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Abstract
Background
The COVID-19 infection has spread rapidly since its emergence and has affected a large part of the global
population. With the increasing number of cases, researchers are trying to predict the prognosis of patients
by using different data with artificial intelligence methods such as machine learning (ML). In this study, we
aimed to predict mortality risk in COVID-19 patients using ML algorithms with different datasets.

Methodology
In this retrospective study, we evaluated the fever, oxygen saturation, laboratory results, thorax computed
tomography (CT) findings, and comorbid diseases at admission to the hospital of 404 patients whose
diagnosis was confirmed by the reverse transcription polymerase chain reaction test. Different datasets were
created by combining the data. The Synthetic Minority Oversampling Technique was used to reduce the
imbalance in the dataset. K-nearest neighbors, support vector machine, stochastic gradient descent, random
forest, neural network, naive Bayes, logistic regression, gradient boosting, XGBoost, and AdaBoost models
were used to create the ML algorithm, and the accuracy rates of mortality prediction were compared.

Results
When the dataset was created with CT parenchyma score, pulmonary artery and inferior vena cava
diameters, and laboratory results, mortality was predicted with an accuracy of 98.4% with the gradient
boosting model.

Conclusions
The study demonstrates that patient prognosis can be accurately predicted using simple measurements from
thorax CT scans and laboratory findings.

Categories: Radiology
Keywords: pulmonary artery diameters, lung parenchyma score, gradient boosting, artificial intelligence, covid-19

Introduction
The coronavirus discovered in Wuhan, China, in December 2019, was named COVID-19 by the World Health
Organization. Since its emergence, it has rapidly spread worldwide and resulted in a pandemic. As of the
time of writing, the number of worldwide cases has surpassed 659 million, and the number of deaths has
exceeded 6.6 million, according to data from the World Health Organization [1]. Symptoms of this ailment
include fever, dry cough, muscle pain, anosmia, and gastrointestinal system complaints. The majority of
symptoms are mild, however, certain patients may suffer from severe complications, which can result in
death.

The increasing cases have had a critical impact on healthcare research, leading to the development of new
methods to forecast patient prognosis. Predicting the mortality of COVID-19 patients is essential in
recognizing individuals at a higher risk of severe illness and providing the appropriate care and
interventions. Numerous studies have examined risk factors linked to negative consequences and mortality
among COVID-19 patients. A systematic review and meta-analysis scrutinized the risk factors of poor
outcomes in hospitalized COVID-19 patients and discovered that advanced age, male sex, obesity, diabetes,
and cancer were strongly related to increased mortality risk [2]. Another study investigated the effect of
asthma on mortality rates in COVID-19 patients and discovered a correlation between a history of asthma
and increased mortality [3]. Along with co-existing conditions, laboratory measures have also been
evaluated as prognostic markers for COVID-19 mortality. A study demonstrated the predictive potential of a
diagnostic rule involving lactate dehydrogenase, high-sensitivity C-reactive protein, and lymphocytes [4]. A
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recent study found a correlation between the mortality risk in COVID-19 patients and their peripheral
lymphocyte count [5].

Machine learning (ML) is a branch of artificial intelligence that can learn from examples and continues to
evolve [6]. In the field of ML, different models have their strengths and weaknesses. The K-nearest neighbors
(kNN) method is simple but can be computationally expensive. Support vector machines (SVM) are effective
in high-dimensional spaces but consume a higher memory footprint. Stochastic gradient descent (SGD) is
effective but sensitive to scaling. Random forests (RFs) are robust but comparatively less interpretable.
Neural networks (NNs) are powerful but require a lot of data and risk overfitting. Naive Bayes is simple and
quick but assumes feature independence. Logistic regression (LR) is interpretable but assumes linear
relationships. Gradient boosting (GB) builds strong but is susceptible to overfitting. XGBoost improves upon
this but requires careful tuning. AdaBoost combines weak models but can be sensitive to noise. Choosing the
right model depends on the task at hand, with trade-offs in simplicity, interpretability, and computational
efficiency. GB is an ensemble learning approach that sequentially trains weak models, typically decision
trees, on residuals from the previous model. By incorporating new model predictions, this technique updates
predictions iteratively, augmenting the model’s predictive capacity. Utilizing multiple weak models, this
approach constructs a robust predictive model that delivers improved performance [7].

