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ABSTRACT

This investigation focuses on flow energy, a crucial parameter in the design of water structures such as channels. The research endeavors to

explore the relative energy loss (ΔEAB/EA) in a constricted flow path of varying widths, employing Support Vector Machine (SVM), Artificial

Neural Network (ANN), Gene Expression Programming (GEP), Multiple Adaptive Regression Splines (MARS), M5 and Random Forest (RF)

models. Experiments span a Froude number range from 2.85 to 8.85. The experimental findings indicate that the ΔEAB/EA exceeds that

observed in a classical hydraulic jump with constriction section. Within the SVM model, the linear kernel emerges as the best predictor of

ΔEAB/EA, outperforming polynomial, radial basis function (RBF), and sigmoid kernels. In addition, in the ANN model, the MLP network was

more accurate compared to the RBF network. The results indicate that the relationship proposed by the MARS model can play a significant

role resulting in high accuracy compared to the non-linear regression relationship in predicting the target parameter. Upon comprehensive

evaluation, the ANN method emerges as the most promising among the candidates, yielding superior performance compared to the other

models. The testing phase results for the ANN-MLP are noteworthy, with R¼ 0.997, average RE%¼ 0.63%, RMSE¼ 0.0069, BIAS¼�0.0004,

DR¼ 0.999, SI¼ 0.0098 and KGE¼ 0.995.
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HIGHLIGHTS

• This research reinforces the important of investigating the effect of arc-shaped constrictions in the flow path (such as constrictions from

bridge piers).

• This investigation improves the design of hydraulic control structures.

• The performance of the ANN, GEP, MARS, M5, RF, SVM, and regression models has been evaluated using quantitative and qualitative

indices (KGE, R, RE%, RMSE, BIAS, DR, scatter index (SI)).
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GRAPHICAL ABSTRACT

INTRODUCTION

One of the predominant challenges encountered in the downstream segments of many hydraulic structures is the effective
management of the surplus kinetic energy within the flow. This need often requires the implementation of energy dissipating

structures to avert potential structural damage. These energy dissipating structures are strategically positioned to regulate and
diminish velocity, thereby facilitating the dissipation of excess energy downstream. The dissipation process is intricately
linked to flow turbulence and disturbances, with a noteworthy portion of energy dissipated through the deliberate constric-
tion of a specific channel area. This study shows the answer to a gap in the study of channel cross-sectional reduction for the

purpose of enhancing energy dissipation.
To address elevated levels of energy, hydraulic jumps are often used to reduce kinetic energy. Additionally, impedi-

ments strategically positioned within the flow path contribute to energy absorption. In recent years, various studies

have been conducted on hydraulic jumps and energy dissipation. Karbasi & Azamathulla (2016) investigated the charac-
teristics of hydraulic jumps on a rough bed using the Gene Expression Programming (GEP) model. The results indicated
that the GEP model is capable of predicting the features of a hydraulic jump on a rough bed with an acceptable level of

accuracy. A comparison of Artificial Neural Network (ANN) and Support Vector Machine (SVM) models revealed that
the performance of these models is slightly superior to the GEP model. Habibzadeh et al. (2019) investigated flow
characteristics of downstream hydraulic jumps with and without blocks. The range of Froude numbers varied from

3.48 to 6.85. The results of their study indicated that this flow regime of submerged jumps can effectively be used as
an energy dissipator within a stilling basin with a length approximately equal to that required for free hydraulic
jumps. Ghaderi et al. (2020) conducted numerical simulations of free and submerged hydraulic jumps over various
roughness shapes in different configurations and under varying Froude numbers using FLOW-3D software. The results

indicated that the influence of roughness is more pronounced in reducing the maximum relative velocity in submerged
jumps. Additionally, the greatest energy losses occur with triangular roughness elements compared to other models.
Nouri et al. (2020) investigated the accuracy of M5P, Random Forest (RF) and stochastic M5P models in predicting
om http://iwaponline.com/aqua/article-pdf/doi/10.2166/aqua.2024.010/1393113/jws0730637.pdf
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the energy loss in cascade spillways. Their results showed that M5P model is more accurate compared to other models.

Rahmanshahi & Shafai Bejestan (2020) carried out an experimental study focusing on inclined ramps featuring both
smooth and rough surfaces. The investigation took into account various slopes and material sizes. The findings of the
study revealed that a higher relative roughness corresponds to more significant energy loss. Moreover, an increase in

the ramp’s slope was a contributing factor to increased energy loss. In an effort to provide predictive tools, the research-
ers introduced two mathematical models utilizing a GEP model to estimate energy loss in ramps with both smooth and
rough surfaces. Nasrabadi et al. (2021), utilizing the novel DGMDH technique, focused on predicting the characteristics
of submerged hydraulic jumps. The results demonstrated that the DGMDH model, in comparison to the GMDH model,

exhibits high accuracy in predicting relative depth, jump length, and relative energy dissipation. Furthermore, they rec-
ommended the utilization of this model for estimating the parameters of hydraulic jumps. Sauida (2022) investigated the
relative energy loss of a hydraulic jump downstream of multi-gates using ANN model. The results show that ANN model

is more accurate than regression; ANN models can be used to predict energy loss in multi-gates. Heydari et al. (2022)
modeled the lengths of hydraulic jumps on rough beds using the Self-Adaptive Extreme Learning Machine (SAELM)
machine learning approach. The superior performance of the SAELM model was compared with Multilayer Perceptron

Neural Network (MLPNN) and SVM methods. The examination of the model results demonstrated the high effective-
ness of the SAELM model. Mobayen et al. (2023) investigated computational models Multiple Adaptive Regression
Splines (MARS) and EPR in estimating energy loss in gabion spillways. The results indicated that the regression equation

derived from the EPR model was more complex than the regression equation derived from the MARS model. Abbasza-
deh et al. (2023) experimentally investigated the hydraulic jump parameters in the threshold condition applied in sluice
gates. The results revealed that the application of the threshold leads to an increase in energy dissipation and a reduction
in the secondary flow depth.

