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Abstract: The construction sector, including in developed countries, plays a notable part in the overall
energy consumption worldwide, being responsible for 40% of it. In addition to this, heating, ventilat-
ing and air-conditioning (HVAC) systems constitute the largest share in this sector, accounting for 40%
of energy usage in construction and 16% globally. To address this, stringent rules and performance
measures are essential to reduce energy consumption. This study focuses on mathematical optimisa-
tion modelling to enhance the performance of indirect-contact evaporative cooling systems (ICESs),
a topic with a significant gap in the literature. This modelling is highly comprehensive, covering
various aspects: (1) analysing the impact of the water-spraying unit (WSU) size, working air (WA)
velocity and hydraulic diameter (Dh) on the evaporated water vapour (EWV) amount; (2) evaluating
temperature and humidity distribution for a range of temperatures without considering humidity
at the outlet of the WSU, (3) presenting theoretical calculations of outdoor temperature (Tout) and
humidity with a constant WSU size and air mass flow rate (MFR), (4) examining the combined effect
of the WA MFR and relative humidity (ϕ) on Tout and (5) investigating how Tout influences the
indoor environment’s humidity. The study incorporates an extensive optimisation analysis. The
findings indicate that the model could contribute to the development of future low-carbon houses,
considering factors such as the impact of Tout on indoor ϕ, the importance of low air velocity for
achieving a low air temperature, the positive effects of Dh on outdoor air and the necessity of a WSU
with a size of at least 8 m for adiabatic saturation.

Keywords: buildings; HVAC; energy consumption; energy-efficient solution; optimisation

1. Introduction

The clean and effective use of energy production is becoming increasingly important
with the increase in the importance and awareness of environmental problems that have
come as a result of global warming [1–6]. The phenomenon of global warming induces the
creation of greenhouse gases, impacting both nature and humans. This is fuelled by the
unregulated surge in energy consumption, reflective of irregular increases in the global
human population and economic advancements, coupled with the escalating combustion
of fossil fuels. In spite of dedicated endeavours to reduce the interval between traditional
energy sources and renewables, only approximately 30% of the overall global energy need
is fulfilled by green energy technologies [7]. In this context, there is widespread agreement
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within the scientific community that conducting investigations into the efficient control
and utilisation of energy resources and effectively decreasing the consumption of energy
is imperative. This issue affects not just one sector, but the entire spectrum of industries.
Hence, if each sector implemented measures to curtail the energy demand, the escalating
greenhouse gas emissions globally could potentially be halted. Urgent and intensified
actions must be taken to achieve stability as a result. A review of literature studies indicates
that a substantial portion of global energy consumption is attributed to buildings. As an
illustration, in the European Union (EU), buildings contribute 40% of the overall energy
consumption [8]. Tzeiranaki et al. [9] reported that the total energy loss for the EU in 2020
was equivalent to approximately 1086 million tons of oil.

In a study conducted years later, regarding the present annual greenhouse gas emis-
sions within the UK territory, standing at 454 MtCO2, approximately 91 MtCO2 was shown
to be related to the functioning of structures. Notably, 90% of these emissions stemmed from
domestic buildings. The emissions directly associated with constructing new buildings in
the UK during 2018 were estimated to range between 17.0 and 18.5 MtCO2. Specifically,
domestic buildings were shown to be responsible for 9.4 and 8.9 MtCO2, consistently [10].
Hence, the issue of energy consumption is not only significantly high, but also has an
evident impact on the environment.

Buildings’ energy consumption is allocated not only to heating, but also to cooling,
making the impact of cooling significant. According to a study by Rashad et al. [11], the
demand for cooling is on the rise in tandem with the increased desire for enhanced comfort
in buildings. Evaporative cooling is highlighted as a strong contender to meet this demand
due to its cost-effectiveness [12]. Evaporative cooling, as underscored by Chen et al. [13], is
presented as a feasible substitute for mechanical vapour compression in air conditioning,
demanding roughly one-fourth of the electric power compared to vapour compression
refrigeration [14].

