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Objective: Previous studies revealed that prenatal exposure to androgen excess such as polycystic ovary
syndrome (PCOS) is associated with offspring's anogenital distance (AGD) length, and AGD is a biomarker
of intrauterine androgen exposure. This study aims to investigate a possible relationship of fetal AGD
with maternal diabetes and obesity, and to evaluate whether AGD predicts the fetal androgen exposure
related to diabetes and obesity in female fetus. This study is the first to focus on the relationship between
offspring's AGD and maternal diabetes and obesity.
Materials and methods: This is a prospective study investigating 218 pregnant women (125 in control
group and 93 in study group). Fetal AGD was measured from the center of anus to the posterior
convergence of the fourchette by ultrasound. Multivariate linear regression analysis was applied to assess
the association of the fetal AGD length with maternal diabetes and obesity.
Results: The control patients had significantly shorter fetal AGD (mean:10.7 mm, P < 0.001) compared to
diabetic, obese and diabetic obese patients (mean: 12.6 mm, 12.8 mm and 12.9 mm, respectively). The
results of regression analysis showed that both maternal diabetes and obesity were significantly corre-
lated with longer AGD in female fetus. The results confirmed also that offspring's AGD measurement in
utero by ultrasound is feasible and reliable.
Conclusion: The study findings suggest that both maternal diabetes and obesity are associated with
intrauterine androgenic milieu during pregnancy, and fetal AGD may be used as a biomarker to predict
this effect. This may provide important advantages in terms of early detection of reproductive system
abnormalities related to prenatal androgen exposure.
© 2023 Taiwan Association of Obstetrics & Gynecology. Publishing services by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

The fetal reproductive system development is susceptible to the
inappropriate levels of androgens in maternal circulation.
Androgen or anti-androgen exposure causes structural and physi-
ological consequences on the developing fetus [1,2]. There is an
androgen-sensitive period in early fetal life, likely between 8 and 14
weeks, during which genital development is programmed and
fetus is particularly vulnerable to endocrine disruption [3]. Any
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endocrine disruption that occurs during this period may have
phenotypic consequences later in life [4].

Maternal hyperandrogenism such as congenital adrenal hyper-
plasia, placental aromatase deficiency, ovarian luteoma can cause
varying degrees of virilization of female genitalia and lead to life-
long consequences on the reproductive system [2]. Previous studies
provided evidence that even subtle changes in androgen level may
have effects on fetal reproductive system development [5]. There is
an association between prenatal androgen exposure and long-term
health effects such as high AMH levels and increased antral follicles
in adult ovaries, masculine behavior and preferences and PCOS
[6,7].

Diabetes and obesity are two well-known interrelated chronic
diseases that cause hyperandrogenism in women of reproductive
age [8,9]. There is a strong correlation between increased body
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mass index (BMI) and insulin resistance and hyperinsulinemia.
Hyperinsulinemia and insulin resistance cause an increase in
androgen levels by stimulating ovarian LH-induced androgen syn-
thesis and suppressing hepatic sex hormone binding globulin
synthesis. If obesity is accompanied by insulin resistance, the risk of
developing hyperandrogenism is even higher [10,11]. Maternal
hyperandrogenism associated with diabetes and obesity may be a
potential source of androgen excess on the fetal development
[2,12].

Since there is no direct method that can safely determine the
intrauterine hormonal environment, it is necessary to define and
develop indirect biomarkers to evaluate fetal androgen exposure in
human pregnancies. In recent years, it has been suggested that
anogenital distance (AGD) is a sensitive marker reflecting intra-
uterine androgen levels [13,14]. AGD refers to the distance from the
anus to the genitals. It is androgen dependent and sexually
dimorphic parameter, with females having shorter length than
males. This male-female difference is observed as early as 11 weeks
of gestation and the ratio was fixed as male/female ¼ 2/1 between
the 17e20 weeks of gestation and ratio remained constant until at
least 2 years of age [3]. There is substantial observational evidence
supporting the link between AGD and androgen exposure in fetal
life in humans. Previous study revealed that prenatal exposure to
antiandrogenic factors such as endocrine disrupting agents in
males and to androgen excess such as PCOS in females is associated
with offspring's AGD length [5,13,15].