Instances of channel constriction or abrupt reduction in cross-sectional area may arise due to the installation of structures
such as bridge piers, causing impediments to the flow (Chow 1959; Henderson 1966). The presence of bridge piers alters the
channel geometry, causing a constriction in the cross-sectional area. This alteration disrupts the smooth flow of water, leading

to changes in velocity and pressure distribution. The constriction can result in increased turbulence and flow resistance,
affecting the overall hydraulic behavior of the channel.

Hager & Dupraz (1985) experimentally investigated the characteristics of flow in a sudden constriction. They reported a

good correlation between their research results and theoretical relationships. Wu & Molinas (2001) examined subcritical
flow facing a short constriction along the flow. The relationship proposed for calculating the flow discharge showed good
agreement with previous research findings. Dey & Raikar (2005) focused on experimental investigation of scour in a long
constriction. Their results indicated that reducing the constriction width leads to an increase in scour depth. In the investi-

gation conducted by Jan & Chang (2009), which focused on hydraulic jumps within a rapidly varied contracted flow, the
conclusions from the experimental findings emphasized the substantial influence of bed angle on the relative length of
hydraulic jumps. Remarkably, that study suggested that this dependence is distinct from the constriction angle of the side-

walls. Furthermore, they presented theoretical relationships for the secondary jump depth, considering factors such as the
constriction cross-section and the bed slope. Similarly, Das et al. (2014) investigated the experimental study of relative
energy loss in chutes with various slopes and constrictions. They explored energy loss within rapidly contracting flows.

Their study revealed a positive correlation between energy dissipation and the slope of the rapid flow. This underscores
the significance of bed slope as a determining factor in the dissipation process, as observed in their empirical results.
Daneshfaraz et al. (2022a) investigated hysteresis in triangular constrictions experimentally. They reported that by increasing

the cross-sectional area of the triangular constriction, the relative depth decreases, and with changes to the discharge under
the same conditions, the flow depth changes.

The literature review reveals a gap in the study of channel cross-sectional reduction for the purpose of enhancing
energy loss. Consequently, given the significance of this matter, the current research aims to experimentally investigate

the impact of arc-shaped constrictions in the flow path. Additionally, the necessity for conducting new research in
the field of intelligent modeling and soft computing for assessing essential relative energy loss, which has not been
addressed so far, is underscored. To address these objectives, the present study employs artificial intelligence models,

including ANN, SVM, RF algorithm, MARS, M5 algorithm, and GEP. The focus of this research is primarily on exam-
ining the accuracy of the mentioned intelligent models in arc-shaped constrictions. Furthermore, relationships are
presented in the regression-based model (non-linear polynomial regression) alongside the MARS model. Various
://iwaponline.com/aqua/article-pdf/doi/10.2166/aqua.2024.010/1393113/jws0730637.pdf
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statistical indicators such as R, RMSE, average RE, KGE, BIAS, DR, and SI are scrutinized to evaluate the results of

the models. In this research, energy loss in arc-shaped constrictions is investigated within the Froude number range
of 2.85–8.85.
METHODS

Experimental equipment

A 5-m long laboratory flume with a rectangular 0.3 m� 0.5 m cross-section and transparent Plexiglas walls and bottom,

was used for experiments. All the experiments were carried out in the hydraulic laboratory of the University of Mar-
agheh. The slope of the channel bed was set to zero. To supply the inflow to the flume, a pump with a nominal
power of 800 l per minute was used. Rotameters were installed on the flume for reading the inflow discharge with a

relative error of 2%. To reduce the turbulence of the inflow water from the reservoir, several calming screens were
used. A point depth gauge with an accuracy of +1 ml was used to measure the water depth in the flume.
Arc-shaped constrictions were installed at dimensions of 0.5 m in length, 0.05 and 0.075 m in width (0.10 and
0.15 m from both sides) at a distance of 1.5 m from the inlet. Experiments were conducted over a range of Froude

numbers from 2.85 to 8.85. Figure 1 shows a schematic view of the flume including a top view that displays the
arc-constrictions.
Figure 1 | Schematic view of experimental flume.
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Relationships and parameters

Applying conservation of energy, the computation of energy dissipation between sections A and B is conducted for both free
and submerged flow conditions, as indicated in Equations (1) and (2) (Fatehi-Nobarian et al. 2023).

DEAB ¼ EA � EB ¼ yA þ V2
A

2g

� �
� yB þ V2

b

2g

� �
(1)

DEAB ¼ ySA þ V2
A

2g

� �
� yB þ V2

B

2g

� �
(2)

In the provided equations, the variables are defined as follows: yA and yB denote the flow depth at sections A and B, ySA
represents the submerged flow depth at section A, VA and VB are the flow velocities at sections A and B, g denotes gravita-
tional acceleration, EA and EB stand for the specific energy at sections A and B, and ΔEAB signifies the specific energy

difference between the two sections. These parameters collectively contribute to the calculation of energy dissipation between
the specified sections under both free and submerged flow conditions.

Determining and selecting the input parameters are important steps in modeling processes that use intelligent methods. In

this section, the dimensionless parameters affecting the energy loss in the constriction of the flow path are introduced and
different combinations of the parameters are used for modeling (Table 1).

In the current research, the most significant parameters affecting the flow energy loss in the constriction are:

f1(Q, W , B, L, EA, EB, yA, yB, g, r, m) ¼ 0 (3)

where Q represents discharge, W represents the channel width, B represents the constriction width dimensions, L represents
the constriction length, ρ represents the specific gravity of fluid and μ represents the dynamic viscosity. According to the π-

Buckingham theorem and selecting yA, ρ, and g, as repeated parameters, dimensionless parameters are obtained.

f2 FrA,
W
yA

,
B
yA

,
L
yA

,
EA

yA
,
EB

yA
,
yB
yA

, ReA

� �
¼ 0 (4)

where FrA denotes the Froude number and ReA denotes the Reynolds number. In the present research, the flow is turbulent,
so the effect of ReA is ignored (Nasrabadi et al. 2021; Norouzi et al. 2023). In addition, some parameters of Equation (3) have
certain values and are not part of the research objectives, so they were ignored, too (Rahmanshahi & Shafai Bejestan 2020).

