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Abstract
Unmanned Aircraft Systems (UAS) has become widespread over the last decade in various commercial or personal appli-

cations such as entertainment, transportation, search and rescue. However, this emerging growth has led to new chal-

lenges mainly associated with unintentional incidents or accidents that can cause serious damage to civilians or disrupt

manned aerial activities. Machine failure makes up almost 50% of the cause of accidents, with almost 40% of the failures

caused in the propulsion systems. To prevent accidents related to mechanical failure, it is important to accurately estimate

the Remaining Useful Life (RUL) of a UAS. This paper proposes a new method to estimate RUL using vibration data col-

lected from a multi-rotor UAS. A novel feature called mean peak frequency, which is the average of peak frequencies

obtained at each time instance, is proposed to assess degradation. The Long Short-Term Memory (LSTM) is employed

to forecast the subsequent 5 mean peak frequency values using the last 7 computed values as input. If one of the estimated

values exceeds the predefined 50 Hz threshold, the time from the estimation until the threshold is exceeded is calculated

as the RUL. The estimated mean peak frequency values are compared with the actual values to analyze the success of the

estimation. For the 1st, 2nd, and 3rd replications, RUL results are 4 s, 10 s, and 10 s, and root mean square error (RMSE)

values are 3.7142Hz, 1.4831Hz, and 1.3455Hz, respectively.
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Introduction
Although unmanned aircraft systems (UAS) have been used
in military operations for a long time, they have recently
become more appealing in civil aviation such as commercial
and healthcare applications that are subjected to fly across
urban areas to deliver packages or medical products.1–3

With the increase in civilian use of UAS, there has been
a significant increase in UAS accident rates, with a recorded
accident rate of 100 times more than manned aircraft.4–6 It
was found that 33 to 67% of accidents involving UAS were
caused by failures associated with mechanical or electrical
components.7,8 In addition, it was determined that 23 to
53% of the system failures occurred in the propulsion
system of the UAS, where the main components are the
rotor and propeller.9,10 Even though many developments
within the design of UAS have taken place over the
years, potential errors still occur in the propulsion

system.11,12 Hence, it is crucial to prevent machine failures
in the propeller systems of UAS.

In 2019, the EU published very tight regulations to
enforce safe, sustainable, and secure UAS operations.13–15

Consequently, new UAS must be individually reliable and
equipped with systems to mitigate or avoid both aerial
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and ground risks, such as collisions with other flying
objects or collisions with humans and critical infrastruc-
tures. Since a major malfunction that may occur during
the flight may increase the ground risks, the current and
anticipated health state of the UAS should be constantly
monitored, and at the same time, the possible landing
spots are visually identified and stored.

The current work aims to develop data-driven predictive
maintenance (PdM) model that can predict remaining useful
life (RUL). Thus, it can predict a malfunction that may
occur and a landing decision can be made accordingly.
The model employs vibration data collected from a multi-
rotor UAS, signal processing, and machine learning
methods. To the best of the authors’ knowledge, this is the
first benchmark research study that employs the time-
frequency domain feature in the RUL prediction of UAS.
Accordingly, in this study, the short-time Fourier Transform
was applied to pre-processed vibration data to obtain the spec-
trogram. After obtaining the spectrograms for each time inter-
val, peak frequencies were found and averaged. This article
contributes to knowledge by also providing an open-source
vibration data that can be utilized for RUL estimation in UAS.

The paper is organized as follows: Section ‘Literature
review’ reviews existing solutions and the related work in
the area of predictive maintenance. In Section ‘Methodology
for RUL estimation’, the materials and methods used in the
study are explained in detail. Section ‘Testing and results’ illus-
trates the results of the proposed methodology. Finally, it is fol-
lowed by a conclusion in Section ‘Conclusions’.

