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Abstract

The present study investigated the ability of DNA barcoding to reliably identify the endemic freshwater species in Turkey, known as 
biodiversity hotspots. The barcode region (652 bp) of the mitochondrial cytochrome c oxidase subunit I (COI) was used to barcode 
153 individuals from 13 morphologically identified species of the genus Alburnoides. Based on the Kimura two-parameter (K2P) 
evolution model, the average interspecific distance (0.0595) was 31-fold higher than the average intraspecific distance (0.0019). 
There was a clear-cut barcode gap (0.0158–0.0187) between maximum intraspecific distance (A. tzanevi and A. velioglui) and min-
imum nearest-neighbour distance (A. freyhofi and A. kurui) for Anatolian Alburnoides species and a common genetic threshold of 
0.0158 sequence divergence was defined for species delimitation. The multiple species delimitation methods (ABGD, ASAP, GMYC 
and bPTP) revealed a total of 11 molecular operational taxonomic units (MOTUs) for 13 morphospecies. Neighbour-joining (NJ), 
Maximum Likelihood (ML) and Bayesian Inference (BI) tree analysis indicated that all haplotypes were clustered into two major 
clades, which corresponded to eleven Alburnoides species clusters, with strong bootstrap support. Furthermore, all the specimens 
clustered in concurrence with the morpho-taxonomic status of the species, except for two species (A. coskuncelebii and A. emineae) 
that were morphologically differentiated, but showed overlap in variation for COI-based DNA barcode data with other species. 
Overall, present results identified that COI-based DNA barcoding is effective for species identification and cataloguing of genus 
Alburnoides in Turkey.
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Introduction

Turkey is located at the intersection of three (Caucasus, the 
Irano-Anatolian and the Mediterranean) of the world’s 35 
biodiversity hotspots (Mittermeier et al. 2004; Fricke et 
al. 2007). Turkish freshwater wetlands contain numerous 
lakes, rivers and reservoirs, which host over 180 Cyprinid 
species (Freyhof et al. 2014; Kuru et al. 2014; Çiçek et al. 
2020). However, recent reports have shown a decline in 
the number of fish caught from most Turkish inland wa-
ters due to habitat degradation, pollution, climate change, 
inadequate management of fisheries, highly-regulated 

large river drainages, such as dams and hydropower 
plants and the introduction of non-native fishes (Fricke et 
al. 2007; Çiçek et al. 2015; Tarkan et al. 2015; Freyhof et 
al. 2020). Despite being faced with serious and increas-
ing human activities-induced threats to fish biodiversity, 
especially in recent years, Turkey is not yet at the level it 
should be in terms of biodiversity and habitat conserva-
tion activities (Şekercioğlu et al. 2011). Phylogeny and 
phylogeography of Alburnoides species in Turkey were 
revealed by analysing the mitochondrial cytochrome b 
(Cyt b) gene sequences (Bektas et al. 2019a). However, 
COI-based DNA barcoding has not been performed for 
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the detection of intraspecific diversity and species de-
limitations in the genus Alburnoides, most of which are 
endemic to Anatolia. Hebert et al. (2003) proposed DNA 
barcoding technology using mitochondrial cytochrome 
c oxidase subunit I (COI) gene sequence, for which the 
intraspecific diversity is significantly lower than the inter-
specific diversity, as a barcode for species identification 
and classification. For over a decade, the COI gene has 
been widely used for classifying and identifying Cyprinid 
fishes (Hubert et al. 2008, 2015; Keskin and Atar 2013; 
Chakraborty and Ghosh 2014; Geiger et al. 2014; Karim 
et al. 2016; Lakra et al. 2016; Bayçelebi et al. 2018; 
Aksu and Bektas 2019; Bektas et al. 2019b; Rahman et 
al. 2019; Bahadır et al. 2020; Bektas et al. 2022). So far, 
the COI-based DNA barcode has been used to identify a 
limited number of cyprinid fish genera or species in Tur-
key (Keskin et al. 2012; Keskin and Atar 2013; Geiger 
et al. 2014; Bektas et al. 2019b) in Turkey. However, 
Alburnoides populations in Iran (Jouladeh-Roudbar et al. 
2016; Eagderi et al. 2019) and the Caucasus (Levin et al. 
2018), which are adjacent regions to Turkey, were bar-
coded, based on the COI sequences, but DNA barcodes of 
the Alburnoides species in Anatolia, an important centre 
of endemism, have not yet been generated.