Evaporative cooling systems currently available can be categorised into direct-contact
(DC) evaporative cooling as well as ICESs. In evaporative cooling through DC, the air
in need of cooling is brought into DC with the LWF and the need can be met through a
heat transfer (HT) between the WA and the LWF [15]. Evaporative cooling through DC
is suitable for usage primarily in arid, hot environmental conditions, or in spaces that
necessitate both cooling and humidification [16]. Conversely, in ICESs, the interior air
decreases in temperature through auxiliary air, known as the WA, which undergoes cooling
by means of evaporation [17]. From a thermodynamic perspective, the moist pathway
takes in heat from the dry pathway through the process of water evaporation, effectively
cooling the non-moist pathway, whilst the latent heat of vaporising water is released into
the WA. The depiction in Figure 1 illustrates the setup of ICESs.
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The metal panel situated amid the product and working air generally functions as
a device that facilitates the exchange of heat between the two air streams, available in
plate form [18,19], tube form [18,20] and heat pipe form [18,21]. ICESs possess the utility
of cooling the product air without altering its specific humidity [22]. Moreover, ICESs
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were chosen for this study due to their avoidance of incorporating contaminated water
droplets into the system, a concern that can arise during operation, posing significant
health risks [23]. As a result, these systems have been extensively employed in residential
structures as HVAC systems for over a century [17].

The theoretical examination of ICESs is relatively intricate, given that the air-cooling
process entails simultaneous thermal and mass diffusion at the interface between the water
film and air. Numerous efforts have been undertaken to achieve a precise comprehension of
the thermal characteristics of these systems. Previous theoretical studies utilised 1D mathe-
matical models [24–28]. Erens and Dreyer [29] assessed three analytical models, revealing
that the optimal configuration for the cooling system is achieved with the proportion of
airflow velocity between the primary and secondary components of approximately 1.4,
presuming an equal MFR. Tsay [30] conducted a numerical investigation of a reverse-flow
and moist surface heat exchanger, revealing that a significant portion of the energy transfer
over the water film was soaked through the film vaporisation process. Guo and Zhao [31]
provided a comprehensive examination of an ICES. The impact of diverse factors, including
the speeds of the fundamental and auxiliary air flows, channel width, inlet ϕ and the
plate’s wettability, on thermal efficiency was explored. They asserted that a decreased
inlet ϕ of secondary air, increased plate wettability and a greater velocity rate pertain-
ing to the secondary air in relation to the primary air resulted in an enhanced efficiency
of the refrigeration framework. Halasz [32] introduced a comprehensive mathematical
model for evaporative cooling systems. The model was constructed by developing a set
of four fractional derivative formulas that described evaporation without maintaining an
isentropic condition process with a variable watercourse orientation, chilled fluid and air.
Riffat and Zhu [33] introduced a mathematical thermal and mass diffusion model in their
innovative ICES design, incorporating permeable ceramic and thermal conduit elements.
Their findings suggested the potential for achieving substantial cooling capacity in arid and
breezy weathers. They emphasised the importance of setting the indoor air velocity at an
appropriate level of 0.6 m/s for optimal efficiency. Adam et al. [34] investigated heat and
mass transfer in an ICES, specifically focusing on a crossflow arrangement. A numerical
model was developed to predict condensation in the primary air and was validated against
both numerical and experimental data. The simulations explored different condensation
scenarios in the dry channel under severe operating conditions. The results showed that
condensation states depended on these factors, with lower wettability factors delaying and
reducing condensation. Additionally, increasing the secondary air velocity enhanced con-
densation and improved the cooling capacity. Belarbi et al. [35] theoretically explored water
spray evaporation as a means for natural temperature diminishment in dwellings. Some
researchers have engaged in analogous modelling efforts [36,37]. Maheshwari et al. [38]
assessed the potential energy savings of ICESs. They noted a significantly higher energy-
saving potential in interior areas compared to coastal areas. The study revealed that an
ICES in interior areas was 30% further economically efficient in contrast to a conventional
air-conditioning system.