The present study seeks to investigate a possible relationship
between maternal diabetes and obesity and fetal AGD length in
females. Thus, we aimed to demonstrate whether AGD is a
biomarker in the assessment of fetal effect of maternal androgenic
milieu related to diabetes and obesity. Since obesity and diabetes
often accompany each other, we examined these two causes of
hyperandrogenism together. This is the first time that the associa-
tion of female offspring's AGD with maternal diabetes and obesity
has been studied.

Material and method

Study design and participants

This is a prospective study carried out in Ankara City Hospital
(Turkey) for a period of one year from September 2019 to
September 2020. The participants consisted of Turkish singleton
pregnant women with female fetus at between 26 and 35 gesta-
tional weeks with normal fetal anatomy according to the per-
formed in second trimester sonogram. The study group was
composed of patients with diabetes (pregestational and gesta-
tional) and/or obesity. The control group involved pregnant women
who met the inclusion criteria, and were not complicated by dia-
betes (confirmed by negative oral glucose tolerance test result and
negative history) or obesity.

In our study, we assessed the confounding factors and excluded
those with medical conditions associated with hyperandrogenism,
such as PCOS, anovulation, congenital adrenal hyperplasia, history
of hypertensive disorders, endocrine disorders, treatment of infer-
tility and high maternal stress during pregnancy. In addition, we
assessed the use of medications which might affect the level of
hyperandrogenism as oral contraceptive agents, antipsychotic,
antiepileptic, steroid hormones, antihypertensive, insulin-
sensitizing drugs during pregnancy and habits such as cigarette
or alcohol.

Pregestational diabetes refers to type 1 (insulin deficiency
caused by the autoimmune process) or type 2 (peripheral insulin
resistance and relative insulin deficiency) diabetes diagnosed
before pregnancy [16]. Gestational diabetes (GDM) was defined as
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carbohydrate intolerance that recognized firstly during pregnancy.
All pregnant women were tested for GDM by two-step screening
protocol between 24 and 28 weeks of gestation as a part of routine
prenatal management. Women with a serum glucose level more
than 140 mg/dl measured 1 h after the 50-g oral glucose solution
administration were evaluated as positive for screening, and 100-g,
3-h OGTT was applied to these women. GDM have been diagnosed
when two or more abnormal glucose values were detected ac-
cording to Carpenter and Coustan criteria: fasting �95 mg/dl, 1-
h �180 mg/dl, 2-h �155 mg/dl, and 3-h �140 mg/dl [17]. Obesity
is defined as body mass index (BMI) is 30 kg/m2 and above [18].

This study included only pregnant women with female fetuses.
Previous studies have shown that AGD is affected by androgen
excess in female infants, and by antiandrogenic factors in males
[5,13]. Since this study focused on obesity and diabetes, which are
hyperandrogenic factors, only the patients with female fetuses
were selected as the study group.

All pregnant women who attended to the perinatology clinic
during study period were evaluated for eligibility to study. The
patients were informed about the study and the written informed
consent was obtained. Patients whose fetal AGD could not be
measured by ultrasound due to obesity were excluded from the
study. A total of 218 patients participated in the study: 36 with
diabetes, 32 with obesity, 25 with diabetes and obesity and 125 in
control group.

Anogenital distance measurements

Ultrasonographic evaluation was made by Voluson S 10 scanner
(Wipro GE Healthcare Private Limited, Karnataka, India) with a
2e8 MHz curvilinear abdominal transducer. All measurement was
performed by one expert physician. During the ultrasound exami-
nation, the examiner was blinded to the groups. No information
was given to the examiner about which group the examined patient
belonged to. However, since the obesity is a visible characteristic,
complete blindness may have not been provided in this regard.

Previous studies have shown that fetal AGD can be measured
reliably from 21 weeks of gestation [19,20]. AGD measurement was
performed in the axial plane with the fetal legs open, in the fetal
perineum areawhere the anal sphincter was seen as the target sign,
as described by Gilboa, Kivilevitch [20]. AGD was measured from
the center of anus to the posterior convergence of the fourchette by
using electronic caliper (Fig. 1). In cases where measurement could
not be taken due to the fetal position, themother walked around for
a while and the examination was repeated.

Statistics

Statistical analyses were carried out with IBM SPSS Statistics for
Windows, version 23 (IBM Corp., Armonk, N$Y., USA). The mean
and standard deviation were calculated for continuous and nor-
mally distributed variables. Categorical variables were presented as
frequencies and percentages. To compare the population differ-
ences (control group, diabetic group, obese group and diabetic
obese group), we used one-way analysis of variance (ANOVA) for
continuous variables and Pearson chi square test for categorical
variables. A significance level of p < 0.05 was applied in all analyses.