White’s theorem provides a useful insight that dimensionless parameters can be obtained through various mathematical oper-
ations such as division, multiplication, addition, or subtraction of other dimensionless parameters (White 2016; Daneshfaraz
et al. 2022b). In the present study, the most significant dimensionless parameters affecting energy dissipation are expressed as
follows:

DEAB

EA
¼ f3 FrA,

B
W

,
yB
yA

� �
(5)

The ranges of investigated parameters are presented in Table 1. The histogram of parameters ΔEAB/EA, FrA, B/W, and yB/yA
is shown in Figure 2.
Table 1 | The range of parameters of the current research

Parameters Min. Max. Average Model no. Parameters

ΔEAB/EA 0.524 0.890 0.670 1 FrA, B/W

FrA 2.854 8.858 5.795 2 FrA, yB/yA

B/W 0.333 0.500 0.415 3 B/W, yB/yA

yB/yA 1.299 2.750 2.061 4 FrA, B/W, yB/yA
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Support Vector Machine

SVM is a supervised learning model that is used for classification and prediction (Vapnik 1995). The SVM is uses constrained

optimization to minimize structural error and ultimately obtain an optimal solution. SVM estimates a function associated
with the dependent variable, which in turn depends upon multiple independent input parameters. The relationship between
the variables is quantified by an algebraic function with some perturbation (allowable error ε) (Norouzi et al. 2021).

f(x) ¼ WT;(X)þ b (6)
Y ¼ f(x)þ noise (7)

Here, W is the coefficient vector, T is the transpose of W, b is a constant term included in the regression function, and ø is
the kernel function. The goal is to discover the function f (x) by training the SVM model with a set of examples (training set).
The SVM regression function can be written as:

f(x) ¼
XN
i¼1

�ai;(Xi)
T;(X)þ b (8)

The variable ai corresponds to the average Lagrange coefficients. The computation of ø(X ) can be complex. In the SVM

regression model, a kernel function is employed, and its intricacy is contingent on the scale of the training data and the
dimensions of the feature vector. Four commonly utilized kernel types in practice are the Linear kernel, Polynomial
kernel, Sigmoid kernel, and radial basis function (RBF) kernel. These kernels play a pivotal role in shaping the SVM
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regression model and cater to diverse modeling scenarios (Hassanzadeh & Abbaszadeh 2023).

K(Xi, Xj) ¼ (Xi, Xj) (9)

K(Xi, Xj) ¼ (1þ (Xi, Xj))
d (10)

K(Xi, Xj) ¼ tanh(�a(Xi, Xj)þ C) (11)

K Xi;Xj
� � ¼ exp � X�Xik k2=s2

� �
(12)

In the above equations, K (Xi, Xj) represents the covariance or kernel function, calculated at points Xi and Xj. The functions
a, C, d, and σ denote kernel functions. The term d represents the degree of the polynomial, σ is the variance and hyper par-
ameter, and C is a positive integer that acts as a penalty factor when model training errors occur. Here, the values of Capacity,
Epsilon and Gamma are 10, 0.1 and 10.

Artificial Neural Network

An artificial neural network incorporates input layers, hidden neural layers, and output neural layers to process decision

making. In the network, the neuron is the foundational structure that modifies an input before sending output information
to the later layer. The architecture of the neural connections is mathematical operations that can be nonlinear and the inter-
actions amongst the neural layers results in complex and nonlinear behavior. While each neuron acts individually, the

behavior of the network is cohesive. They resemble, in some respects, the neural activity of the human brain but there are
differences in their training, behavior, and capacity (Al-Bulushi et al. 2012). Here, the values of Min hidden units and
Max hidden units are 3 and 21, respectively. The values of Networks to train and Networks to retain were introduced to

the Statistica 12 software as 20 and 5, respectively. In Figure 3, the architecture of the artificial neural network model is pre-
sented. In the present research, the ANNmodel with three input neurons, one hidden layer (with 21 neurons), and one output
neuron has been employed (Norouzi et al. 2020; Ayaz et al. 2024).

Random Forest

RF is a supervised learning model that is often done by the bagging method. The bagging method combines learning models to
improve their performance. A random forest builds multiple, merged decision trees yield superior predictions (Sun et al.
2020). RFs can be used for both classification and regression problems. A random forest, maps input data to outputs in
the training or model fitting phase. During training, the model is fed data that is relevant to the problem domain that the
model needs to learn to make predictions (Jahed Armaghani et al. 2020). The model learns the relationships among the

data and the values the user wants to predict. In the RF, number of trees¼ 500, minimum no. of cases¼ 5, maximum no.
of levels¼ 10, minimum no. in child node¼ 5, and max. no. of nodes¼ 100. The tree graph of the present model is shown
in Figure 4.