A comprehensive examination of the existing literature clearly indicated numerous
endeavours towards the theoretical exploration of ICESs. Nevertheless, it is apparent from
previous research that achieving a satisfactory alignment between experimental and theo-
retical outcomes has proven challenging due to the intricate nature of the process and the
inherent limitations in assumptions. In addition, there is a pressing need for further studies
dedicated to innovative ICESs explicitly tailored for residential buildings. Consequently, to
achieve a more thorough understanding of the techno-economic evaluation within such
systems, it becomes imperative to undertake a comprehensive analysis that encompasses
both theoretical research and experimental validation. Hence, in response to the existing
gap in the literature regarding comprehensive modelling or validation through experimen-
tal studies, this research introduces a mathematical framework for the inventive design of
ICESs, which has already undergone testing at a trial site in the southeast of the United
Kingdom. It is anticipated that this study, which meticulously considers various factors, is
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likely to significantly contribute to future perspectives by offering a detailed insight into
the novel modelling of temperature reduction systems along with its initial findings.

2. An Innovative Evaporative Cooling System

This investigation constituted the initial segment of a study focused on an innovative
configuration of an ICES. The primary objective of this phase was to discern the operational
system features via a theoretical examination. In this context, the study examined the
influences of operational and environmental factors, including the temperatures inside and
outside, the MFR, the ϕ levels of the supplied and the WA and the channel configuration
of the heat exchanger, on the comprehensive efficiency of the system. The setup was
developed and built to provide ventilation and cooling for residential structures.

To this end, a test residence was erected in southeastern UK, illustrated in Figure 2,
with the system installed beneath the roof. The outer measurements of the testing structure
were 7 m in size, 3 m in broadness, as well as 4.3 m in height. It featured a pair of windows,
along with a roof skylight (Velux window), all equipped with double glazing. Nevertheless,
it was evident from the test site that the study was conducted in conditions representative
of a summer climate. Table 1 provides the size of the elements of the trial dwelling. The
walls and roof were insulated with 150 mm of mineral wool, while the floor had a 150 mm
insulation layer.
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Table 1. Measurements of the elements in the experimental residence.

Trial Residence Components

Exterior Interior Windows Velux Window Door

Size (m) 7 6.7 1.2 0.75 1.5
Width (m) 3 2.7 0.1 0.1 0.1
Height (m) 4.3 2.45–3.3 1 0.9 2.05

The suggested ICES could be divided into two primary components: the heat ex-
changer unit and the WSU. The system was designed to cool the stagnant indoor air
through humidification in the WSU. Afterwards, the cooled air was directed to the poly-
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carbonate heat exchanger (PHE) unit until the isentropic saturation circumstance was
reached. This process enabled a reduction in the Tfa,in at the reverse-fluid heat exchange
systems. Four PHE sheets were manufactured by connecting 0.2 mm thick PHE sheets
using an adhesive with high thermal conductivity, creating a cross sectional area of 10 mm2.
Figure 3 depicts the square cross-section channels of the PHE for both the inflowing and
outflowing air. Two of the PHE sheets were positioned at the facade of the dwelling, whilst
the remaining two were at the rear, as illustrated in Figure 4.
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The measurements and the wall measure of how thick the PHE are provided in Table 2.

Table 2. Specifications regarding the size of the polycarbonate heat exchanger.

Heat Exchange Plate Wall Thickness (mm)

Size (m) Width (m) Depth (m) Upper Central Lower

1.7 0.425 0.01 0.8 0.2 0.8

The termination of every per PHE sheet inside the structure was accompanied by an
exhaust duct linked to the top conduits and an intake duct linked to the inferior conduits.
The exhaust and intake ducts had a square shape with inner sizes measuring 60 × 60 mm2.
Both the exhaust and intake ducts were subsequently incorporated into rectangular chan-
nels with interior measurements of 105 × 50 mm2. Ultimately, the oblong conduits linked
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to fans with variable air velocities. The outer extremities of the PHE concluded below the
roof slates, facilitating the drainage of condensed water into the gutters. Conversely, air
purifiers would draw fresh air from under the overhangs. The WSU was regulated with a
valve, controlling the MFR for the sprayed water. Spraying was carried out using tap water
circulating within a copper pipe, having internal dimensions measuring 8 mm in diameter
and 1 m in size, positioned at the central point of the exhaust channel immediately prior to
the thermal interchange apparatus. A straightforward representation of the entire system
is presented in Figure 5.
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3. Theoretical Framework of the System