Literature review
The idea of Industry 4.0 has greatly encouraged the use of
digital technologies in the manufacturing industry to manu-
facture faster, cheaper and less error-prone.16–18 With the
use of digital technologies in the manufacturing industry,
production errors caused by malfunctions that may occur
in machines and even planned and unplanned downtimes
that increase production costs excessively are reduced
with appropriate maintenance strategies.19–21 The PdM is
a maintenance strategy that utilizes collected data from
sensors, monitoring machine/equipment status, and pro-
cessing data by statistical/ machine learning methods to
estimate the future condition of machine/equipment, the
time of failure or the RUL that is the time until the
machine can no longer perform its desired function and
maintenance or replacement is needed.22–24 In this regard,
there are three main approaches to estimating the RUL of
a machine: the survival model,25,26 which is used when
only data from the time of failure is available, the degrad-
ation model,27,28 which is used when failure data is not
available but a safety threshold that signals failure is
known, and the similarity model,29,30 which is used when
the entire history of a similar machine, from good health
to failure, is known.

The PdM can be defined into four main categories
knowledge-based, physics-based, data-driven and digital
twin methods,31–33 each of which has some pros and cons.
The knowledge-based method relies on experience identifying
the fault by evaluating the similarity between a monitored case
and a library of previously known faults. The drawbacks are
the difficulty in obtaining accurate information from experi-
ence and limited access to knowledgeable experts.34,35

Similarly, the physics-based method is based on the laws of
physics and mathematics to evaluate the degradation behavior
with sparse data collection. However, it is very difficult to
create such a model as most machines consist of complex
mechanical and electrical systems that are difficult to formu-
late mathematically.35,36 In data-driven methods, the data
obtained from the sensors is processed by machine learning
methods and used to examine the deterioration of components
or the current health status of the system or its RUL. However,
these models use computational power and a large amount of
data.37,38 Digital Twin integrates physics-based with real-time
data to have a virtual representation of the physical system or
process.39 Among these approaches, the data-driven model
has emerged as a powerful tool for predictive maintenance
applications since these models are capable of dealing with
and capturing complex relationships among data, which is
difficult to obtain using physics-based or knowledge-based
models as well as the degradation behaviour, the health
status and its RUL can be mined by data processing and
machine learning methods.

Due to the development of sensor technology in recent
years, data obtained from temperature, pressure, lubricant,
noise and vibration sensors are used in predictive mainten-
ance activities. The decision about which sensor data to use
depends on both the type of problem to be investigated and
the operating conditions of the machine. Vibration analysis
has been the most widely used PdM technique in rotating or
reciprocating equipment, as it can indicate the degradation
behavior of the machine.40–42 Machines can generate vibra-
tion signals of different characteristics in different periods.
At an early stage, lower noise and smaller amplitude of vibra-
tions at different frequencies may be present, as the severity of
fault level increases these symptoms might become more
dominant. Vibration signals can be analysed using the time,
frequency and time-frequency domains.

The time-domain analysis is a simple approach that basic-
ally exploits traditional statistical features.43–45 The most used
features can be listed as: mean value and standard deviation
are used to represent the change in amplitude, kurtosis and
skewness are employed to observe the asymmetry behavior
of the vibration signal, and finally, root mean square and
crest factor are applied to detect the energy of the vibration
signal. These features are widely used due to the light compu-
tational cost, but it is difficult to get an idea of how many fre-
quency components are represented in the signal using only
the time-domain features. Thus, the frequency-domain ana-
lysis is mainly utilized to determine the spectral content of
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the signal.46–48 The most common feature employed in the
frequency-domain analysis is peak frequency. The spectral
content is specific to the health status. If a malfunction
occurs, the spectrum contains many different frequencies
rather than a unique frequency. The limitation is the signal
change over time with respect to the degradation and these
temporal changes are not visible in the frequency domain ana-
lysis. Therefore, a novel feature, mean peak frequency is pro-
posed in this study to characterize these evolving changes. The
mean peak frequency is a measure of the spectrum of frequen-
cies of a signal as it changes over time, obtained by averaging
the peak frequencies from a spectrogram. It is a useful tool for
analyzing machine vibration data, as it tends to increase sig-
nificantly as defects in the machine become more severe. As
such, it can be used to identify and label potential faults in
unlabeled machine vibration datasets.49–52 The vibration ana-
lysis has been regarded as an effective tool for the estimation
of RUL and fault diagnostics used for rotating machinery in
the machinery industry. However, little research has been con-
ducted on estimating the RUL of the UAS propulsion system
which is required to implement the PdM strategy.53–55 In
multi-rotor UAS applications, it is assumed that rotor degrad-
ation is proportional to the value of mass imbalance, which is
gradually induced to simulate the RUL of the rotor. In add-
ition, the mass imbalance can be easily detected by monitoring
the vibration signals in the rotor. The mass imbalance is a
result of the misalignment between the center of mass and
the center of rotation leading to the shaft displacement; and
hence, vibrations. It often occurs when one side of the rotor
or propeller is heavier than the other; this is due to additional
mass taken by the propeller from the environment or a reduc-
tion in mass due to wear. Therefore, this study proposes a data-
driven PdM model to estimate RUL using rotor vibration
signals in a multi-rotor UAS.