Multiple Adaptive Regression Splines

Friedman (1991), initially introduced the MARS model for predicting continuous numerical outputs, and it is a non-para-

metric local model. The term non-parametric implies that the model structure is unknown before modeling; this model
does not use all relevant data at once. Instead, it divides the data into subsets and performs modeling for each of these subsets,
referred to as local models. In this model, the capability exists to reveal hidden nonlinear patterns in datasets with a large
number of variables. Therefore, by employing this method, it becomes possible to define the estimation function, eliminating

the need to combine multiple statistical methods. The foundation of this approach is based on functions called basis func-
tions, where for each explanatory variable, a basis function is defined as Equation (13):

gk(x) ¼ max(0, x� tk) (13)
://iwaponline.com/aqua/article-pdf/doi/10.2166/aqua.2024.010/1393113/jws0730637.pdf
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Here, x is the named node, and in practice, it is one of the observations of that explanatory variable. These functions are

called spline functions, with t being the reflected pairs. The general form of the MARS model is defined as follows:

Y ¼
XK
k¼1

Bk � gk(X) (14)

In Equation (14), Y is the estimated value of the response variable, X is the vector of explanatory variables, Bk is the
basis function, and Ck are coefficients determined by minimizing the sum of squared residuals. Each basis function may
om http://iwaponline.com/aqua/article-pdf/doi/10.2166/aqua.2024.010/1393113/jws0730637.pdf
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take the form of a linear spline function or the product of two or more of them, indicating interaction effects. The Mul-
tiple Adaptive Regression Splines model divides the space of explanatory variables into distinct regions with specific

nodes, which result in the maximum reduction in the sum of squared errors. The fitting of the MARS model occurs
in two stages. In the forward stage, a large number of basis functions with different nodes are successively added to
the model, producing a complex and overfit model. In the backward stage or pruning stage, basis functions with less

importance and impact on the estimation are removed. For the MARS model, the following settings were defined: Maxi-
mum number of Basis Functions: 21, Degree of interaction: 1, and Penalty and Threshold values: 2 and 0.005,
respectively.
M5 algorithm

The M5 algorithm creates binary branches based solely on a single variable. Each node in the algorithm divides its

information into two parts based on a condition defined at that node. In the M5 algorithm, the problem space is divided
into subdomains, and for each subdomain, a multiple-variable linear regression model is fitted. The algorithm explores
possible separations in the multi-variable space and automatically generates models for each of the domains. The stan-

dard deviation parameter of the target values is used as the error measurement criterion for branching at each node.
Specifically, the feature that leads to the greatest reduction in the standard deviation for each node is chosen as the
preferred feature for branching. The reduction in standard deviation, employed as the error function in the M5
://iwaponline.com/aqua/article-pdf/doi/10.2166/aqua.2024.010/1393113/jws0730637.pdf



AQUA — Water Infrastructure, Ecosystems and Society Vol 73 No 3, 646

Downloaded fr
by guest
on 01 April 202
algorithm, is defined as Equation (15) (Pal & Deswal 2009):

SDR ¼ sd(T)�
X Ti

T

����
����� sd(Ti) (15)

where sd denotes the standard deviation, T includes the samples reaching the considered node, and Ti represents the
samples obtained from the division of the considered node based on the selected feature. The M5 algorithm examines
all possible scenarios for branching based on a specific feature and ultimately selects a scenario that can reduce the

error function more than others. After completing the tree-building algorithm, a multiple-variable linear regression
model is fitted to the existing samples in each internal node. In the current research, the M5Rule option of WEKA soft-
ware was used to model the M5.

Gene expression programming

This approach is considered part of evolutionary algorithms, all of which are grounded in the principles of Darwinian evol-
ution. These algorithms define an objective function in the form of criteria and then employ a learned function to measure

and compare various solution methods (Najafzadeh 2019). In a step-by-step process of refining data structures, they ultimately
present a suitable solution method. Gene expression programming is a recent method among these evolutionary algorithms,
and due to its sufficient accuracy, it is considered the most conventional and widely used approach. The primary domain of

gene expression programming is the same as genetic algorithms, with the distinction that this method uses branches instead of
bit strings. Each branch consists of a set of terminals (problem variables) and a set of functions (primary operators)
(Mohammed & Sharifi 2020). Table 2 shows the values of the parameters defined for the GEP model in the GenXpro

Tools 4 software. The parameters and their rates to estimate the desired parameter if the population is considered up to
10,000 are listed in Table 2.

Statistical indicators

The following statistical indicators have been used in this study (Saberi-Movahed et al. 2020; Daneshfaraz et al. 2022b;
Agarwal et al. 2023; Najafzadeh et al. 2023; Nourani et al. 2023; Najafzadeh & Mahmoudi-Rad 2024):

RE% ¼ DEAB=EAObs � DEAB=EAcal

DEAB=EAObs
� 100 (16)
Table 2 | Values of parameters used in the GEP model

Parameters Value

Head size 7

Chromosomes 30

Number of genes 3

Mutation rate 0.044

Inversion rate 0.1

One point recombination rate 0.3

Two point recombination rate 0.3

Gene recombination rate 0.1

IS transposition rate 0.1

RIS transposition rate 0.1

Gene transposition rate 0.1

Fitness function error rate RMSE

Linking function þ
Generation number 10,000
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Here, RE indicates the relative error.

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

(DEAB=EAObs � DEAB=EACal)
2
i

n

vuuut
(17)

Here, RMSE indicates the root mean square error; n indicates the total data.

BIAS ¼ 1
n

Xn
i¼1

(DEAB=EA cal � DEAB=EA Obs)i (18)

DR ¼

Pn
i¼1

DEAB=EA cal

DEAB=EA Obs

� �
i

n
(19)

SI ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

((DEAB=EA Cal i � DEAB=EA Cal)� (DEAB=EA Obs i � DEAB=EA Obs))
2

s

1
n

Xn
i¼1

DEAB=EA Obs i

(20)

where SI indicates the scatter index.