In this part, a precise mathematical description of the innovative ICES is introduced.
The model was divided into two components: a theoretical examination of the WSU and a
numerical analysis of the PHE unit. Initially, the rate of water film evaporation into the WA
was calculated under various operating conditions, and the thermophysical characteristics
of the WA were established at the exit of the WSU. A HT comparison for flow within the
channels was utilised to assess the rate of evaporation. The rate of evaporation depended on
the mass transfer coefficient (K), which was identified by the Sherwood number (Sh). The
Sh, which expresses the relationship between convective and diffusive K, was determined
using correlations involving Reynolds (Re) and Schmidt (Sc) numbers. To calculate the
previously talked about unitless quantities, the thermophysical air attributes at the film
temperature (Tf) were operated. Tf was expressed as stated below:

Tf =
Tlwf + Twa,in

2
(1)

The flow’s characteristic was subsequently established using the Re. The Re is a
dimensionless parameter indicating the relationship between the inertial and viscous forces,
providing insight into the significance of these forces under specific flow conditions [39].
For noncircular tube flows, the Re was calculated based on Dh. As a reminder, below we
wrote out the Re formulation:

Re =
ρVDh
µ

(2)

where
ρ: density (kg/m3);
V: velocity (m/s);
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µ: dynamic viscosity ( kg
ms ).

Dh =
4A
p

(3)

In Equation (3), A represents the duct cross-sectional area, while p indicates the
perimeter submerged in the liquid. In the other calculated demand formulation, the Sc can
be found, and it was written out as follows:

Sc =
v

Dm
(4)

where
v: kinematic viscosity ( m2

s );

Dm: mass diffusivity ( m2

s ).
As apparent from the formulation, the Sc is a unitless factor expressed as the rate

between the momentum and mass diffusivities. It can be employed to delineate fluid
flows involving concurrent processes of momentum and mass diffusion convection [40].
Afterwards, the Sh was calculated using the subsequent equation:

Sh =
KDh
Dm

(5)

Sh is a unitless parameter that signifies the convective ratio to dispersive K. The mean
K was determined by employing the mean Sh in accordance with the below formula:

K =
Shdm

Dh
(6)

The line above the abbreviations in the formula means the average.
To calculate the Sh, the subsequent partially theoretical equation established by

Frossling [41] could be applied:

Sh = 2 + 0.552
√

Re 3
√

Sc (7)

Regarding the water vapour spread coefficient, the curve obtained through the regres-
sion adjustment derived from the dataset of Bolz and Tuve [42] could be employed:

Dm = 1.656 × 10−10T2 + 4.479 × 10−8T − 2.775 × 10−6 (8)

The MFR was determined through the disparity in the humidity concentration between
the WSU and the WA. The water vapour’s fractional pressure at the WSU expressed vapour
pressure of water at saturation in vapour of water vapour concentration (cw) at the WSU
was the water vapour density determined using the fractional pressure and temperature.
The concentration at the WSU is known as the mass fraction of water vapour (mfw).

mfw =
cw

ρ
(9)

At Tlfw, the fractional water pressure in the operational atmosphere (Pw,wa), could be
obtained by multiplying the ϕ with the saturation pressure of the water vapour (Psat,w), as
indicated in the formulation below:

Pw,wa = ϕPsat,w (10)

The water vapour concentration in the operational atmosphere (cw,wa) was determined
using ρw calculated based on the fractional pressure and temperature. Then, the following
equation could be used:

mfw,wa =
cw,wa

ρ
(11)
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where mfw,wa: mass fraction of water vapour in the operational atmosphere.
The blowing factor (BF) was determined using the following definition to compute

the adjusted mass transfer coefficient (Kcor):

BF = ln
1 + mfw−mfw,wa

mfw,wa−1
mfw−mfw,wa

mfw,wa−1

(12)

The Kcor was adjusted using:
Kcor = KBF (13)

Lastly, the water MFR resulting from evaporation was computed using the next equation:

.
mw = KcorAtot,wsu(cw − cw,wsu) (14)

where Atot,wsu: the overall HT surface area of the WSU.
Establishing the water MFR through evaporation allowed for the determination of the

temperature and ϕwa at the WSU exit. The cooled and humidified WA, upon leaving the
spraying duct, was then guided to the counter-flow PHE to lower the temperature of the
entering warm fresh air. Subsequently, the second phase of the simulation effort focused
on examining the HT within the innovative plate-type PHE.