Multivariate linear regression analysis was applied to control for
the possible confounding effects of covariates. We identified a
number of potential covariates based on previous studies exam-
ining the relationship between maternal hyperandrogenism and
offspring's AGD. As explained above, some potential confounders
such as history of PCOS, highmaternal stress andmaternal cigarette
or alcohol use were already excluded from the study. Gestational
age and fetal weight were the main covariates included in



Table 2
Results of the multivariate linear regression analysis (fetal AGD as the dependent
variable).

b coefficient 95% CIa P-value

Model 1
Estimated fetal weight 0.612 (0.003, 0.004) <0.001
Study groupb 0.392 (0.688, 1.180) <0.001
Maternal age �0.020 (-0.057, 0.040) 0.732
Gravida 0.039 (-0.221, 0.450) 0.501
R2 ¼ 0,497
Model 2
Gestational age 0.618 (0.535, 0.734) <0.001
Study groupb 0.403 (0.717, 1.207) <0.001
Maternal age 0.005 (-0.047, 0.051) 0.934
Gravida 0.035 (-0.231, 0.436) 0.546
R2 ¼ 0,502
Model 3
Estimated fetal weight 0.615 (0.003, 0.004) <0.001
Obesity 0.273 (1.005, 2.162) <0.001
Diabetes 0.251 (0.841, 2.025) <0.001
Maternal age �0.033 (-0.063, 0.035) 0.579
Gravida 0.029 (-0.249, 0.421) 0.613
R2 ¼ 0,505
Model 4
Gestational age 0.623 (0.540, 0.737) <0.001
Obesity 0.277 (1.034, 2.183) <0.001
Diabetes 0.266 (0.928, 2.105) <0.001
Maternal age �0.009 (-0.052, 0.045) 0.877
Gravida 0.024 (-0.262, 0.403) 0.675
R2 ¼ 0,512

a Confidence interval.
b The study group variable has four categories: control group, diabetic group,

obese group, and diabetic obese group.

Fig. 1. Sonographic image of the fetal anogenital distance: anus-fourchette distance
and anus-clitoris distance.
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regression models, as the AGD will increase with the advancement
of gestational age and the increase of fetal weight. Maternal age and
gravida were also included in the regression models. Because there
were significant differences between the control group and the
study groups (diabetic, obese and diabetic obese groups) in terms of
these two variables (Table 1).

Gestational age and estimated fetal weight are highly correlated
variables. Therefore, we did not include these two variables in the
same model in order not to reuse a factor that has already been
accounted. To evaluate the impact of gestational age and fetal
weight on AGD, we created two sets of models in which these are
included separately. Similarly, the variables related to obesity and
diabetes formed two different sets of models. First, the study group
variable (control group; diabetic group; obese group; diabetic
obese group) included in a set of regression model. Secondly, the
variables of diabetes (diabetic patients; non-diabetic patients) and
obesity (obese patients; non-obese patients) were introduced as
two separate variables in another set of model. Thus, we set up four
different multivariate linear regression models in total. The fetal
AGD length was the dependent variable in all models (Table 2).
Table 1
Patient characteristics and fetal AGD measurement.

Control patients
(n ¼ 125)

Di
(n

Maternal age (years; mean ± SD) 27.2 ± 5.9 31
Pre-pregnancy body mass index (kg/m2; mean ± SD) 23.6 ± 3.2 25
Gestational age (weeks; mean ± SD) 31.2 ± 2.5 30
Estimated fetal weight (grams; mean ± SD) 1755 ± 452 17
Gravida, n (%)
1 66 (52.8) 5 (
2 27 (21.6) 12
� 3 32 (25.6) 19

Diabetes type, n (%)
Type 1 DM e 3 (
Type 2 DM e 8 (
Gestational DM e 25

Diabetes treatment, n (%)
Diet e 15
Insulin e 21

AGD measure (mm)
Mean ± SD 10.7 ± 2.1 12
Minimum 7 7.7
Maximum 16.3 19
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Ethics

This study was conducted in accordance with the Declaration of
Helsinki principles. It was approved by the Ethics Review Com-
mittee of Dr. Zekai Tahir Burak Women Health Care, Training, and
Research Hospital (approval number: 115/2019).