Methodology for RUL estimation
The steps required to compute the RUL are described in
three main sections: data preprocessing, feature extraction,
and RUL estimation. The flowchart of the proposed meth-
odology is illustrated in Figure 1.

Data preprocessing
In this study, the data preprocessing step consisted of three
sub-steps. First, the linear trend was removed by subtracting
the mean from the data. A linear trend typically indicates a
systematic increase or decrease in the data. Removing a
trend from the data allows it to focus on fluctuations in
the data rather than the trend. The linear detrend is
expressed in Equation 1.

xdt(t) = x(t)− �x (1)

where xdt(t) is the detrend data, x(t) is the raw data, and �x is
the average of the raw data.

Secondly, a moving median filter was applied to remove
large spikes in data, which is a common data smoothing tech-
nique that slides a window along the data, computing the
median of the points inside of each window. The main reason
for using the median filter is that the median is a robust estima-
tor and is not affected by spikes in data. Themathematical equa-
tion of the moving median filter is as follows:

xdn(t) = median(xdt(t) : xdt(t +M − 1)) (2)

where xdn(t) is the denoise data, andM is the window size. To
determine the optimum window size, first the sum of the abso-
lute differences (SAD) between the filtered and detrend data for
different window sizes was calculated; and then, the smallest
window size at which SAD starts to flatten was selected. The
SAD formulation is given in Equation 3.

SAD =
∑NM

M=1

xdn(t, M)− xdt(t)| | (3)

where NM is the number of window size, and xdn(t, M) is the
denoise data for given window size.

Lastly, a two-stage bandpass filter was employed to
isolate the signals which are outside of the specific fre-
quency range. According to initial screening experiments
results, bandpass cutoff frequencies were determined as
20Hz and 120Hz to attenuate low and high frequency
noises. A detailed formulation of the two-stage bandpass
filter is provided by Shenoi56.

Feature extraction
This step focuses on the feature extraction from the prepro-
cessed data. The three main parts of this step are data segmen-
tation, converting the segmented data in the time-domain into
the time-frequency-domain, and computing the mean peak fre-
quency as a feature representing health status.

Figure 1. Process flow of the proposed RUL estimation method.

Ozkat et al. 3



Data segmentation is the process of dividing the data
into small segments based on the defined parameters so
that the behavior of the data does not change during a
given data segment. In this study, the data was divided
into segments without overlapping according to the given
time interval to keep the sampling rate constant.