This paper aims to determine intraspecific and inter-
specific genetic distances and to identify DNA barcodes 
of Alburnoides species from Anatolia.

Materials and methods
Sample collection and morphological 
identification

One hundred and fifty-three freshwater fish samples be-
longing to 13 Alburnoides species were collected from 
47 different sites (some from type localities) in Turkish 
inland waters between 2016 and 2020 (Fig. 1, Suppl. ma-
terial 1). Morphological identification was performed in 
situ by following the counts and measurements of Turan 
et al. (2016, 2017). After each specimen was morpholog-
ically identified, tail fin tissue was taken, preserved in 
95% ethanol and stored at –20 °C.

DNA extraction, PCR amplification and DNA 
sequencing

Genomic DNA extraction was performed using the 
DNeasy Blood & Tissue Kit (Qiagen, Hilden, Germany) 
in an automated DNA extraction robot (QIAcube). DNA 
yield and purity were quantified using a NanoDrop 2000C 
spectrophotometer (Thermo Scientific). Extracted DNA 
were stored at -20 °C. Universal PCR primers FishF1 and 
FishR1 (Ward et al. 2005) were used for COI amplifi-
cation. Polymerase chain reaction (PCR) was performed 
on BIORAD T100TM Gradient thermocycler (Biorad, 
Hercules, CA, USA) following the protocol of Ward et 
al (2005). Thermal cycling conditions were as follows: 

3 min initial denaturation at 94 °C, followed by 35 cycles 
of 1 min at 94 °C, annealing for 40 s at 54 °C, elongation 
for 1 min at 72 °C and final extention for 7 min at 72 °C. 
PCR products were electrophoresed on a 1.4% agarose 
gel containing ethidium bromide and visualised under 
UV using a gel documentation system. PCR products 
were purified using the QIAquick kit (QIAGEN, Hilden, 
Germany) according to the manufacturer’s instructions 
and purified PCR products were directly sequenced in 
both directions using an ABI PRISM 3730x1 automated 
DNA sequencer (Applied Biosystem, Foster City, USA) 
following the manufacturer’s instruction.

Genetic distance, haplotyping and phylogenetic 
analyses

Sequences were edited using DNASTAR software (Ed-
itSeq V.7.1.0 (Lasergene, DNASTAR) and aligned using 
the MegAlign V.7.1.0 (Lasergene, DNASTAR), based on 
the Clustal W (Thompson et al. 1994). The mitochondrial 
COI sequences were aligned and adjusted to have an equal 
length of 652 bp. Pairwise genetic distance amongst and 
within species, polymorphic sites and nucleotide com-
position were computed using MEGA X (Kumar et al. 
2018) with the Kimura 2-parameter (K2P) model (Kimu-
ra 1980). The haplotype data were generated using the 
DnaSP v.5 (Librado and Rozas 2009) software. All hap-
lotype sequences were submitted to GenBank under the 
accession MZ539436–MZ539471 (Suppl. material 1).