Several recent studies have focussed on using ML algorithms to predict mortality risk in COVID-19 patients
[8,9]. The contribution of comorbid factors, laboratory tests, and thorax computed tomography (CT) findings
to predict mortality has not been adequately investigated in the literature. In this study, we aimed to predict
the mortality risk in COVID-19 patients using ML algorithms with different datasets and reveal the most
effectively usable data in the pandemic.

Materials And Methods
This study was approved by the local ethics committee on September 8, 2022. Data from 404 patients were
analyzed. Inclusion criteria included a thorax CT scan and laboratory tests at the time of admission to the
hospital and confirmation of the diagnosis by reverse transcription polymerase chain reaction test.
Exclusion criteria comprised incomplete patient files, failure to include the whole lung on thorax CT
imaging, and inability to identify parenchymal findings due to respiratory artifacts. According to these
criteria, 22 of 426 patients were excluded, and 404 patients were included in the study.

Age, presence of comorbidities (diabetes mellitus (DM), chronic renal failure (CRF), coronary artery disease
(CAD), chronic obstructive pulmonary disease (COPD), malignancy, cerebrovascular disease (CVD) and
Alzheimer’s disease), fever, and oxygen saturation at presentation were noted to create the dataset. Results
of six laboratory tests including white blood cell (WBC), neutrophil (NE), lymphocyte (LE),
neutrophil/lymphocyte ratio, C-reactive protein (CRP), fibrinogen, and D-dimer were added. Mortality data
were recorded during the patients’ hospital stay.

The clinical status of the patients at admission was classified as mild, moderate, severe, and critical
according to the seventh version of the Novel Coronavirus Pneumonia Diagnosis and Treatment Guideline
published by the National Health Commission of China [10].

Thorax CT scans were performed using 16-slice Toshiba Alexion Advance (Alexion 16, Toshiba Medical
Systems, Japan). Measurements and parenchyma scoring were made on 1 mm thin-section axial plane
images. The evaluation was done by two radiologists with four and 10 years of experience. The involvement
of each lung parenchyma was scored visually independently of patient information on a total of 10 points,
with 1 point between 0-5%, 2 points between 5-25, 3 points between 25-50, 4 points between 50-75, and 5
points between 75-100 (Figure 1).
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FIGURE 1: Thorax CT parenchyma scoring.
Absence of parenchymal involvement score 0 (A), parenchymal involvement 0-5% score 1 (B), 5-25% score 2
(C), 25-50% score 3 (D), 50-75% score 4 (E), and 75-100% score 5 (F).

In addition, the presence of ground-glass opacity, consolidation, pleural effusion, halo, and reverse halo
findings were recorded. The diameter of the main pulmonary artery (m-PA) was measured from the
bifurcation level. The diameters of the right (r-PA) and left pulmonary arteries (l-PA) were measured from
the widest diameter after the bifurcation. For the dimensions of the inferior vena cava (IVC), measurements
were made in two planes from its largest diameter after exiting the liver and before pouring into the right
atrium (Figure 2).
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FIGURE 2: Measuring the diameters of vascular structures.
In axial non-contrast CT scans, A shows the measurement of the main pulmonary artery diameter. B shows the
measurement of the left pulmonary artery diameter. C shows the measurement of the right pulmonary artery
diameter. D shows the measurement of the transverse and anteroposterior inferior vena cava diameter.

Datasets were created with different combinations of patient data. The first dataset was created using CT
parenchyma score and m-PA, r-PA, l-PA, and IVC diameters. The second dataset included CT parenchyma
score; m-PA, r-PA, l-PA, IVC diameters; and parenchymal findings. The third dataset included CT
parenchyma score; m-PA, r-PA, l-PA, IVC diameters; and laboratory parameters, and the fourth dataset
included CT parenchyma score; m-PA, r-PA, l-PA, IVC diameters; laboratory parameters; comorbid disease;
age; fever; and SpO2.