Features represent the health status of the system in an
anticipated manner as the system itself deteriorates.
Features are typically extracted from the time-domain
(root mean square, peak value, signal kurtosis, etc.) or
frequency-domain features (peak frequency, mean fre-
quency, etc.). As explained, the time-domain features are
statistical information which has difficulty in explaining
the frequency content of the data, whereas the frequency-
domain features have difficulty in explaining the temporal
changes in the frequency that indicate degradation. Since
the time-frequency-domain (i.e. spectrogram) for data from
healthy and faulty data are different, representative features
can be extracted from the spectrogram and used for RUL esti-
mation. In this study, each segment of data in the time-domain
was transformed into the time-frequency-domain using the
short-time Fourier transform to obtain the spectrogram of
each segment, as follows:57,58

X τ, ω( ) =
∫∞
−∞

xsg t( )ω t − τ( )e−iωtdt (4)

where xsg(t) is the segmented data to be transformed from the
time-domain to the time-frequency-domain, X(τ, ω) is spec-
trogram of the segmented data, ω(τ) is the window function,
τ is the time index, andω is the frequency index. Spectrogram
depicts how the frequency content of a signal changes over
time. It displays the power spectrum of the segmented data
in each time instance. The peak frequency at a time instance
(PF(τ)) is simply the frequency that gives the maximum
power as written in Equation 5.

PF τ( ) = argmaxω˜X τ, ω( ) (5)

Since the peak frequency is obtained for a time instance, the
mean peak frequency, which is the average of peak frequen-
cies as defined in Equation 6, was employed as a feature to
represent the degradation in this study.

meanPeakFreq = 1
tf − ti

∫tf
ti

PF τ( )dτ (6)

where ti , and tf are the initial and final time of the segmented
data, respectively. Generally, features are fused into a single
health indicator, but only the mean peak frequency was com-
puted as a feature in the presented work, thus it was directly
used as the health indicator.

RUL estimation
There are three common models for the RUL estimation
listed as: the survival model is selected when only the

data from the time of failure is known, the degradation
model is employed when failure data is not available, but
a safety threshold indicating the failure is known, and the
similarity model is applied when the full history (from
health to malfunction) from similar machines is known.

The degradation model is employed to estimate the RUL
in this study because the computed mean peak frequencies
during the flight form a time series and the mean peak fre-
quencies that will occur are estimated utilizing Long Short
TermMemory (LSTM) neural network. The LSTM networks
are generally employed to make classifications or predictions
on time series data. The LSTM network consists of cells, and
each cell has input, output, and forget gates with the ability to
add or remove information. This reduces the weight of redun-
dant information transmitted from the past on the output. A
detailed description of the LSTM network is provided by
Hochreiter and Schmidhuber59.

The network utilized in this study includes two LSTM
layers containing 100 and 50 cells, two drop layers, and
one fully connected output layer. The dropout rates and
the training batch size are chosen as 0.2 and 200, respectively.
Also the activation function of the fully connected layer is
assigned as a linear function. The hyperparameters are opti-
mised using Bayesian optimization, which is is a popular
choice of optimisation algorithm to tune hyperparameters in
machine learning.60,61 The training is done with a
maximum of 250 epochs and the best model is used for the
test. The training input data is standardized to have zero
mean and unit variance, and after the estimation, the output
is unstandardized using the same mean and variance values.

The LSTM network is constructed using the last 7 com-
puted values of the mean peak frequency as inputs to esti-
mate the 5 mean peak frequency values following the last
input value, respectively. If one of the estimated peak fre-
quencies surpasses the failure threshold, the time from the
estimation is made (tA) to the time where the failure occurs
(tB) is calculated as the RUL, as defined in Equation 7. If
the estimated mean peak frequencies do not exceed the
failure threshold, the actual value of the first estimated
mean peak frequency is added to the time series, and then
the last 7 mean peak frequency values are used as the new
input of the LSTM network model. This process continues
iteratively until one of the estimated mean peak frequencies
exceeds the threshold and therefore RUL can be calculated.
The failure threshold was determined as 50 Hz based on
the experiment results in this study. The conceptual represen-
tation of the degradation model is shown in Figure 2.

