 2013). Continuous and strong 

aeration has different effects on the BFT system such as (1) providing oxygen to the organism 

cultured, (2) avoiding adverse effects of high stock densities, (3) ensuring the homogeneous 

distribution of oxygen in the BFT tank on the horizontal and vertical axis, (4) agitating the water 

column, (5) providing aerobic conditions by oxygenating the sediment, and (6) providing 

uninterrupted oxygen for the microbial community that provides nitrification (Avnimelech, 

2009). However, continuous and strong aeration brings high operating costs. Different aeration 

equipment such as propellers, aero tubes, diffusers, airstones, paddlewheels, nozzles and 

vertical pump aerators can be used to keep the energy cost to a minimum (Lara et al., 2017 a). 

The turbulence generated by the aeration units affects the collection and breaking of flocs (Crab 

et al., 2012). 

  

 In a study conducted for the minimization of aeration in the BFT system, the effects of 

both continuous and intermittent (0.5-h aerated/0.5-h non-aerated) aeration were investigated 

(Liang et al., 2014). There were no significant differences between the groups in terms of 

nitrogenous compounds and biofloc content (crude protein and polysaccharides). Considering 

the energy cost, it was noted that intermittent aeration has a viable potential. In an integrated 

biofilm and biofloc study, the presence of nitrogenous compounds in an uncultured medium 

with different aeration rates was investigated by de Morais et al. (2020). There were no 

significant differences between the ammonia concentrations, while the nitrate concentrations 

were higher in the non-aerated group. Subsequently, a second trial was carried out on the group 

with 33.75 L/min aeration. Survival rates were better and toxic nitrogenous concentrations were 

lower for the L. vannamei culture in the biofilm group than in the BFT group. In a study 

examining the potential for BFT formation depending on the aeration unit, air stones and aero 

tubes were compared (Harun et al., 2019). Aero tubes resulted in higher water quality, biofloc 

volume and shrimp biomass due to more homogeneous mixing and circular water current. In a 

similar study, a propeller-aspirator pump aerator, vertical pump aerator and diffused air blower 

were used as aerators (Lara et al., 2017 a). The nitrification process was performed best in the 

diffused air blower group. In addition, the highest productivity was observed in the blower 

group. In another study, the effects of micro-bubble and macro-bubble aeration for BFT systems 

were investigated (Lim et al., 2021). The results showed that microbubble aeration improves 

water quality and increases the growth efficiency (FCR and SGR) of shrimps. Creating 

optimum conditions for the aeration process, which generally has high energy costs, can reduce 

operating costs and increase product yield. For this, it is essential to operate the aeration stand-



 

 

by and to use different aeration units. In particular, the use of micro-aerator and blowers can be 

more efficient aeration units in BFT technology.  

 

 Consumer concerns 

 One of the most significant disadvantages of BFT systems is that the organism targeted 

to be consumed is directly involved in the nitrogen and carbon cycle (Minaz and Kubilay, 

2021). The idea that the organisms in the culture medium are fed with nitrogen and carbon-

based wastes may negatively affect consumer acceptance. In this context, sensory analysis and 

fillet quality of fish or shellfish held in BFT systems can increase costumer appeal and decrease 

possible consumer hesitation. In one study, moisture, protein, lipids and ash ratios of tilapia 

fillet and biofloc particles were examined using BFT systems with different carbon sources 

(Lima et al., 2018). The results showed no significant difference between the fillet quality of 

fish in the BFT and control group in terms of proximate composition, whereas biofloc itself had 

high protein and ash content. In the study, the results of the sensory analysis showed that the 

general appearance was better in the BFT, particularly in the sugar group as a carbon source. It 

has been observed that tilapia fish growth in the BFT system based on sugar was better and has 

a higher consumption appeal. A similar study was conducted for shrimp farming and no 

significant difference was observed between the BFT and control groups in the proximate 

analysis (Hussain et al., 2015). In a study on the use of biofloc as a feed for red tilapia, it was 

observed that the fillet moisture content was 72.28%, crude protein was 16.56%, crude lipid 

was 7.8%, and ash ratio was 2.78% (Delgado et al., 2020). According to the results of the 

proximate analysis and sensory tests performed on pirapitinga (Piaractus brachypomus) fillets 

fed with different protein sources under BFT conditions, no significant differences were 

observed between the treatments (Diaz et al., 2021). Sensory analysis results of shrimps grown 

under heterotrophic and photoautotrophic biofloc conditions were similar compared to the 

control group (Martinez-Porchas et al., 2020). Additionally, the cholesterol value of the shrimps 

belonging to the control group was observed to be significantly higher than the two BFT groups. 