Orange data mining software v3.34 was used to create the ML algorithm. In the first stage, patients with
missing data were cleared. Numerical data were normalized between 0 and 1 to obtain a common scale.
There was an imbalance of distribution between the groups in the dataset. The mortality group comprised
15.1% of the dataset. To reduce the imbalance, the Synthetic Minority Oversampling Technique (SMOTE)
was used, and the class distribution in the dataset was balanced at 50%-50%.

The dataset was divided into training and test sets with a fixed ratio of 80% and 20%. The training set was
divided into 10 subgroups with the 10-fold cross-validation method, trained with nine different subgroups
each time, and tested with one subgroup. This process was repeated 10 times, and the validation score was
obtained by taking the average of the results. After the models were trained with the 10-fold cross-validation
method, they were tested with the test set (Table 1).
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Data preprocessing Data sampling Models

Remove missing values Train data (80%)

k-nearest neighbors

Support vector machine

Logistic regression

Normalization 10-fold cross-validation

Random forest

Stochastic gradient descent

Adaboost

Naive Bayes

SMOTE Test data (20%)

Neural network

Gradient boosting

XGboost

TABLE 1: Data handling scheme.
SMOTE: Synthetic Minority Oversampling Technique

To avoid overfitting and underfitting, the acceptable gap between validation and test results, although not a
standard value, was set at 3%. The accuracy of the models was evaluated by the area under the curve (AUC).

kNN, SVM, SGD, RF, NN, naive Bayes, LR, GB, XGBoost, and AdaBoost models were used to create the ML
algorithm. Algorithm parameters are shown in Table 2.

Machine learning algorithms/Parameters Parameter value

k-Nearest neighbors

   Number of neighbors 5

   Metrics Eucledian

   Weight Uniform

Support vector machine

   Kernel Sigmoid

   Iteration limit 100

Random forest

   Number of trees 20

   Minimum limit for split 5

Stochastic gradient descent

   Loss function Hinge

   Regularization Lasso (L1)

   Learning rate Constant

   Initial learning rate 0.01

Neural network

   Neurons in hidden layers 100

   Activation Logistic

   Solver SGD
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   Maximum number of iterations 200

Naive Bayes

   Prior probability estimation Relative frequency

Logistic regression

   Regularization Lasso (L1)

Adaptive boosting

   Number of estimators 50

   Classification algorithm SAMME.R

   Regression loss function Linear

   Learning rate 0.1

Gradient boosting

   Number of trees 100

   Learning rate 0.1

  Fraction of training instances 1

XGBoost

   Number of trees 100

   Learning rate 0.1

   Fraction of training instances 1

   Regularization lambda 1

TABLE 2: Parameter settings of machine learning algorithms

All analyses were performed with the help of the Jamovi v1.6 Statistics package (Jamovi Project Computer
Software, Version 1.6. Sydney, Australia). In our study, type 1 error was accepted as 5% for all comparisons.
Continuous variables were defined as mean and standard deviation (SD), and categorical variables were
defined by frequency and interquartile range (IQR). The Shapiro-Wilk test was used to determine whether
the data were normally distributed. In the comparison of continuous variables, groups with normal
distribution were compared with the t-test, and those with non-normal distribution were compared with the
Mann-Whitney U test. Statistical significance was accepted as p<0.05.

Results
A total of 404 patients were included in the study. Survival was achieved in 343 patients, while mortality
occurred in 61 patients. The mean age of the patients with a mortal course was 74, and the mean age of the
patients who survived was 58. The male/female ratio of the patients was 1.06, but the male/female ratio was
2.2 in patients who had a mortal course.