RUL = tB − tA (7)

Testing and results

Generation of vibration data
The subject of this research is a DJI M600 multirotor UAS
which has 6 rotors with two blades each and it is controlled
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by a DJI N3 autopilot. The Inertial Measurement Unit (IMU)
MTi-G-700 IMU, sampled at 800Hz, was mounted below the
center of the UAS. This sensor contains an accelerometer, a
gyroscope and a magnetometer and is able to capture data
from all axis. During the experiments, the UAS was
mounted on a platform to prevent it from taking off. All
experiments were carried out in a closed laboratory environ-
ment and the experimental setup is presented in Figure 3.

Experiments were carried out in three different scenarios
to serve different purposes and each scenario was repeated three
times. The first scenario served to characterize the health status
of the UAS without having changed the mass and position of
each propeller blade. Furthermore, the experiment was con-
ducted in such a way that the throttle position was increased
by 10% every 40 seconds. Thus, the data gathered from this
experiment served as a basis for the other scenarios.

The second scenario was conducted to gather run-to-failure
data. Since mass imbalance is the main source of vibration, a
groove was deliberately made in one of the blades with a depth
of approximately 75% of the blade thickness to achieve mass
imbalance. The location of the groove was 9 cm from the tip of
the blade and was milled with a CNCmachine using a 1.5mm
cutting tool. Furthermore, the throttle position was fixed at
25% throughout the experiment. The blade modified with
the groove is shown in Figure 4.

The third scenario was conducted to collect
run-to-failure data to which the proposed methodology for

estimating RUL would be applied. It could be thought of
as a combination of the first and the second scenarios.
Just like in the first scenario, the throttle was increased by
10% every 40 seconds and the grooved blade was used as
in the second scenario.

Although other sources of data were also available, the
data set used in this study was chosen from the vibration
data in the z axis gathered from the accelerometer, assum-
ing that the sudden loss of altitude due to the failure of
the UAS manifests itself most significantly on the z axis.

The raw vibration data obtained from the first scenario
are given in Figure 5. Since this scenario represents the
health state, the acquired data are expected to have a
normal distribution. To identify the normality, basic statis-
tical quantities such as mean, standard deviation, kurtosis
and skewness and histogram plots are presented in
Figure 5. The statistical results obtained point out that
each raw data has a normal distribution, and repetitions
are similar to each other; hence, the experiment is con-
cluded that it is repeatable. In addition, it has been deter-
mined that the mean value of the collected raw vibration
data is around 10m/s, which is the gravitational acceler-
ation. Therefore, a linear detrend is applied in the data pre-
processing step to eliminate the effect of gravitational
acceleration in the raw vibration data.

The second experimental scenario provides vibration
data from health to failure at a constant throttle of 25%
using the modified blade. During the experiment, the pro-
peller blade was broken at around 105 s and 70 s, in the
first and the second replications, respectively. The vibration
data obtained from the IMU sensor for each repetition
during the experiment carried out according to the second
scenario also the top and cross-section views of the blade
at the time of failure are given in Figure 6.

In the third scenario, vibration data from health to failure
were obtained by waiting 40 s at each throttle position to
make a full characterization of the degradation pattern.
Similar to the second scenario, the propeller blade was
broken in each replication. The blades were broken at the
throttle position 80% in the first, 30% in the second, and
40% in the third, replications respectively. The cross-
section and top view of the broken blade in each experiment
are shown in Figure 7. Even though it was planned to
perform the experiment by increasing the throttle position
by 10% every 40 seconds, the 1st replication was

Figure 2. A representation of the degradation model.

Figure 3. The experimental setup: a) DJI600 tethered via

vibration dampeners, b) MTi-G-700 IMU for a motion tracking

system. Figure 4. The grooved propeller blade: a) Top view, b)Side view.
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Figure 5. The raw vibration data from the experiment conducted according to the first scenario.

Figure 6. The raw vibration data and the failure modes from the experiment conducted according to the second scenario.
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terminated in approximately 360 seconds without perform-
ing the full throttle position due to a software malfunction
that caused the experiment to not be fully completed.