Results

In total, the data of 125 control and 93 diabetic and/or obese
patients were analyzed. The characteristics of study population
were presented in Table 1. The control group and the study sub-
groups (diabetic, obese, and diabetic obese patients) were similar
abetic patients
¼ 36)

Obese patients
(n ¼ 32)

Diabetic obese patients
(n ¼ 25)

P

.3 ± 4.8 29.8 ± 5.6 33.7 ± 5.1 <0.001

.3 ± 3.1 34.4 ± 4 35 ± 4.7 <0.001

.9 ± 2.2 31.1 ± 2.5 30.2 ± 2.6 0.379
17 ± 457 1752 ± 514 1635 ± 458 0.681

<0.001
13.9) 10 (31.3] 4 (16)
(33.3) 8 (25) 7 (28)
(52.8) 14 (43.7) 14 (56)

8.3) e 1 (4)
22.2) e 12 (48)
(69.5) e 12 (48)

(41.7) e 9 (36)
(58.3) e 16 (64)

<0.001
.6 ± 2.6 12.8 ± 2.8 12.9 ± 2.7

7.1 8
.5 18.3 17.1
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with regard to gestational age (P ¼ 0.379) and estimated fetal
weight (P ¼ 0.681). But there were significant differences in
maternal age (P < 0.001) and gravida (P < 0.001). The majority of
diabetic patients had gestational diabetes (69.5%) and 58.3% of
them were receiving insulin therapy.

The patients in control group had significantly shorter fetal AGD
(mean:10.7 mm, P < 0.001) compared to the study groups (Table 1
and Fig. 2). The mean length of AGD was similar in diabetic, obese
and diabetic obese groups: 12.6 mm, 12.8 mm and 12.9 mm,
respectively.

The distribution of individual measurements of fetal AGD for the
control group and the study groups is plotted in Figs. 3 and 4 ac-
cording to gestational week and estimated fetal weight. The fitted
linear regression lines indicated that AGD had a linear correlation
with both estimated fetal weight and gestational age in all groups.

Fetal AGD length was assessed according to diabetes types and
no significant difference was found between patients with pre-
gestational (mean ¼ 12.9 mm) and gestational (mean ¼ 12.7 mm)
diabetes (P ¼ 0.776). Since the number of patients with type 1
diabetes was low (n ¼ 4), we could not compare type 1, type 2, and
gestational diabetes separately.

Fetal AGD length was also evaluated according to diabetes
treatment. Although the fetal AGD was slightly longer in patients
who received insulin treatment (mean ¼ 13.1 mm) compared to
those who did not receive insulin (mean ¼ 12.2 mm), no significant
difference was found (P ¼ 0.237).

The results of the regression analysis were presented in Table 2.
The findings suggest that both estimated fetal weight and
Fig. 2. Ultrasound images of AGD measurement from the study group and the control
group. In the study group sample, AGD (anus-fourchette distance) is longer and the
ratio of anus-fourchette distance/anus-clitoris distance is bigger than in the control
group sample.
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gestational age have a strong association with fetal AGD. The
impact of these two variables on fetal AGD lengthwere very close to
each other. We did not find any relationship between fetal AGD and
maternal age. Similarly, therewas no association between fetal AGD
and gravida.

The results from regression analysis showed that after control-
ling confounding factors, the study group variable was still signif-
icantly associated with fetal AGD (b ¼ 0.392 [95% CI, 0.688, 1.180],
P < 0.001 in the Model 1 adjusted with the estimated fetal weight
and b ¼ 0.403 [95% CI, 0.717, 1.207], P < 0.001 in the Model 2
adjusted with the gestational age). In the regression models by
which we assessed separately the impact of diabetes and obesity,
the results revealed that both the diabetes and the obesity were
significantly correlated with longer AGD in female fetus. The
obesity (b ¼ 0.273 [95% confidence interval (CI), 1.005, 2.162],
P < 0.001 in the Model 3 adjusted with the estimated fetal weight
and b ¼ 0.277 [95% CI, 1.034, 2.183], P < 0.001 in the Model 4
adjusted with the gestational age) was found to have a slightly
stronger association than the diabetes (b ¼ 0,251 [95% CI, 0.841,
2.025], P < 0.001 in theModel 3 and b¼ 0.266 [95% CI, 0.928, 2.105],
P < 0.001 in the Model 4).