The PHE could be envisioned as a pair of straight channels accompanying the move-
ment of fluid that are thermally linked. Assuming the ducts are of the same size (L) and
transports the streams with heat capacity (cj), the MFR of the streams is represented by (

.
mj)

that lower index and “sa” refers to the stale air and “fa” to fresh air. Therefore, Tsa(x) and
Tfa(x) are the temperature profile to the streams and, here, x refers to the interval through
the channel. The analyses were conducted under steady-state conditions, ensuring that the
temperature profiles remained constant and were not dependent on time. Additionally,
it was regarded as the exclusive HT from a limited quantity of fluid to the fluid particle
inside the second channel at the equivalent location. The quantity of the HT within the
channel due to temperature variations was disregarded. According to Newton’s law of
cooling, the rate of energy alteration within a limited section of the flow was directly linked
to the temperature disparity between that segment and the corresponding component in
the alternate duct:

∂usa

∂t
= ξ(Tfa − Tsa) (15)

∂usa

∂t
= ξ(Tsa − Tfa) (16)

Here, uj(x) is the ratio of the thermal energy to size; also, ξmeans the thermal coupling
constant divided to size among channels. This alteration in the internal energy led to a
modification at Tsa. The temporal rate of variation for the stream element transported by
the flow was as follows:

∂usa

∂t
= ψsa

dTsa

dx
(17)

∂ufa
∂t

= ψfa
dTfa
dx

(18)

where ψf = cj
.

mj means the thermal MFR. When rearranging the equations between (15)
and (17) as well as (16) and (18), they could be rewritten as follows:

cj
.

mj
dTsa

dx
= ξ(Tfa − Tsa) (19)

cj
.

mj
dTfa
dx

= ξ(Tsa − Tfa) (20)

Looking at the rearranged equations above, it could be easily understood that there
was no longer a time dependence because the system was essentially stationary. Moreover,
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given that the HT was nearly negligible along the extension of the pipe, it was not feasible
to compute any secondary derivatives at any point x, as indicated by the heat equations,
like in the next equations:

Tsa = Ω1 − Ω2
σ1

σ
e−σx (21)

Tfa = Ω1 + Ω2
σ1

σ
e−σx (22)

Therefore
σ1 =

ξ

ψsa
, σ2 =

ξ

ψfa
, σ = σ1 + σ2 (23)

Also, Ω1, as well as Ω2, are in the mean of the integration constants. Now, to determine
the mean temperatures, with the origin of the temperature points set at 0 and the channel
size established as L, the following formulas arose:

Tsa =
1
L

L∫
0

Tsadx (24)

Tfa =
1
L

L∫
0

Tfadx (25)

Tsa,0 = Ω1 − Ω2
σ1

σ
(26)

Tfa,0 = Ω1 + Ω2
σ1

σ
(27)

Tsa,l = Ω1 − Ω2
σ1

σ
e−σl (28)

Tfa,l = Ω1 + Ω2
σ1

σ
e−σl (29)

Tsa = Ω1 − Ω2
σ1

σ2l
(1 − e−σL) (30)

Tfa = Ω1 + Ω2
σ2

σ2l
(1 − e−σL) (31)

Equations (27)–(31) did not matter at all. By choosing at least two of the temperatures,
the integral constant could be eliminated and, thus, shed light on finding the other four
temperatures. Additionally, the overall transfer of heat could be obtained using these
next equations:

dγsa
dt

=

L∫
0

dusa

dt
dx = Ψsa(Tsa,L − Tsa,0) = ξl(Tfa − Tsa) (32)

dγfa
dt

=

L∫
0

dufa
dt

dx = Ψfa(Tfa,L − Tfa,0) = ξl(Tsa − Tfa) (33)

γ represents the overall transfer of heat, whilst u means the internal energy. As is known
from the law of energy conservation, it could be understood from the above equations
that the overall result of energy changes was zero. The above equation, given as the mean
temperature differences, is defined in the literature as logarithmically average temperature
difference, which is one of the measures of heat exchanger efficiency.