KGE ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(R� 1)2 þ (b� 1)2 þ (g� 1)2

q

b ¼ DEAB=EACal

DEAB=EA Obs
, g ¼ CVCal

CVObs
¼ sCal= DEAB=EA Cal

sObs= DEAB=EA Obs

R ¼

Pn
i¼1

(DEAB=EA Obs i � DEAB=EA Obs)(DEAB=EA Cal i � DEAB=EA Cal)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

(DEAB=EA Obs i � DEAB=EA Obs)
2 Pn
i¼1

(DEAB=EA Cal i � DEAB=EA Cal)
2

s
(21)
Figure 5 | The changes in the energy loss.
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Table 3 | The experimental results of the present study

No. ΔEAB/EA FrA B/W yB/yA no. ΔEAB/EA FrA B/W yB/yA

1 0.559 3.430 0.330 1.642 57 0.830 8.686 0.330 2.540

2 0.571 3.514 0.330 1.681 58 0.841 8.858 0.330 2.580

3 0.575 3.651 0.330 1.722 59 0.524 2.889 0.500 1.298

4 0.585 3.714 0.330 1.755 60 0.531 3.054 0.500 1.380

5 0.595 3.852 0.330 1.781 61 0.541 3.145 0.500 1.440

6 0.601 3.942 0.330 1.825 62 0.551 3.265 0.500 1.460

7 0.608 3.958 0.330 1.855 63 0.562 3.314 0.500 1.470

8 0.614 3.968 0.330 1.903 64 0.578 3.385 0.500 1.475

9 0.618 4.452 0.330 1.911 65 0.582 3.407 0.500 1.482

10 0.624 4.158 0.330 1.924 66 0.591 3.565 0.500 1.500

11 0.625 4.142 0.330 1.932 67 0.601 3.612 0.500 1.550

12 0.631 4.280 0.330 1.941 68 0.605 3.785 0.500 1.600

13 0.635 4.369 0.330 1.950 69 0.612 3.854 0.500 1.620

14 0.642 4.457 0.330 1.967 70 0.628 3.985 0.500 1.650

15 0.641 4.551 0.330 1.971 71 0.625 4.025 0.500 1.655

16 0.645 4.624 0.330 1.983 72 0.629 4.112 0.500 1.672

17 0.652 4.765 0.330 1.991 73 0.634 4.265 0.500 1.690

18 0.658 4.737 0.330 2.044 74 0.639 4.245 0.500 1.717

19 0.645 4.865 0.330 2.051 75 0.645 4.614 0.500 1.720

20 0.651 4.952 0.330 2.067 76 0.650 4.453 0.500 1.750

21 0.655 5.015 0.330 2.071 77 0.655 4.548 0.500 1.770

22 0.658 5.114 0.330 2.082 78 0.658 4.632 0.500 1.780

23 0.658 5.254 0.330 2.085 79 0.662 4.785 0.500 1.790

24 0.665 5.345 0.330 2.089 80 0.668 4.856 0.500 1.814

25 0.671 5.425 0.330 2.100 81 0.665 4.844 0.500 1.821

26 0.672 5.458 0.330 2.114 82 0.701 4.915 0.500 1.840

27 0.672 5.476 0.330 2.157 83 0.675 5.021 0.500 1.850

28 0.665 5.585 0.330 2.165 84 0.682 5.145 0.500 1.920

29 0.671 5.625 0.330 2.171 85 0.685 5.225 0.500 1.928

30 0.675 5.745 0.330 2.182 86 0.691 5.336 0.500 1.940

31 0.683 5.836 0.330 2.197 87 0.695 5.445 0.500 1.980

32 0.685 5.914 0.330 2.200 88 0.701 5.585 0.500 1.985

33 0.689 5.981 0.330 2.218 89 0.705 5.685 0.500 1.998

34 0.692 6.415 0.330 2.214 90 0.711 5.758 0.500 2.000

35 0.698 6.245 0.330 2.225 91 0.714 5.811 0.500 2.069

36 0.704 6.365 0.330 2.234 92 0.720 6.150 0.500 2.080

37 0.708 6.565 0.330 2.244 93 0.734 6.180 0.500 2.140

38 0.714 6.776 0.330 2.252 94 0.740 6.254 0.500 2.145

39 0.718 6.834 0.330 2.268 95 0.750 6.361 0.500 2.170

40 0.725 6.956 0.330 2.278 96 0.765 6.895 0.500 2.216

41 0.722 7.010 0.330 2.249 97 0.780 7.219 0.500 2.256

42 0.728 7.156 0.330 2.278 98 0.801 7.385 0.500 2.280

(Continued.)
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Table 3 | Continued

No. ΔEAB/EA FrA B/W yB/yA no. ΔEAB/EA FrA B/W yB/yA

43 0.731 7.230 0.330 2.287 99 0.811 7.454 0.500 2.285

44 0.740 7.365 0.330 2.287 100 0.820 7.558 0.500 2.310

45 0.745 7.454 0.330 2.294 101 0.825 7.632 0.500 2.350

46 0.755 7.587 0.330 2.301 102 0.830 7.758 0.500 2.380

47 0.765 7.654 0.330 2.306 103 0.838 7.865 0.500 2.420

48 0.758 7.712 0.330 2.314 104 0.845 7.948 0.500 2.450

49 0.765 7.836 0.330 2.325 105 0.850 8.025 0.500 2.480

50 0.770 7.958 0.330 2.325 106 0.855 8.114 0.500 2.500

51 0.771 8.025 0.330 2.345 107 0.865 8.225 0.500 2.550

52 0.791 8.145 0.330 2.355 108 0.870 8.365 0.500 2.580

53 0.801 8.226 0.330 2.355 109 0.875 8.445 0.500 2.620

54 0.815 8.354 0.330 2.458 110 0.880 8.526 0.500 2.650

55 0.822 8.425 0.330 2.488 111 0.885 8.652 0.500 2.680

56 0.825 8.523 0.330 2.500 112 0.890 8.858 0.500 2.750
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Here, KGE indicates the Kling Gupta Efficiency; R indicates the correlation coefficient; β indicates the average calculated
data relative to the average observed data; γ indicates the standard deviation of the calculated data relative to the standard

deviation of the observed data.
If the resulting calculations yield 0.7,KGE, 1, then the performance is characterized as ‘very good’. If 0.6,KGE, 0.7, the

results are ‘good’. For 0.4,KGE, 0.5 or 0.5,KGE, 0.6; respective descriptors ‘acceptable’ and ‘satisfactory’ are used. If, how-

ever, KGE, 0.4, the results are ‘unsatisfactory’ (Gupta et al. 2009). If DR¼ 1, the soft computing technique shows the most
efficient performance, DR. 1 shows over predictions, and DR. 0, under prediction (Najafzadeh et al. 2022). If the BIAS index
equal 0 shows the most efficient performance, when BIAS. 0 indicates over prediction and BIAS, 0 indicates under prediction.
RESULTS AND DISCUSSION