There was a steep change in the vibration magnitude at
the time of failure in the second and the third scenarios
(See Figures 6 & 7), but a slight increase trend was
observed in the first scenario (See Figure 5) due to the
increase in the throttle position. The absence of a significant
change in vibration magnitude in the time-domain prior to
failure and a steep change at the time of failure indicates
that vibration should be examined in other domains than
the time-domain.

Implementation of the proposed methodology
In this section, the effectiveness of the proposed method
was evaluated using the data obtained from the experi-
ments. The third experimental scenario was performed as
defined to generate run-to-failure data offline. After obtain-
ing the offline data, the aforementioned feature was com-
puted for each time interval to generate a time series. The
RUL was calculated by using this time series obtained
offline as if it was online.

Data preprocessing is essential for all applications of
machine learning model development. The raw data col-
lected may contain some extreme measurements, it is neces-
sary to clean up these outliers to ensure that the data best
represent the situation. In this step, a linear detrend was ini-
tially applied to the raw data to eliminate the influence of
the mean value which is around 10m/s. This means that
the acceleration sensor in the z-direction captures the gravi-
tational acceleration. A moving median filter was then
applied to eliminate outliers. The window size was
chosen as 27 according to the SAD results and this selected

window size was employed in the denoise steps in other
scenarios. As an example, the trend and noise reduction
results for the 2nd replication of the 1st experimental scen-
ario as well as the SAD values for different window sizes
are presented in Figure 8.

In this study, the last step in the data preprocessing phase
was filtering. The simple assumption in filtering is that the
data collected from sensors and noise are at different fre-
quencies, so filters can be applied to separate these different
sources. A two-stage bandpass filter, a high pass FIR filter
at 20Hz was applied at first, and then, in a separate filtering
step, a low pass FIR filter at 120Hz was employed to
attenuate low- and high-frequency noises. Due to the
wide bandwidth, filtering was done in two stages to
achieve maximum attenuation while avoiding a high
ripple effect. In general, the most important step of filtering
is to evaluate the filter kernel in the time-domain and more
importantly, in the frequency-domain. This is because, if
the gain is greater than the value of 1, the filter will
amplify data outside of the specified filter range. Thus, it
results in the amplification of noise rather than attenuation.
The filter kernel utilized in this work is illustrated in
Figure 9 in the frequency domain. The kernel gain always
takes a value of 1 in bandwidth, even in the edges. This
kernel is applied to the data collected from all experiments.
As an example, the results of this filtering applied to the 2nd
replication of the 1st experimental scenario in both the time
and frequency domains are also shown in Figure 9. It can be
concluded that the filter works well, as the attenuation
outside the specified range reaches -150 dB and no ripple
effect is observed. In addition, the fundamental frequency
of the filtered data is calculated as 40.54Hz.

Feature selection is an essential task in predictive main-
tenance. The main hypothesis of this study is that the

Figure 7. The raw vibration data and the failure modes from the experiment conducted according to the third scenario.
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deterioration of the blade can be detected by the change in
frequency. Therefore, the mean peak frequency obtained
from the time-frequency domain was chosen as the
primary feature to capture the temporal change of the fre-
quency. For this purpose, the filtered data was divided
into 2-second time windows then the mean peak frequency
was computed for each segment in the
time-frequency-domain. As mentioned earlier, the spectro-
gram represents the power spectrum in both the time and

frequency domains. However, the most important limitation
of the spectrogram is that the time and frequency resolu-
tions cannot be arranged simultaneously.62 Therefore, the
time window length (i.e. 2-second time window) was kept
short while segmenting the data filtered in order to obtain
a good time resolution, and the frequency resolution was
chosen as 5Hz when calculating the spectrogram. Thus,
the spectrogram was calculated with a time interval of 0.2
s. As a result, while there were 13 peak frequencies

Figure 8. Detrend and denoise results for the 2nd replication of the 1st experimental scenario.