4. Results and Discussion

This section first begins with a theoretical evaluation of the effects of the WSU size,
WA velocity and Dh on the amount of EWV. Accordingly, Figure 6a–c below was created
for the theoretical evaluation.
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Figure 6. (a) Merged impacts of Lwsu and Dh onto the quantity of EWV. (b) Collective influence of
Lwsu and the vwa on the quantity of EWV. (c) Joint effects of Dh and vwa on the quantity of EWV.

In an alternative investigation, the temperature without considering humidity at the
exit of the WSU and the proportion of moisture in the WA was individually scrutinised
at the WA inlet temperatures of 17 ◦C, 20 ◦C, 23 ◦C, 26 ◦C and 29 ◦C. The outcomes are
depicted in Figure 7a–e, and the theoretical representation of the WSU size was provided.
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Figure 7. (a) Depicting the variation in the size of the WSU, the Tdb and the ϕ of the WA at the exit of
the WSU concerned a temperature of 17 ◦C, (b) at 20 ◦C, (c) at 23 ◦C, (d) at 26 ◦C and (e) 29 ◦C.

As indicated in the figures, it was evident that the temperature and ϕ of the WA, as
extensively discussed in the literature, played a crucial role in defining the capacity of
the evaporative cooling system. The findings suggested a trend of decreasing the Tout of
the WA with the increasing size of the WSU. Moreover, it was observed that the ϕ of the
WA attained saturation beyond a certain threshold for each size of the WSU, deviating
from the peak cooling condition. Nevertheless, a WSU size of at least 8 m was the pivotal
requirement to achieve an adiabatic saturation. Nevertheless, the outcomes indicated that
with an increase in the inlet ϕ of the WA, both the temperature and ϕ of the outlet WA
witnessed an upward trend.

In a different segment of the results, the theoretical computation was performed for
the Tout and ϕ of the WA, considering a constant WSU size and air MFR (Lwsu = 6 m,
vwa = 0.1 m/s). The temperature range was scrutinised from 17 ◦C to 29 ◦C, at 3 ◦C incre-
ments, mirroring the approach taken in the previous analysis, as illustrated in Figure 8a–e.
As evident from the illustrations below, how crucial the Dh is in influencing the WA outlet
temperature became apparent. For instance, the observed Ttwa,out of less than 10 ◦C for a
Dh of 0.3 m was an anticipated occurrence, clearly depicted in the images. However, it was
deduced that the ϕwa,in did not surpass 50% at its best. As highlighted earlier, the Tout,wa
was markedly impacted by the ϕwa,in. To illustrate, when the WA entered at a temperature
of 17 ◦C with 70% ϕ, the Tout,wa decreased to 13 ◦C, whereas, with 20% ϕ, it dropped
below 10 ◦C.
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Figure 8. (a) As influenced by Dh, the Tdb and the ϕwa at the WSU exit concerned Twa,in at 17 ◦C, (b)
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Another aspect explored independently within the research involved considering the
joint impacts of the MFR andϕwa on the Tout, as depicted in Figure 9a–e below. The findings
allowed us to observe that achieving a lower WA temperature in the outlet area required
a significantly low air velocity, which could be attained by humidifying the environment
through the addition of water vapour to the WA, albeit requiring a longer duration.
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Figure 10. The inlet temperature of fresh air was influenced by both the Tfa,out and the Twa,in of the 
PHE. 
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Figure 9. (a) In relation to the velocity of the WA, the Tdb and the ϕwa at the exit of the WSU
concerned Twa,in at 17 ◦C, (b) at 20 ◦C, (c) at 23 ◦C, (d) at 26 ◦C and (e) 29 ◦C.