There were 250 patients with mild clinical status, 118 patients with moderate, and 36 patients with severe
clinical status at admission to the hospital. Mortality was 1.6% in patients with mild clinical presentation,
26.2% in moderate patients, and 72.2% in severe patients (Table 3).
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 All patients (N = 404) Survival (N = 343) Mortality (N = 61)

Gender, n (%)
Male n (%) 196 (48.5%) 154 (38.1%) 42 (10.4%)

Female n (%) 208 (51.5%) 189 (46.8%) 19 (4.7%)

Age (years), n (%) 62 (IQR 49–72) 60 (IQR 47–70) 74 (IQR 68–81)

Severity of disease, n (%)

Mild 250 (61.9%) 246 (60.9%) 4 (1.0%)

Moderate 118 (29.2%) 87 (21.5%) 31 (7.7%)

Severe 36 (8.9%) 10 (2.5%) 26 (6.4%)

TABLE 3: Gender, age, and disease severity.
Note: Normally distributed data are shown as mean ± SD (minimum-maximum), and non-normally distributed data as median (IQR 25-75).

IQR: interquartile range

There was a significant correlation between age, oxygen saturation, and mortality risk (p < 0.001). The
relationship between fever and mortality was not significant.

There was a significant correlation between diameters of the m-PA (p < 0.001), r-PA (p < 0.001), l-PA (p <
0.001), transverse diameter of the IVC (p = 0.04), and CT parenchyma score (p < 0.001) with mortality. A
significant correlation was found between mortality and the presence of ground-glass density (p = 0.01) and
pleural effusion (p = 0.001). However, mortality was not significantly correlated with consolidation, halo,
and reverse halo findings.

A significant correlation was found between mortality and comorbidities such as HT (p = 0.004), CAD (p <
0.001), DM (p = 0.016), history of CVD (p < 0.001), and history of malignancy (p = 0.001). An inverse
relationship between smoking and mortality was noted (p = 0.017) (Table 4).
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 All patients (n = 404) Survival (n = 343) Mortality (n = 61) P-value

Age (years) 62 (IQR 49–72) 60 (IQR 47–70) 74 (IQR 68–81) 0.001

HT 203 (50.2%) 162 (40.1%) 41 (10.1%) 0.004

DM 114 (28.2%) 89 (22.0) 25 (6.2%) 0.016

CAD 71 (17.6%) 48 (11.9%) 23 (5.7%) 0.001

CRF 29 (7.2%) 22 (5.5%) 7 (1.7%) 0.158

CVD 11 (2.7%) 7 (1.7%) 4 (1.0%) 0.001

Malignancy 32 (7.9%) 20 (4.9%) 12 (3.0%) 0.001

Smoking 51 (12.6%) 49 (12.1%) 2 (0.5%) 0.017

Fever 36.5 (IQR 36.4–36.7) 36.5 (IQR 36.4–36.7) 36.5 (IQR 36.4–36.8) 0.356

Spo2 95 (IQR 92–98) 97 (IQR 93.5–98) 87 (IQR 80–91) 0.001

m-PA 26.7 (IQR 24.1–28.7) 26.2 (IQR 23.8–28.3) 28.5 (IQR 26.8–31.0) 0.001

r-PA 21.0 (IQR 18.5–23.3) 20.6 (IQR 18.0–22.8) 23.2 (IQR 20.8–25.4) 0.001

l-PA 20.4 (IQR 18.3–23.1) 19.9 (IQR 18.0–22.7) 23.0 (IQR 21.3–26.0) 0.001

IVC-Tr 31.0 (IQR 28.1–34.0) 30.9 (IQR 28.0-33.8) 31.9 (IQR 29.0–36.0) 0.045

IVC-AP 21.1 (IQR 19.0–23.9) 21.0 (IQR 18.8–23.7) 22.0 (IQR 19.2–25.5) 0.053

CT parenchyma score 3.0 (IQR 1.0–4.0) 2 (IQR 0–4.0) 5 (IQR 2.0–7.0) 0.001

GGO 285 (70.5%) 233 (57.6%) 52 (12.9%) 0.006

Consolidation 78 (19.3%) 66 (16.3%) 12 (3.0%) 0.937

Halo sign 15 (3.7%) 14 (3.5%) 1 (0.2%) 0.353

Reverse halo sign 27 (6.7%) 26 (6.5%) 1 (0.2%) 0.087

Pleural effusion 24 (5.9%) 14 (3.5%) 10 (2.4%) 0.001

TABLE 4: Statistics of data.
Note: Normally distributed data are shown as mean ± SD (minimum-maximum), and non-normally distributed data as median (IQR 25-75). Student’s t-test
was used to compare normally distributed data and Mann-Whitney U test was used to compare non-normally distributed data.