Based on the COI barcode region, phylogenetic relation-
ships amongst the Spirlin haplotypes were reconstructed 
using three methods, Neighbour-joining (NJ), Bayesian 
Inference (BI), and Maximum Likelihood (ML). The pro-
gramme jModelTest 0.1.1 (Posada 2008) was used to obtain 
the appropriate model of evolution using the Akaike Infor-
mation Criterion (AIC; Akaike (1973)) and the Bayesian 
Information Criterion (BIC; Schwarz (1978)). The NJ tree 
was generated using MEGA X (Kumar et al. 2018) with the 
Kimura-2 parameter (K2P). The node support was evaluat-
ed with 1000 bootstrap pseudo-replicates. Bayesian Infer-
ence analysis was conducted by using BEAST 1.8.2 (Drum-
mond et al. 2012), setting a coalescent tree prior and an 
uncorrelated lognormal relaxed clock. Each Bayesian tree 
was run for 10 million generations with a sampling frequen-
cy of 1,000 and were combined with a burn-in set to 25% 
using LogCombiner 1.8.2 (Drummond et al. 2012). A ma-
jority rule consensus tree was constructed using TreeAnno-
tator 1.8.2 (Rambaut and Drummond 2015). In BEAST, the 
divergence date of Alburnoides and Rutilus (approximately 
27 Mya; Levy et al. (2009); Perea et al. (2010)) was used 
as a calibration point for estimating the divergence times of 
Alburnoides species. The ML method was performed with 
RAxML v.8.1.21 (Stamatakis 2014). The support of each 
node was estimated using a rapid bootstrap analysis with 
1,000 replicates. Rutilus rutilus (GenBank Accession No. 
MW473258) was used as an outgroup. The obtained trees 
were visualised using FigTree v.1.4.3 (Rambaut 2012) and 
modified using Adobe Photoshop CS6 software.

http://www.ncbi.nlm.nih.gov/nuccore/MZ539436
http://www.ncbi.nlm.nih.gov/nuccore/MZ539471
http://www.ncbi.nlm.nih.gov/nuccore/MW473258
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Species delimitation methods

To estimate Molecular Operational Taxonomic Units 
(MOTUs), two distance-based methods, Automatic Bar-
code Gap Discovery (ABGD; Puillandre et al. (2012)) 
and Assemble Species by Automatic Partitioning (ASAP; 
Puillandre et al. (2020)) and two tree-based approaches, 
the General Mixed Yule-coalescent (GMYC; Pons et al. 
(2006)) and Bayesian poisson tree process (bPTP; Zhang 
et al. (2013)), were applied to the COI dataset.

For the species delimitation, we used Automatic Bar-
code Gap Discovery (ABGD) (Puillandre et al. 2012) 
and Assemble Species by Automatic Partitioning (ASAP) 
(Puillandre et al. 2020) (both distance-based methods) on 
the alignment of CO1 sequences. The ABGD species de-
limitation was performed via the ABGD web server with 
default settings (Pmin = 0.001, Pmax = 0.1, Steps = 10, X rel-
ative gap width = 1.5, Nb bins = 20) and testing of two 
substitution models (JC69 and K2P) for calculation of the 
Kimura 2-parameter distances (https://bioinfo.mnhn.fr/abi/
public/abgd/abgdweb.html, accessed on 3 March 2022). 
ASAP species delimitation was performed via the ASAP 
web server with testing of all three substitution models 
for calculation of the distances (https://bioinfo.mnhn.fr/
abi/public/asap/asapweb.html, accessed on 19 December 
2022) using the distance matrix, generated through MEGA 
X (Kumar et al. 2018).

The single‐locus and tree‐based delimitation approach-
es, the General Mixed Yule-coalescent (GMYC; Pons et 
al. (2006)) and Bayesian poisson tree process (bPTP; 
Zhang et al. (2013)) models, distinguish specimens in 
species level using coalescence theory. The ultrametric 
tree required for the GMYC method was obtained using 
BEAST 1.8.2 (Drummond et al. 2012) on COI dataset. 
The MCMC chain was run for 10 million generations 
with the best substitution model calculated in jModelTest 
0.1.1 (Posada 2008) and the Yule speciation model. The 
MCMC log-on prior and posterior values was examined 

in Tracer 1.6 (Rambaut et al. 2014) and a burn-in of 1 mil-
lion generations was used to avoid suboptimal trees in the 
final consensus tree. The single-threshold GMYC meth-
od was run using ultrametric haplotype BEAST trees on 
the GMYC web server (species.h-its.org/gmyc, accessed 
on 06 May 2022). For PTP-based MOTU estimation, the 
needed rooted phylogenetic input-tree was constructed 
with RAxML v.8.1.21 (Stamatakis 2014) with the best 
substitution model. The PTP model was implemented 
following the default parameters and 500,000 MCMC 
generations on the bPTP web server (http://species.h-its.
org/ptp/).

We based species delimitation on a majority consensus 
of the results inferred from all four methods: two species 
were considered a single species if at least three out of 
four methods harmoniously merged two species as one.