The increase of the Froude number within each constriction amplifies the energy loss. This phenomenon stems from the

diminished flow depth post-gate, inducing heightened flow velocity, thus triggering a hydraulic jump accompanied by
increased turbulence and air entrainment. Consequently, this elevates the tailwater depth. The impact of backwater further
accentuates energy dissipation by increasing the depth in the constriction region, leading to greater energy loss. Compara-

tively, the energy loss attributed to constrictions exceeds that of classical free hydraulic jumps, elucidated by turbulent
flows preceding the constriction (Figure 5). Unlike free hydraulic jumps, energy loss in arc-shaped constrictions arises
from the hydraulic jump, local loss, and the constriction elements. Table 3 encapsulates the experimental findings of this

research.
Various dimensionless parameters were considered as inputs for different models, and the relative energy loss was

chosen as the output and the target feature. An attempt was made to apply advanced data mining methods to estimate
the relative energy loss. In the application of data mining methods to forecast relative energy loss, a partitioning strategy

was employed. Seventy percent of the available data was allocated to the training phase, facilitating model development,
while the remaining 30% was reserved for the testing phase to assess predictive performance. This division ensures a
robust evaluation of the model’s generalization capability on unseen data. According to Table 4, based on model no.

4, among the Linear, Polynomial, RBF, and Sigmoid kernels, the linear kernel was chosen as the superior kernel for
the Support Vector Machine model based on its favorable statistical indicator results. The results of Linear and RBF ker-
nels are close to each other. This matter can be either directly chosen or determined through modeling based on the best
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Figure 6 | Experimental and predicted relative energy loss in the SVM model. (continued.).

Table 4 | Statistical indicators for the SVM model

Statistical indicator

Kernels

Linear Polynomial RBF Sigmoid

R (test) 0.994 0.966 0.992 0.436

KGE (test) 0.980 0.887 0.985 �1.514

RMSE (test) 0.010 0.024 0.014 0.362

Average RE% (test) 1.334 3.047 1.442 34.91

BIAS �0.0002 �0.0022 �0.0012 �0.168

DR 0.999 0.999 0.998 0.787

SI 0.015 0.035 0.017 0.525
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Figure 6 | Continued.
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results (Rezaee et al. 2023). The selection of the best kernel was made by ensuring that statistical indicators such as R,
RMSE, average RE, KGE, BIAS, DR, and SI had satisfactory performance compared to experimental results. The labora-
tory and predicted values of relative energy loss for various kernels are shown in Figure 6(a) and 6(b). In addition,

Figure 6(c) shows the results of the training and testing phases for different datasets. As observed, the linear kernel exhi-
bits high accuracy compared to other kernels and predicts relative energy loss with high precision. As indicated in
Figure 6(d) and 6(e), the statistical outcomes for the Linear kernel during the training phase are R¼ 0.992, RMSE¼
0.0114, average RE%¼ 1.41, BIAS¼�0.0005, DR¼ 0.999, SI¼ 0.0161 and KGE¼ 0.982. Correspondingly, in the testing
phase, these values are 0.994, 0.0101, 1.33%, �0.0002, 0.999, 0.015, and 0.980, respectively. Figure 6(f) and 6(g) illus-
trates that, for the superior kernel, a substantial portion of data in both training and testing phases falls within the +3%

relative error band. This observation underscores high solution accuracy, with over 97% of the data residing within the
+3% error band during both training and testing phases.

The results of SVM, ANN, RF, MARS, GEP, and M5 models to predict the relative energy loss are presented in Table 5.
According to Table 5, it was observed that model no. 4 with three input parameters provides favorable statistical results

compared to other models and was selected as the superior model in the processing. Model no. 3 does not have sufficient
accuracy to predict the relative energy loss. Also, the comparison of two models no. 1 and 2 shows that replacing the use of
parameter FrA significantly improves the accuracy of modeling, which indicates the high impact of parameter FrA in pre-

dicting relative energy loss.
As shown in Figure 7, the solution accuracy in the MLP network type increased compared to the RBF network type. The

statistical results for R, RMSE, average RE%, BIAS, DR, SI, and KGE for the MLP network type in the training phase are
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Table 5 | The results of statistical indicators, obtained from SVM-lLinear, ANN-MLP, RF, GEP, MARS and M5 for different combinations

Model no. method

Train Test

R (–) Avg. RE (%) RMSE (–) KGE (–) R (–) Avg. RE (%) RMSE (–) KGE (–)

1 SVM 0.795 3.54 0.0982 0.794 0.814 3.52 0.0980 0.815
ANN 0.802 2.94 0.0854 0.800 0.818 2.57 0.0842 0.824
RF 0.741 4.14 0.0992 0.755 0.752 4.05 0.0991 0.755
GEP 0.800 2.98 0.0868 0.810 0.810 2.58 0.0867 0.807
M5 0.748 4.01 0.0972 0.757 0.757 4.00 0.0945 0.750
MARS 0.814 2.45 0.0792 0.814 0.825 2.24 0.0795 0.821

2 SVM 0.868 2.55 0.0765 0.868 0.870 2.82 0.0700 0.872
ANN 0.894 1.48 0.0545 0.884 0.892 1.54 0.0514 0.892
RF 0.825 2.92 0.0923 0.825 0.826 2.85 0.0852 0.814
GEP 0.884 1.46 0.0548 0.868 0.892 1.84 0.0714 0.884
M5 0.840 2.85 0.0892 0.845 0.825 2.70 0.0801 0.825
MARS 0.892 1.35 0.0546 0.887 0.892 1.58 0.0500 0.898