IQR: interquartile range; HT: hypertension; DM: diabetes mellitus; CAD: coronary artery disease; CRF: chronic renal failure; CVD: cerebrovascular
disease; SpO2: oxygen saturation; GGO: ground-glass opacity; IVC-AP: inferior vena cava anteroposterior diameter, IVC-Tr: inferior vena cava transverse
diameter; m-PA: main pulmonary artery diameter; r-PA: right pulmonary artery diameter; l-PA: left pulmonary artery diameter

The initial dataset was created using the lung parenchyma score, pulmonary artery diameters, and IVC
dimensions. When models were run for mortality prediction, 94.9% accuracy was obtained with GB, 93.8%
with XGBoost, and 93.4% with RF.

For the second dataset, thorax CT parenchymal findings were added to the initial dataset. In these models,
92.4% accuracy was achieved with GB, 90.8% with XGBoost, and 90.7% with NN. The decrease in accuracy
was thought to be due to the noise created by the statistically limited information in the parenchymal
findings. Based on this result, parenchymal findings were excluded from the third and fourth datasets.

The third dataset was reconstructed to include laboratory parameters in addition to the lung parenchyma
score, pulmonary artery diameters, and IVC dimensions. Afterward, an accuracy rate of 98.4% was reached
with GB, 96.8% with XGBoost, and 95.6% with RF.

Lastly, for the fourth dataset, the patient’s age, oxygen saturation, fever, and presence of comorbid diseases
were added to the dataset. When the models were run, 97.1% accuracy was achieved with the GB model,
97.1% with RF, and 96.8% with XGBoost. All results including the validation and test results are summarized
in Table 5.
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Models(validation/test
results, %)

Dataset includes

CT parenchyma
score, m-PA, r-
PA, I-PA, and IVC
diameters

CT parenchyma score,
m-PA, r-PA, I-PA, IVC
diameters, and
parenchymal findings

CT parenchyma score,
m-PA, r-PA, I-PA, IVC
diameters, and
laboratory parameters

CT parenchyma score, m-PA, r-PA, I-
PA, IVC diameters, laboratory
parameters, comorbid disease, age,
fever, and SpO2

kNN 90.2/86.2 88.1/87.7 94.4/93.8 92.5/94.1

SVM 62.2/46.7 62.5/61.2 73.6/65.0 86.5/78.3

SGD 79.2/73.9 82.6/71.3 88.7/85.0 95.8/92.5

Random forest 92.1/93.4 91.7/87.8 95.3/95.6 97.5/97.1

Neural network 86.7/87.3 89.5/90.7 95.1/92.8 97.3/96.6

Naive Bayes 78.0/71.6 80.5/71.7 87.9/85.8 92.8/91.2

Logistic regression 79.2/75.6 82.9/73 88.3/86.5 94.6/92.6

AdaBoost 81.6/81.7 81.7/83.9 83.7/90.5 89.8/86.8

Gradient boosting 93.2/94.9 92.8/92.4 96.6/98.4 97.6/97.1

XGBoost 92.4/93.8 93.0/90.8 96.4/96.8 97.4/96.8

TABLE 5: Comparison of mortality prediction models with different datasets.
kNN: K-nearest neighbors; SVM: support vector machine; SGD: stochastic gradient descent; IVC: inferior vena cava; m-PA: main pulmonary artery
diameter; r-PA: right pulmonary artery diameter; l-PA: left pulmonary artery diameter; SpO2: oxygen saturation

Discussion
The rapid spread of the COVID-19 infection caused the intensive care units in hospitals to be filled and the
inability to hospitalize patients in need. Predicting the mortality risk of patients in the emergency room
quickly and effectively became crucial for health professionals during the pandemic.