Distance-based species assignment

Distance-based methods of species assignments in con-
junction with computer simulations can determine the 
statistical significance of species identification success 
rates (Huang et al. 2013). To evaluate the potential of 
the COI dataset for correct species identification and to 
select the best threshold value, these were tested using 
the ‘Best Close Match’ (BCM), implemented in Species 
Identifier 1.8 programme of TaxonDNA software (Meier 
et al. 2006).

Results

Sequence variation of morphospecies
A total of 36 distinct haplotypes for COI barcode region 
were identified (Suppl. material 1). The average nucleo-
tide frequencies were 29.71 (T), 25.98 (C), 19.20 (G) and 

Figure 1. Map showing the range of distribution for each species and sampling points within each species.

https://bioinfo.mnhn.fr/abi/public/abgd/abgdweb.html
https://bioinfo.mnhn.fr/abi/public/abgd/abgdweb.html
https://bioinfo.mnhn.fr/abi/public/asap/asapweb.html
https://bioinfo.mnhn.fr/abi/public/asap/asapweb.html
http://species.h-its.org/ptp/
http://species.h-its.org/ptp/
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25.11 (A)%. The mean ratio is approximately 6:1. In this 
study, the average intraspecific K2P distance was 0.0019, 
compared with the 0.0595 intraspecific value. The mean 
interspecific distance was found to be 31-fold higher than 
the mean intraspecific distance.

Phylogenetic relationships within Alburnoides

Phylogenetic relationships amongst Alburnoides species 
were investigated using TIM3+I+G, which was selected 
as the best evolution model in BI and ML approaches for 
our dataset. Neighbour-joining, Maximum Likelihood and 
Bayesian Inference analyses generated similar tree topol-
ogies and two main clades were detected consisting of 
eleven deeply divergent haplogroups within Alburnoides 
(posterior probabilities ≥ 0.95 and 68% ≤ bootstrap values 
for ML and NJ, Fig. 3). The dataset was analysed using 
the strict molecular clock in BEAST. The timing of split-
ting-events of Alburnoides lineages are shown in Fig. 3.

Species delimitation

The morphological species hypothesis was not supported 
by our analyses using ABGD, ASAP, bPTP and GMYC, 
which delimited 13 species. Nevertheless, 11 putative spe-
cies were recognised by all the methods that we applied 
to the COI dataset. We detected a distinct gap between in-
tra- and interspecific genetic distances for 11 hypothetical 
species of Alburnoides, ranging from 0.0158 to 0.0187 
for K2P distances (Fig. 2). Results from the four species 
delimitation analyses, ABGD, ASAP, bPTP and GMYC 
are summarised in Fig. 3. Relationships amongst the ma-
jor clades, identified using the GMYC and bPTP analyses 
(Fig. 3), were identical to each other and to the concate-
nated phylogenies. Nodal support was high (> 0.95) for 
most nodes of the BEAST consensus tree (Fig. 3). Results 
from GMYC and bPTP tests corroborated the presence of 
eleven independent lineages in Alburnoides (Fig. 3). Ac-
cording to the four methods of MOTU delimitation, there 
was an overlap between A. tzanevi-A. coskuncelebii and 

A. velioglui-A. emineae belonging to the genus Alburnoi-
des. Therefore, the Alburnoides dataset was reduced to 
eleven groups, based on the results of four delimitation 
methods (Fig. 3).

Species identification with BCM

Due to the observed discrepancy between taxa delimited, 
based on the four MOTU delimitation methods described 
above and morphospecies, all Alburnoides species in 
Turkey were assigned into eleven of thirteen categories. 
Moreover, the DNA barcoding gap, which was the max-
imum intraspecific distance of each species against its 
minimum distance to the nearest neighbour, was calcu-
lated for all species. The maximum sequence divergence 
amongst individuals of some species (A. tzanevi: 0.01583 
and A. velioglui: 0.01582, Table 1) exceeded some of the 
nearest-neighbour distance values (A. velioglui & A. em-
ineae: 0.0142 and A. tzanevi & A. coskuncelebii: 0.0120). 
Therefore, the identification success of the BCM method 
was re-evaluated by treating A. velioglui-A. emineae and 
A. tzanevi-A. coskuncelebii as a species in the dataset us-
ing a final distance threshold of 0.0158 (Table 1) and the 
BCM approach returned 100% correct identifications.