3 SVM 0.558 4.95 0.1455 0.560 0.545 5.25 0.1580 0.545
ANN 0.585 5.14 0.1865 0.465 0.582 4.88 0.1784 0.485
RF 0.485 5.85 0.2550 0.465 0.454 5.92 0.2655 0.445
GEP 0.575 5.25 0.1885 0.500 0.545 4.84 0.1854 0.484
M5 0.495 5.72 0.2684 0.471 0.458 5.87 0.2595 0.450
MARS 0.584 4.80 0.1718 0.484 0.584 4.84 0.1725 0.588

4 SVM 0.992 1.41 0.0114 0.982 0.994 1.33 0.0101 0.980
ANN 0.998 0.65 0.0057 0.997 0.997 0.63 0.0069 0.995
RF 0.966 2.58 0.0242 0.867 0.964 3.32 0.0270 0.859
GEP 0.992 1.28 0.0117 0.984 0.996 0.80 0.0088 0.973
M5 0.971 2.30 0.0212 0.968 0.978 2.25 0.0190 0.926
MARS 0.997 0.71 0.0062 0.996 0.997 0.70 0.0074 0.995
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0.998, 0.0057, 0.65%, 0.00002, 1.002, 0.008 and 0.997, respectively. These values for the testing phase are 0.997, 0.0069,
0.63%, �0.0004, 0.999, 0.0098, and 0.995, respectively. In the RBF network type, the statistical results in the training

phase are 0.976, 0.0192, 1.98%, 0, 1.0008, 0.0276 and 0.966, respectively. For the testing phase, these values are 0.985,
0.0154, 1.80%, 0.0012, 1.0025, 0.0217, and 0.946, respectively. In the MLP and RBF networks, the data are within the
+4.26% and +5.52% relative error bands in the testing phase. Therefore, based on the above results, the ANN-MLP

method was recognized as the superior model in this phase. This phenomenon has been observed in various research studies,
such as Sauida (2022) and, Momeneh & Nourani (2023), where the ANN model demonstrates a significant level of accuracy
in predicting various parameters.

In Figure 8(a) and 8(c), the scatter plots of data in the training and testing phases for the RF model are provided. The stat-
istical outcomes for R, RMSE, average RE%, BIAS, DR, SI, and KGE in the training phase are 0.966, 0.0242, 2.58%, �0.0002,
1.0023, 0.0347 and 0.867, respectively. Similarly, for the testing phase, these values are 0.964, 0.0270, 3.32%, 0.0070, 1.0129,

0.0385 and 0.859, indicating the model’s performance in both training and testing phases. In Figure 8(b) and 8(d), the overlap
between experimental and predicted data for different datasets in the training and testing phases is shown, indicating a notice-
able difference between them.

In Figure 9, the scatter plot illustrates the training and testing stages for all diverse cases in the GEP and M5 models.

The statistical indices R, RMSE, average RE%, BIAS, DR, SI, and KGE have values of 0.992, 0.0117, 1.28%, �0.0027,
0.966, 0.0168 and 0.984, respectively, during the training phase for GEP model. Similarly, for the testing phase, these
indices are 0.996, 0.0088, 0.80%, �0.0004, 0.999, 0.0125 and 0.973, respectively. The GEP model has also yielded

favorable results predicting energy loss in hydraulic jumps, as evidenced by the study conducted by Rahmanshahi &
Shafai Bejestan (2020). Although their research focused on rough bed conditions, the nature of the investigation,
which involves the examination of energy loss, aligns well with the results of the current study. The GEP model,
om http://iwaponline.com/aqua/article-pdf/doi/10.2166/aqua.2024.010/1393113/jws0730637.pdf
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Figure 7 | Experimental relative energy loss versus predicted relative energy loss in the training and test phase (a, b) in the MLP network, (c,
d) in the RBF network in the ANN method.
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when compared to the M5 model, exhibits greater precision and closer alignment with experimental results. Specifi-

cally, statistical indicators for the M5 model during the training phase (R¼ 0.971, RMSE¼ 0.0212, average RE%¼
2.30, BIAS¼�0.0016, DR¼ 0.998, SI¼ 0.0304, KGE¼ 0.968) are noteworthy. These results persist in the testing
phase as well, with values of (R¼ 0.978, RMSE¼ 0.0190, average RE%¼ 2.25, BIAS¼ 0.0007, DR¼ 1.0023, KGE¼
0.926).

The regression relationship for the MARS model was derived from 70% of the data and was validated with the remaining
30%. The regression Equation (22), presented in Table 6, comprises 6 basis functions. Examination of the results indicates
that all dimensionless parameters FrA, B/W, and yB/yA play a crucial role in predicting the relative energy loss. Statistical indi-

ces during the training phase (R¼ 0.997, RMSE¼ 0.0062, average RE%¼ 0.71, BIAS¼ 0, DR¼ 1, SI¼ 0.0090, KGE¼ 0.996)
and testing phase (R¼ 0.997, RMSE¼ 0.0074, average RE%¼ 0.70, BIAS¼�0.0005, DR¼ 0.999, SI¼ 0.0106, KGE¼ 0.995)
demonstrate high performance (Figure 10).
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Figure 8 | Comparison of the experimental relative energy loss and the RF model in phases (a, b) training, (c and d) testing.