Discussion

The results of our study show in the first time in the literature
that both maternal diabetes and obesity are associated with
increased AGD in female fetus.

In recent years, evidence has accumulated that AGD can be used
as a marker of androgen exposure in early fetal life and a predictor
of adult reproductive system functions [5]. In their pioneering
work, Callegari, Everett [21] showed that the ratio of anus-
fourchette distance/anus-clitoris distance was stable (1/3) in
normal newborns, but in babies with congenital adrenal hyper-
plasia, AGD and this ratio increased. They stated that it could be
considered as a sign of virilization in fetal life. In recent years, some
studies investigated AGD in female infants of mothers with PCOS.
They reported that long AGDwas observed in these infants and this
could be explained by increased maternal androgens accompa-
nying PCOS [22e24]. Other studies found an association between
female offspring's AGD length and maternal prenatal stress,
maternal smoking habit and pre-pregnancy menstrual irregular-
ities [13,25,26]. A previous study showed the relationship of AGD
with maternal age and gravida in male fetuses, but not in girls [27].
Our study did not find any association between maternal age and
gravida and AGD in female fetuses, and this is in line with the
previous study.

Some studies, focused on the relationship between AGD length
and reproductive functions in adult females, showed that increased
AGD was associated with PCOS and high testosterone levels
[28e30] and shortened AGD was associated with endometriosis
[31].

Our findings provide indirect evidence for the androgen expo-
sure on fetus in diabetic and obese pregnant women and this raised
the question of whether diabetes and obesity could adversely affect
the development of reproductive system in females. Increased
maternal androgen levels in diabetic pregnancies have been shown
in many studies [32e34]. The relationship between BMI and
maternal androgen level has not been studied much but a positive
correlation was shown [35]. In normal pregnancies, the fetus is
protected from high maternal androgen levels with placental aro-
matase activity and high sex hormone binding protein levels.
However, it has been shown that hyperinsulinemia and insulin
resistance can impair these two protective mechanisms, and this
may be a potential cause of the hyperandrogenic intrauterine
environment for the fetus [33,36].



Fig. 3. Scatter plots and fitted linear regression lines of anogenital distance (AGD) measures vs. gestational age (weeks) in groups (control group; diabetic; obese; diabetic obese).

Fig. 4. Scatter plots and fitted linear regression lines of anogenital distance (AGD) measures vs. estimated fetal weight (grams) in groups (control group; diabetic; obese; diabetic
obese).
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Maternal diabetes and pre-pregnancy obesity are known to have
toxic effects on the developing embryo and cause congenital mal-
formations in many organ systems [37,38]. The potential mecha-
nisms underlying to these birth defects is hyperglycemia and
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hyperinsulinemia. But other metabolic alterations that may
accompany to these disorders such as androgen level changes can
have an impact on the development of the fetus, particularly on the
genital system [37].
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The vast majority of studies investigating the effect of maternal
factors on AGD were conducted in the postnatal period and pre-
natal ultrasound studies are rare. These studies proved the feasi-
bility and the reliability of AGD measurement in utero by
ultrasound [19,20,24]. Our study supports the previous studies
showing that AGD measurement in utero by ultrasound is feasible
and reliable, and provides additional insight that AGD can be used
as a biomarker of the intrauterine androgen exposure. Currently,
the evaluation of fetal hormonal environment during ongoing
pregnancy requires invasive procedures. Fetal AGD measurement
by ultrasound will make it possible to evaluate the intrauterine
androgenic environment starting from the second trimester and in
a non-invasive way. This may provide important advantages in
terms of early detection of reproductive system abnormalities.

The present study has some limitations due to low number of
patients in subgroups according to diabetes type, and obesity
classes. Because of the small sample size of the patients with type 1,
type 2, and gestational diabetes, we were unable to investigate the
effect of different types of diabetes on fetal AGD. Similarly, the ef-
fect of obesity severity could not be examined due to the low
numbers of patients in subgroups.

In conclusion, our study has revealed that both maternal dia-
betes and obesity are associated with increased AGD in female
fetus, and this provide indirect evidence for the androgen exposure
on fetus in diabetic and obese pregnant women. This raised the
question of whether diabetes and obesity could adversely affect the
development of reproductive system in females.
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