Table 1. Mean and maximum intraspecific and nearest-neigh-
bour (NN) distance (percentage) for all species.

Species Mean 
intraspecific 

distance

Max. 
intraspecific 

distance

Nearest 
neighbour

Distance 
to NN

A. smyrnae N/A N/A A. tzanevi 0.04801
A. tzanevi 0.00758 0.01583 A. freyhofi 0.02516
A. freyhofi 0.00145 0.00308 A. kurui 0.01875
A. turani N/A N/A A. eichwaldii 0.03885
A. manyasensis 0.00028 0.00153 A. turani 0.04611
A. velioglui 0.00862 0.01582 A. eichwaldii 0.02848
A. kosswigi 0.00329 0.00776 A. turani 0.05350
A. diclensis N/A N/A A. eichwaldii 0.03076
A. fasciatus N/A N/A A. eichwaldii 0.04945
A. kurui N/A N/A A. freyhofi 0.01875
A. eichwaldii 0.00168 0.00464 A. velioglui 0.02845

N/A denotes that species is a singleton.

Figure 2. Histogram (A) and ranked pairwise (K2P) distances (B) amongst COI-based barcode sequences by the automated barcode 
gap discovery (ABGD) approach.
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Figure 3. Species delimitation results visualised as bars on an ultrametric Bayesian phylogenetic tree of Alburnoides COI gene. The 
tree phylogroups were obtained according to ABGD, ASAP, GMYC, bPTP and morphology. As outgroup, Rutilus rutilus was used.
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Discussion
Phylogenetic reconstructions

Morphological identification of Spirlin can be challeng-
ing due to their similar morphology and limited mor-
phological information. As maternally-inherited mtDNA 
evolves about four times faster than that of the nucle-
ar genome, mtDNA can be used to track differences in 
closely-related taxa and even within species (Stepien and 
Kocher 1997; Desalle et al. 2017). In this study, the phy-
logenetic relationships inferred using mitochondrial COI 
(Fig. 3) are consistent with previous studies using several 
mitochondrial markers (Jouladeh-Roudbar et al. 2016; 
Stierandová et al. 2016; Levin et al. 2018), but differ in 
some of the deepest nodes, with the currently accepted 
phylogenies of Alburnoides (Cyt b, Bektas et al. 2019a). 
As seen in the phylogenies of Bektas et al. (2019a), the 
phylogenetic reconstructions strongly support the topol-
ogy of two clades (western and eastern), containing 13 
Alburnoides lineages, each corresponding to the species, 
with moderate-high posterior probability and bootstrap 
values (> 0.95 pp, > 86 BT; Fig. 3). On the contrary, the 
analysis of the present COI dataset supports the existence 
of 11 instead of 13 major lineages in Alburnoides. The 
phylogenetic trees constructed (Fig. 3) showed that the 
most conspecific haplotypes cluster together, which sub-
stantially confirmed previous taxonomic assignments, 
based on morphology (Turan et al. 2013, 2014, 2016, 
2017; Kaya 2020). Nevertheless, our phylogenetic tree 
topologies are completely not congruent with the mor-
phological data: A. emineae is located inside A. velioglui 
and A. coskuncelebii is located inside A. tzanevi.