Figure 9 | Comparison of the experimental and predicted relative energy loss of the GEP and M5 models in phases (a) training, (b) testing.
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Table 6 | The equation of the MARS model

Equation (22) of MARS and Basis Function (BF) Coefficient Value Coefficient Value

ΔEAB/EA¼ aþ b�BF(1) – c�BF(2)þ d�BF(3)
– e�BF(4)þ f�BF(5) – g�BF(6)

a 7.80� 10�1 h 7.45� 100

BF(1)¼max(0, FrA–h) b 4.98� 10�2 i 7.45� 100

BF(2)¼max(0, i–FrA) c 1.90� 10�2 j 3.30� 10�1

BF(3)¼max(0, B/W–j) d 3.51� 10�1 k 2.35� 100

BF(4)¼max(0, k–yB/yA) e 2.19� 10�1 l 6.15� 100

BF(5)¼max(0, FrA–l) f 3.36� 10�2 m 4.55� 100

BF(6)¼max(0, FrA–m) g 2.37� 10�2 – –

Figure 10 | Comparison of the experimental relative energy loss and the MARS model in (a) training and (b) testing phases.
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In the current study, a nonlinear polynomial regression relationship has been proposed using SPSS for predicting the rela-

tive energy loss within the specified research range:

DEAB

EA
¼ 0:002(FrA)

2:098 þ 0:290
B
W

� �0:969

þ0:320
yB
yA

� �0:640

(23)

The statistical results for the mentioned relationship are as follows: R¼ 0.988, average RE%¼ 1.108%, and RMSE¼ 0.0098.
Additionally, the KGE for this relationship falls within the ‘very good’ range. These statistical indicators suggest that the pro-

vided relationship exhibits high accuracy in predicting the amount of energy loss, with over 99% of the data falling within the
relative error range of +3%. It should be noted that the relationship provided by MARS model is more accurate compared to
Equation (23).

In order to select the optimal model from SVM, ANN, RF, GEP, M5, and MARS models, the results of the top performers
in each group are depicted in Figure 11. According to Figure 11(a), it can be observed that for the RF model, the values fall
within the range of relative error of +11%. The corresponding RMSE and average RE% values for this model are 0.0270 and
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Figure 11 | (a) Experimental relative energy loss values versus predicted values and (b) comparison of relative energy loss values for different
data in the test phase.
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3.32%, respectively. For the SVM-Linear model, the data falls within the relative error range of +3.54%, showing favorable
results compared to the RF model. The RMSE and average RE% values for this model are 0.0101 and 1.33%, respectively.
In the case of the GEP model, the data falls within the relative error range of +4.63% with RMSE¼ 0.008 and average
om http://iwaponline.com/aqua/article-pdf/doi/10.2166/aqua.2024.010/1393113/jws0730637.pdf
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Figure 12 | Taylor and Violin diagrams: (a, c) training and (b, d) testing. (continued.).
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Figure 12 | Continued.
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RE%¼ 0.80%. Similarly, these values for the M5 model are 6.91%, 0.0190, and 2.25%, respectively. The MARS model exhi-

bits satisfactory results, although the ANN-MLP method statistically outperforms the previous models and is closer to
experimental results. For the ANN-MLP method, the data falls within the relative error range of +4.26%. The corresponding
values for this model are 0.0063 and 0.63%. A comparison of the relative energy decline obtained from various models with

experimental results indicates better data overlap in the ANN method with experimental results (Figure 11(b)).
As depicted in Figure 12, Taylor diagrams were employed for the decomposition, analysis, and evaluation of models. A

notable advantage of the Taylor diagram is its utilization of two statistical indices: the correlation coefficient and the
standard deviation (Taylor 2001). A closer proximity of the predicted values to the observed values in terms of corre-

lation coefficient and standard deviation implies a more accurate prediction. The performance of Taylor diagram in
Figure 12 illustrates that the ANN model exhibits the highest efficiency and performance. This is evidenced by the pre-
dicted standard deviation having a small difference from the observed standard deviation and a high correlation

coefficient. According to all evaluation criteria, the examined models demonstrate suitable performance in estimating
relative energy loss. Among them, the ANN and MARS models exhibit highest accuracy. The violin plot visually rep-
resents numerical data. Occasionally, relying solely on the mean and median proves insufficient for a comprehensive

understanding and interpretation of a dataset. Questions may arise regarding whether the majority of sample values clus-
ter around the median, or if most values are concentrated near the maximum and minimum, with no data encompassing
the mean. In such instances, a distribution plot is valuable for providing insights. The violin plot amalgamates features of

both a box plot and a density plot, effectively highlighting peaks and distributions within the data. In scenarios where
samples exhibit multiple peaks, the violin plot adeptly delineates the presence of these peaks, elucidating their coordi-
nates and relative fluctuations.
CONCLUSIONS

The current research investigates experimental and data mining methods, including SVM, ANN, RF, GEP, MARS, M5 algor-

ithm and regression equation for predicting the relative energy loss in constrictions along the flow path. Experiments were
conducted within the Froude number range of 2.85–8.85. 70% of the data were used for the training phase and 30% for
the testing phase for all mentioned models. Experimental results indicate that the arc-shaped constriction leads to a relative
energy loss in the range of 0.50–0.89. In the SVM model, the examination of various kernels revealed that the linear kernel

outperforms polynomial, RBF, and Sigmoid kernels when compared to experimental results. The statistical indicators of the
correlation coefficient (R), RMSE, mean percentage relative error (average RE%), BIAS, DR, SI, and KGE for the SVM-
Linear model in the testing phase are 0.994, 0.0101, 1.33%, �0.0002, 0.999, 0.0105 and 0.980, respectively. For the ANN

method with MLP and RBF networks, the ANN-MLP approach shows more accurate results compared to other network
types. Specifically, the statistical indicators for ANN-MLP in the testing phase are R¼ 0.997, RMSE¼ 0.0069, average
RE¼ 0.63%, BIAS¼ 0.0004, DR¼ 0.999, SI¼ 0.0098, and KGE¼ 0.995. In the RF model, results are comparatively

weaker than the other models. ANN-MLP outperforms SVM, GEP, M5, MARS and RF models and is closer to experimental
results. It should be noted that the MARS model yields results very close to the ANNModel, and the equation provided by the
MARS model can confidently be used. The statistical indicators for the MARS model in the testing phase are R¼ 0.997,

RMSE¼ 0.0074, average RE%¼ 0.71%, BIAS¼�0.0005, DR¼ 0.999, SI¼ 0.0106, and KGE¼ 0.995. The non-linear poly-
nomial regression equation, in comparison to the MARS equation, exhibits relatively lower accuracy but can be used with
high confidence. The non-linear regression and MARS relationships are presented in the scope of the present research.
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