Lung CT has been used extensively since the onset of the pandemic to show and diagnose abnormalities in
the lung parenchyma. Despite its sensitivity of up to 90%, its specificity is low because the findings cannot
be differentiated from other viral pneumonia agents [11]. However, its high sensitivity is beneficial in terms
of showing the severity of the disease [12]. Different parenchymal scoring systems have been developed in
the literature to quantify lung parenchymal involvement due to COVID-19 infection [13,14]. The general
view is that mortality risk increases with the high parenchymal score, as in our study. There are systems in
the literature that segment the involvement of the parenchyma with high accuracy using deep learning
models [15]. These models can be used in place of parenchymal scoring and can increase the accuracy of
mortality estimation.

While planning this study, we paid particular attention to the diameter of the pulmonary arteries and IVC. In
autopsy studies performed on COVID-19 patients, diffuse alveolar damage in the lung as well as thrombosis
in small and medium-sized pulmonary arteries were observed [16]. Thrombosis in the pulmonary arteries is
thought to lead to increased resistance in the vascular bed and enlargement of the pulmonary arteries and
right ventricle [17]. Therefore, the diameters of the main vascular structures may be a guide in predicting the
outcome of COVID-19, and our results support this [18].

ML algorithms are extensively researched in the diagnosis and prognosis of COVID-19. In a meta-analysis of
33 studies, the average performance of ML models in mortality prediction was 0.93 for AUC [19]. In 2,924
patients with 152 features, including age, gender, comorbid diseases, vital signs at baseline, clinical
symptoms, and laboratory tests, the GB model showed the best result with an AUC of 0.94 [20]. In another
study based on similar features, AUC values ranging between 0.84 and 0.89 were obtained with the XGBoost
model, which is an advanced version of the GB model [21]. Zakariaee et al. added CT parenchyma score to
the dataset consisting of demographics, clinical data, comorbid diseases, and laboratory results [22]. In the
study comparing kNN, multilayer perceptron, SVM, and J48 decision tree algorithms, an AUC of 0.97 was
obtained with the kNN model, and it was observed that the addition of CT parenchyma score improved
model performance. Another study compared model performances with similar datasets; J48, SVM,
multilayer perceptron, k-NN, naive Bayes, LR, RF, and XGBoost models were compared and an AUC of 99.9%
was obtained with the RF model [7]. The k-fold cross-validation technique was used in the study, but the
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validation results were not reported in terms of overfitting. In our study, we obtained similar results to the
results obtained with demographic, clinical, and laboratory data in the literature with data obtained only
from thorax CT. When six laboratory tests were added to these data, we obtained an above-average AUC of
0.98 with the GB model.

The effectiveness of the GB model in delivering reliable and valid results makes it a preferred choice for
predictive modeling tasks, especially in complex and dynamic datasets where interpretability and
adaptability are crucial. Li et al. obtained the highest accuracy with GB in their study for the prediction of
mortality in intensive care unit patients with sepsis [23]. On the other hand, successful results have been
obtained with the XGBoost, which is a specialized and optimized implementation of the GB model, in some
studies conducted for the prediction of mortality in COVID-19 patients [24,25]. In our study, we obtained
nearly similar results compared to GB in the XGBoost model. RF, another decision tree-based model, showed
high performance in our study, and it appears to be the model with the best performance in some studies in
the literature [26,27].

The main limitation of this study is that our data were obtained retrospectively from a single center.
Moreover, there was a distribution imbalance between the data groups which was tried to be solved by the
SMOTE method. These limitations can be resolved in future studies by creating more balanced datasets with
multicenter studies. In addition, parenchyma scoring is done visually, which can be resolved by
segmentation with a convolutional neural network.

Conclusions
The mortality risk of patients can be predicted with high accuracy using the power of the GB model based on
simple measurements from thorax CT and laboratory findings at admission.
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