As most closely-related species (A. cockuncelebii 
/ A. tzanevi and A. emineae / A. velioglui) do not share 
haplotypes and both species pairs are living allopatrically, 
the low genetic distances between them may be a result 
of recent speciation, thus representing the most recently 
diverged species in the study area. Alburnoides tzanevi 
is found in some rivers that flow into the Black Sea from 
the Bulgarian-Turkish border to Sinop, the northernmost 
point of Turkey, while A. coskuncelebii has only been re-
ported from the Büyükmelen River, which is also the type 
locality. As can be seen in Fig. 1, the geographic distri-
butions of A. tzanevi and A. coskuncelebii overlap. Cor-
rected divergence estimates between the species (Fig. 3) 
indicate that this phylogeographical structure was initiat-
ed by historical events of the Early to Middle Pleistocene. 
Current distributions of two species are restricted to the 
Thrace and south-western Anatolia coastal areas of the 
Black Sea (Fig. 1), where they, thus, most likely survived 
several later glacial cycles in separate allopatric refugia. 
The Tigris-Euphrates River system originated in the Late 
Miocene, developed from small and probably short-lived 
isolated channels in the Pliocene and became the main 
drainage system of the region at present (Stow et al. 2020). 
Alburnoides velioglui is found in the upper tributaries of 
the Euphrates, the Karasu and Murat and A. emineae is in 

the Beyazsu Stream, which is the upper tributary of the 
Khabur River in the Euphrates drainage system, within 
the borders of Turkey. According to our divergence time 
estimates (Fig. 3), these species were probably isolated in 
the distant tributaries of the Euphrates after the Pliocene 
(Trifonov et al. 2018), when the drainage system of the 
region evolved into its present form.

Species delimitations

In our study, the combination of four species delimitation 
methods (ABGD, ASAP, bPTP and GMYC) (Fig. 3) im-
plemented, suggested that our results generally confirm 
the high taxonomic utility of the COI-barcoding region in 
Alburnoides and most closely correspond to the current 
morphology-based classification of Alburnoides. Con-
trary to the findings of Turan et al. (2014, 2019), which 
reported a total of 13 Alburnoides species, a total of elev-
en putative partitions were identified amongst Spirlin 
samples, based on COI-based analysis in this study. There 
was a strong consensus between the species delimitation 
results and the phylogenetic clustering, revealing the fol-
lowing lineages: A. smyrnae, A. tzanevi, A. eichwaldii, 
A. freyhofi, A. kurui, A. turani, A. manyasensis, A. velio-
glui, A. kosswigi, A. diclensis and A. fasciatus (Fig. 3).

Algorithms like bPTP/GMYC help us to objectiv-
ise species or as an argument to drop poorly-described 
morphotaxa. The reason why we use different approach-
es like bPTP and GYMC is that they may give different 
results. When we test the number of morphotaxa using 
both approaches for our dataset, we found that the results 
of bPTP and GYMC analyses are harmonised, but under-
estimate the number of species. We need to discuss these 
morphospecies when the pPTP and GMYC do not match 
the tip labels (phenotypic) or give a lower number. bPTP 
and GMYC give 11 species standing against the 13 an-
notated in ML and BI trees. Looking at the topology and 
branch-lengths distribution in NJ and BI trees, it shows 
11 clades regarding intraclade coherence and interclade 
distinction (Fig. 3). This result tells us that the number 
of morphologically distinguished species is high. Most of 
the major clades include only one species, with only two 
including genetically quite similar species. These species 
(A. emineae and A. coskuncelebii) are poorly separat-
ed from other ones, so reducing the number of species 
makes sense. A. emineae falls into the A. velioglui group, 
which has a higher intra-species diversity. Similarly, 
A. coskuncelebii is nearly identical to some tzanevi, but 
the A. tzanevi’s intra-species diversity is higher. Therefore, 
there is little reason molecular-wise to keep A. emineae 
and A. coskuncelebii as a different species. Following the 
bPTP/GMYC result, species epithets, A. velioglui and 
A. tzanevi, can be dropped as they have priority. Conse-
quently, the species delimitation algoritm showed that 
A. tzanevi and A. coskuncelebii merged into a single puta-
tive species, while A. velioglui and A. emineae were also 
merged into a single putative species.
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Our results revealed two cases of discordance be-
tween morphology-based classification and COI-barcod-
ing-based species delimitation. These discordances result-
ed from the underestimation of possible species in which 
taxa, currently recognised as valid taxa, collapse in single 
barcode units. The first case when COI-barcoding failed 
to recognise morphologically distinct taxa as independent 
MOTUs includes the A. tzanevi and A. coskuncelebii from 
the Black Sea drainage in Thrace and western Anatolia. 
In our analyses, all methods recognised A. tzanevi and 
A. coskuncelebii, as a single unit (Fig. 3). Alburnoides 
coskuncelebii was recently recognised from the Büyük 
Melen, a catchment situated between the Sakarya and 
Kızılırmak Rivers, while A. tzanevi from small streams in 
Thrace and adjacent Anatolia (Turan et al. 2019). These 
results may be explained by allopatric speciation which 
led to initial differentiation in mtDNA and morpholo-
gy, which was reported earlier for Spirlins (Bektas et al. 
2019a). The second case is the allopatric A. velioglui and 
A. emineae, inhabiting Murat, Munzur, Sultansuyu and 
Beyazsu Rivers (Suppl. material 1) in the upper tributaries 
of the Euphrates River Basin. These two species are easily 
distinguished by several diagnostic morphological charac-
ters (Turan et al. 2014), yet all species delimitation meth-
ods applied herein failed to recognise them as independent 
groups (Fig. 3). Further studies, including examination of 
nuclear DNA markers, are required to clarify evolutionary 
relationships and taxonomic status of these species.