Figure 9. The spectrum of the filter kernel and the filtering results of the 2nd replication of the 1st experimental scenario.
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obtained for each time interval yet only 1 mean peak fre-
quency was computed for a segment. Figure 10 depicts a
selected segment in the time-domain and its spectrogram
in the time-frequency-domain as well as giving the com-
puted mean peak frequency. The obtained peak frequencies
are given as red dots and the mean peak frequency is com-
puted as 36.78Hz for the selected segment.

Figure 11 shows the computed mean peak frequencies
for each replication of the 1st and 3rd experimental scen-
arios. The only difference between the first and third experi-
ments is that in the third experiment a modified blade was

used as shown in Figure 4. Thus, deterioration occurred
even if it was triggered artificially and the time of failure
for each replication of the third experiment is clearly indi-
cated in Figure 11. For the 1st experimental scenario,
even though the mean peak frequency values were around
the fundamental frequency value of 40.54Hz for the first two
throttle positions, they decreased steadily by on average
10Hz and reaching around 30Hz for the final throttle pos-
ition. A similar pattern was seen up to failure for the 3rd
experimental scenario, but the mean peak frequency values
increased very rapidly as the time of failure approached.

Figure 10. The mean peak frequency computed between 90th and 92nd seconds and corresponding data in the time-domain and its

spectrogram in the time-frequency-domain.

Figure 11. The computed mean peak frequencies for the 1st and 3rd experimental scenario.

Ozkat et al. 9



However, after the failure, the mean peak frequency values
increased steadily to 7 Hz as the throttle continued to increase.
In addition, the mean peak frequency values remained nearly
constant at about 70Hz across all replications between 288 s
and 400 s, throughout the last three throttle positions. This
point out that the fundamental frequency for a healthy condi-
tion is 40Hz, while it is 70Hz for a faulty condition.

Figure 12 shows the computed mean peak frequencies
for each replication of the 2nd experimental scenario. It pro-
vides vibration data from health to failure at a constant
throttle of 25% using the modified blade. When the blade
is broken in each replication, the failure manifests itself as a
step-change in the time-domain (See Figure 6). This step
change can be seen in the computed mean peak frequencies.
They follow the same trend up to 60 s, but a sudden increase
is seen as the time of failure approaches. However, the mean
peak frequencies computed for each replication are almost 50
Hz regardless of the time of failure. It is evident that the amp-
litude at this frequency is much larger after the failure. Thus,
the failure threshold is found to be when the mean peak
frequency reaches the value of 50Hz based on the time-
frequency-domain analysis.

In predictive maintenance, it is not sufficient to simply
predict the class of future data as faulty or healthy. It is
more important to accurately forecast the RUL so that the
maintenance or other necessary actions can be taken well
before the time of failure. Therefore, the problem in this
study can be thought of as time series forecasting rather
than a classification problem.

The computed mean peak frequency can be considered
as a time series. These time series were obtained offline,

that is, the calculation was done after the experiment was
conducted. However, it is necessary to obtain a real-time
computation for time series forecasting. Thus, the offline
time series was considered as if it was obtained in real-time.
This means that the time series updates itself iteratively
with the new computed mean peak frequency value. As
described in the methodology, the LSTM network forecasts
the subsequent 5 mean peak frequency values using the last
7 values of the computed mean peak frequency as input. If
one of these estimated values does not exceed the threshold
value of 50Hz, the time series is updated with the actual
value of the first estimated mean peak frequency.

Figure 13 presents the forecasting results of all replications
of the 3rd experimental scenario when one of the estimated
mean peak frequency values exceeds the defined threshold.
As a result, the RUL for the 1st, 2nd, and 3rd replications
are 4 s, 10 s, and 10 s, respectively. In addition, the root
mean square error (RMSE) between the estimated and the
actual mean peak frequencies for the 1st, 2nd, and 3rd replica-
tions are 3.7142Hz, 1.4831Hz, and 1.3455Hz, respectively.