 

 The presence of mineral salts in BFT systems causes an increase in osmotic pressure on 

the fish, which results in additional or diminished water absorption by the fish. The altered 

water absorption may affect the fillet quality. In a study conducted for this purpose, the sensory 

analysis results between the marine salt, common salt and no-salt groups revealed no 

differences between the groups (Silva and Piana, 2020). In addition, no differences were seen 

between the groups in terms of moisture, crude protein or minerals. In another study conducted 

with different salt ratios, red tilapia proximate analysis was examined at no-salt, 5 ppt, 10 ppt, 

15 ppt and 20 ppt salinities (Kumari et al., 2021). The results showed lower moisture and higher 

dry matter, protein, ash and ether extract in 15 ppt and 20 ppt groups compared to other groups. 

In addition, the increase in salinity increased the color scale values. No significant differences 

were observed between the groups in the cooked or raw sensory analysis results. As a result, 

the increase in the salinity of the culture water for red tilapia is a factor that increases consumer 

appeal. Another study revealed that 5 ppt and 30 ppt salinity did not reflect a significant 

difference in sensory analysis in shrimp farming (Pinho and Emerenciano, 2021). Briefly, food 

quality variables should be included in future BFT studies to address the possible consumer 

concerns.  



 

 

  

 Sensitivity of water temperature  

 Environmental parameters such as temperature, pH and DO are vital for bacterial growth 

in the BFT systems (Avnimelech, 1999). Especially the temperature affects the growth 

performance, biomass composition, nitrate requirement and metabolic reaction of bacteria in 

the BFT system (Esener et al., 1981). Bacteria do not have the ability to keep their own 

temperature in balance, so biofloc tends to decompose at low temperatures, but increases in size 

at high temperatures (30–35°C) (Wilén et al., 2000). In a study conducted on goldfish, different 

temperature values were compared and it was reported that the survival rate and growth rate 

were significantly lower at 10 and 15°C. In addition, ammonium nitrogen was observed to be 

higher at low temperatures (Cho et al., 2015). The highest survival rate, growth performance 

and water quality were observed at 25 and 30°C temperatures. In another study, antioxidant 

activity was examined at 15, 21, 27 and 33°C and it was observed that 27°C temperature showed 

higher catalase and glutathione-S-transferase in shrimp (De Souza et al., 2014 b). The growth 

performance of pink shrimp at different temperatures was investigated by Hostins et al. (2015). 

The shrimps were placed to 30°C after the nursery stage (21°C and 30 days). The SGR of shrimp 

in this system were quite high compared to control group. Further studies are clearly required 

to fully explore the importance of water temperature for the development of cultured organisms 

and microbial communities in the BFT systems.  

 

 Requirement of qualified staff 

 The fisheries and aquaculture industries are needed to provide a portion of  the animal 

protein necessary for the increasing world population (Ahmed et al., 2019). However, the 

interest in aquaculture is increasing, especially considering the risk of reduction in fish stocks 

(Minaz et al., 2021). Future projections predict that capture production will remain stable at 

around 93 million tons in the period of 2010–2030 (World Bank, 2013), while aquaculture 

production will reach 140 million tons in 2050 (Waite et al., 2014). This situation creates the 

idea that new employees will join the aquaculture sector. According to 2005 data, the number 

of personnel engaging in the aquaculture sector is 23.4 million directly and indirectly 

(Valderrama et al., 2010). According to the 2018 target, this number is aimed to reach 59.5 

million people (FAO, 2020). Since the number of qualified personnel is a small part of this 

density, there will always be a higher need for qualified personnel in new aquaculture systems. 