Barcoding gap and automated identification

Species identification, using DNA barcoding, is based on 
the principle that the genetic distance between two species 
is much greater than that within a species (Ge et al. 2021). 
A 10-fold sequence difference between the average 
interspecific and the average intraspecific differences 
has been suggested as the standard COI threshold for 
animal species identification (Hebert et al. 2004). In our 
present study, the mean interspecific distance was found 
to be 31-fold higher than the mean intraspecific distance, 
which was higher than the 23-fold difference observed in 
Caucasian Alburnoides species (Levin et al. 2018) and 
the 15-fold differences observed in Iranian Alburnoides 
species (Jouladeh-Roudbar et al. 2016). This difference 
is due to the fact that the average interspecies genetic 
distance calculated in this study (0.0595) is higher than 
those (0.0395 for 13 Caucasian species and 0.0386 for 11 
Iranian species) in previous studies (Jouladeh-Roudbar et 
al. 2016; Levin et al. 2018). In other words, our results 
point to clear genetic differences between the Anatolian 
species of Alburnoides. The high species diversity and 
clear interspecies genetic differentiation detected for 
Alburnoides can be attributed to the presence of three 
biodiversity hotspots (Mediterranean, Caucasus and 
Irano-Anatolian) that coincide in Anatolia (Mittermeier et 
al. 2011) and the fact that Turkey served as the refugium for 
southern European taxa during the last glacial age (Reyjol 

et al. 2007; Bilgin 2011). Anatolia, indeed, exhibits high 
species diversity and endemic species richness compared 
to its neighbouring regions (Levy et al. 2009; Giannetto 
and Innal 2021). The families Nemacheilidae, Gobiidae, 
Cobitidae and Salmonidae provide evidence that Anatolia 
is such a centre of diversity (Kuru et al. 2014).

Based on mitochondrial Cyt b gene sequences, 
Stierandová et al. (2016) reported that Alburnoides lineag-
es in Albania show low mitochondrial distances between 
0.83% and 1.43%, which are more likely to be evaluated 
at an intraspecific level. On the other hand, Levin et al. 
(2018) reported a COI-based threshold value of 1.3% for 
Alburnoides species in the Caucasian and Middle East 
regions. Our results indicate that there is a clear barcod-
ing gap (0.0158–0.0187) separating the intraspecific and 
interspecific distances. Consequently, a common genetic 
distance threshold of 0.0158 was observed for rapid and 
reliable identification of Alburnoides species. We think 
that our threshold value, which is higher than that report-
ed by Levin et al. (2018), is due to the complex topogra-
phy and geomorphology of Anatolia (EEA 2002).

Conclusion

Our study demonstrates the usefulness of DNA barcod-
ing for the identification of Alburnoides species in Tur-
key. This study contributes to the construction of DNA 
reference barcode data for Turkish fish fauna. We also 
confirm that DNA barcoding could assist in resolving 
issues of ambiguity in morphological identification of 
species. Finally, it has been concluded that COI-based 
DNA barcoding is a reliable and useful approach for the 
genetic identification of morphospecies belonging to the 
genus Alburnoides.
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