In this study, the time window length between two mean
peak frequencies is 2 s and the LTSM neural network
always forecasts 5 mean peak frequency values. Thus, the
maximum predictable time is 10 s. However, it can be
expanded by increasing one of these two values. If the
time window length was increased, it would be difficult
to follow the sudden change in the time series. When the
fault occurred, the estimated values would always be less
than the actual values, resulting in an incorrect estimate
as the estimated RUL would be longer than the actual
value. On the other hand, if the estimated values were to

Figure 12. The computed mean peak frequencies for the 2nd experimental scenario.
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increase, the accuracy would decrease and false alarms
would occur because one of the estimated values might
have exceeded the defined threshold.

Conclusions
This paper primarily used the mean peak frequency obtained
from the time-frequency analysis to detect the RUL of a multi-
rotor UAS. At first, the rotor vibration signals were segmented
at 2-second window lengths and each segment was transformed
from the time-domain into the time-frequency-domain. Then,
the peak frequency was calculated for each time interval in
the time-frequency-domain and the mean peak frequency was
found by averaging these calculated peak frequencies.

The computed mean peak frequency values were consid-
ered as a time series and the LSTM neural network was
used to estimate the values of the mean peak frequencies
in the next 5 steps using the last 7 values of the computed
mean peak frequency as input. If the estimated mean peak
frequencies did not exceed the predefined threshold, the
time series was updated with the actual value of the first pre-
dicted mean peak frequency. This way of updating the time
series model captures instant trends. On the other hand, if
one of the estimated peak frequencies exceeded the fault
threshold, the time from estimation to fault occurrence
was calculated as RUL.

The LSTM results demonstrated a strong agreement
between the estimated and actual values of the mean peak
frequencies. The RSME values for the 1st, 2nd, and 3rd
replications were 3.7142Hz, 1.4831Hz, and 1.3455Hz,
respectively. The effectiveness of the proposed method-
ology was evaluated according to the results of the RUL
estimation. In all the replications, RUL was computed

before failure occurred and the maximum RUL was calcu-
lated as 10 s. The estimation depends on the selected time
window length and the number of inputs and outputs of
the LSTM neural network.

The subject of this research is a DJI M600, a commercial
multi-rotor UAS designed not to fail. In particular, in order
to make the wing structure frangible, a groove was deliber-
ately cut in one of the wings, approximately 75% of the
wing thickness. Experiment results demonstrated that
the fracture was sharp and smooth and it was thought that
the fracture occurred suddenly. Thus, it is difficult to fore-
cast this sudden failure with a single feature and it is seen
from the LSTM results that the forecast horizon is short.
However, forecasting was still performed in the 3 cases
before the failure. This information is incredibly useful
for further work to broaden the forecasting horizon. The
proposed feature, the mean peak frequency, performed
well to detect degradation. During the healthy scenario,
the mean peak frequency values were level at around 40
Hz at the first two throttle settings, as the throttle increased,
they decreased up to 30Hz because the controller of the
UAS reduced the airframe vibration signals. On the other
hand, during the faulty scenario, the mean peak frequency
values showed a rapid increase from 40Hz, which is the
fundamental frequency, to 50Hz as the time of failure
approached, afterwards they increased slightly reaching
70Hz at the end of the experiment. The ability to make a
clear distinction between healthy and faulty operating con-
ditions and the monotonic increase property after the failure
shows that the mean peak frequency is a reliable feature in
the detection of the failure.

One of the limitations of this research is to consider one
flight operation (i.e. hover) to develop the RUL prediction

Figure 13. The estimated and actual mean peak frequencies for the 3rd experimental scenario.
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method. In multirotor flight, the motor frequencies are con-
stantly changing especially performing maneuvers. To increase
the applicability of the developed method, real-world opera-
tions such as maneuvers or false alarms should be considered
in future studies. Moreover, instead of a single feature, other
features obtained in the time-domain, the frequency-domain,
or a combination of these features can be utilized along with
other modeling methods such as the extreme learning
machine model to increase the forecasting horizon.
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