In this context, qualified personnel should be trained to improve the BFT systems, especially 

against sudden failures. Because the environments where bacteria and culture organisms stay 

together must be kept under control. There are some examples of training qualified staff in 

different countries for various disciplines. For instance,  the Canadian Integrated Multi-Trophic 

Aquaculture Network has provided highly qualified personnel for their interdisciplinary 

research (Chopin et al., 2013). A marine aquaculture project was supported for the training of 

qualified personnel in a center in Morocco (Touiri et al., 2020). As a result, education is 

indispensable for increasing the qualifications of personnel in aquaculture. In this context, e-

Learning education can be an important alternative, especially in a way that does not intervene 

with the routine work of the personnel (Seixas et al., 2015). 

 



 

 

 Conclusions 

 The natural fish and shellfish stocks will not meet the increasing protein demand in the 

world even if the stocks are strictly protected. Therefore, the pressure on aquaculture will 

continue to increase day by day to meet the protein demand. This pressure will make sustainable 

production methods even more important to increase production capacities in more limited 

water, space, resource and climatic conditions. Sustainable developments in aquaculture should 

focus on achieving a high amount but healthy fish yields at a low cost. In this context, BFT 

appears to be an alternative solution to support sustainable aquaculture production worldwide. 

The current review study focuses on the advantages and disadvantages of technology by 

considering the economic situation, social pressures and applicability principles of the BFT 

system. According to this; 

 

– Nitrogenous compounds have necessarily been monitored in studies for BFT and observed 

that these systems increase water quality if properly managed. By converting ammonium to 

microbial biomass and nitrate faster than nitrification processes, BFT systems create high water 

quality even at zero water discharge conditions. 

 

– It has been noted that the animals reared in the BFT system generally show higher growth 

performance than traditional methods, suggesting that it meets the basic aims of the producer 

for sustainable aquaculture. 

 

– Traditional aquaculture carries the risk of contamination by pathogenic microorganisms due 

to the high inflow and outflow of water from outside. Although this risk is at the minimum level 

in BFT systems, in many studies, higher survival rates of organisms grown in BFT systems 

against pathogenic microorganisms have been reported. 

 

– In aquaculture, the immune system and physiological condition of animals must be strong for 

healthy and rapid growth. For this purpose, immune response, antioxidant activity, stress 

parameters and enzyme activities of species grown have been investigated in many studies in 

BFT systems. In general, the results showed that the animals grown in BFT systems did show 

significantly better or comparable results than the control group, suggesting at least that the 

BFT has no adverse effect on fish or shellfish. 

 

– The variety of species that can be grown in BFT systems is limited. However, looking at the 

development projections of FAO and countries, in general encouragement of farming 

omnivore/herbivorous species is given importance instead of carnivorous species. The species 

most commonly grown in BFT systems are generally those fed at low trophic levels. In fact, 

this issue, which seems like a disadvantage at first glance, has great relevance in meeting the 

protein demand perspective. 

 

– The BFT requires high and continuous aeration for micro and macro organisms in the system. 

Since this increases the operating cost, few optimization studies are available in the literature. 

In this context, further studies on the optimization of aeration need to be done to lower the cost 

of aeration. 



 

 

 

– There is a concern about the consumption of animals grown in BFT systems. The available 

findings regarding the sensory analyzes and nutritional studies have shown that there is no 

difference between BFT and control groups. This means that fish and shellfish grown in BFT 

systems have high sensory and taste scores. Yet, future studies should include food quality traits 

of fish and shellfish by taking socio-economic measurements into account to encourage the 

consumption of aquatic food from the BFT systems. 

 

– Another issue is the water temperature in terms of the favorable functioning of heterotrophic 

bacteria at higher temperatures in the BFT systems. Former studies have concluded that the 

water temperature between 25°C and 30°C seems to be optimal for the BFT systems. However, 

future studies should be carried out to investigate microbial abundance, diversity and function 

in varying temperatures.  

 

– BFT systems can only be run by qualified staff. In case of a possible sudden failure, the BFT 

system must be recovered. Therefore, we suggest that specific aquaculture training programs 

for BFT systems should be arranged for future aquaculture engineers at universities or in 

public/private sector-supported education organizations. 
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