Figure 10 illustrates a linear increase in the Tfa,in, correlating with both the Tfa,out and
the Tfa,wa.
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Figure 10. The inlet temperature of fresh air was influenced by both the Tfa,out and the Twa,in of
the PHE.

In the final analysis, we depicted the impact of Tfa,out on ϕfa,in in Figure 11a–d. As
per the results, if ϕfa,out was above 40% and the Tfa,out exceeded 35 ◦C, it indicated that the
thermal comfort range for ϕfa,in would not be met.
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Figure 11. (a) ϕfa,in by ϕfa,out, as well as WA temperature at the exchanger inlet at ϕfa,out = 10%
(b) at ϕfa,out = 20%, (c) at ϕfa,out = 30%, (d) at ϕfa,out = 40%.

5. Conclusions

• Enhancing the Dh and extending the size of the WSU could give rise to an increment
in the quantity of water vapour.

• Conversely, accelerating the WA speed would contribute to a diminishment in wa-
ter evaporation.

• When considered in terms of cooling efficiency, it became evident that the temperature
of the WA was just as crucial as itsϕ. The findings demonstrated a significant reduction
in the Tout of the WA with the rise in WSU size.

• On the flip side, it was proven that the ϕ in the WA attained adiabatic saturation after
a certain value of the WSU size, which was the wanted status.

• Based on the findings from the optimisation analyses conducted with various inlet air
temperatures, achieving the adiabatic saturation status required a WSU size of at least
8 m.

• In another analysis conducted with a similar approach, the focus shifted to diverse
relative humidities of the WA. The results showed that an increase in the inlet ϕ of the
WA led to higher temperatures and ϕ of the WA. This underscored the significance of
selecting an optimal value whilst considering indoor thermal comfort conditions.

• Additionally, the outer temperature and ϕ of the WA were established for Lwsu = 6 m,
vwa = 0.1 m/s, contemplating severe temperatures of the WA at the interior. The
cumulative impacts of Dh and ϕ were also assessed. We derived a conclusion that
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the Dh had a notable impact on the Tout of the WA. For a Dh of 0.3 m, the Twa,out fell
below 10 ◦C, which appeared to be highly favourable.

• It was stressed that, for the optimal circumstances to be achieved, the ϕ in the inlet
WA should be maintained below 50%.

• This study also investigated the impacts of the MFR and ϕ on the Tout. It concluded
that achieving the desired low WA temperature at the outlet required maintaining a
low air velocity.

• Tfa,in increased proportionally with both the temperature of the WA and the Tfa,out.
• The Tout significantly influenced the ϕwithin the indoor environment. For instance,

assuming ϕfa,out = 40%, if the Tfa,out exceeded 35 ◦C, it indicated that ϕfa,in may not
fall within the thermal comfort range, as demonstrated in this study.
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Nomenclature

A: Area [m2] K: Mass transfer coefficient [m/s]
BF: Blowing factor L: Length
c: Specific heat capacity [J/kgK] mf: Mass fraction
D: Diameter [m]

.
m: Mass flow rate [kg/s]

Dm: Mass diffusivity [m2/s] P: Pressure [Pa]
HVAC: Heating, ventilating and air conditioning Re: Reynolds number
ICES: Indirect-contact evaporative cooling system u: Thermal energy
PHE: Polycarbonate heat exchanger x: Distance along the duct
Sh: Sherwood number Sc: Schmidt number
T: Temperature [◦C] EWV: Evaporated water vapour
MFR: Mass flow rate DC: Direct contact
HT: Heat transfer
SUBSCRIPTS
cor: Corrected lwf: Liquid water film
db: Dry bulb out: Outside
f: Film sa: Stale air
fa: Fresh air sat: Saturated
h: Hydraulic tot: Total
in: Inlet w: Water vapour
j: Stream wa: Working air
L: Length [m] wsu: Water-spraying unit
GREEK LETTERS
Φ: relative humidity σ: Constant
ν: Kinematic viscosity [m2/s] ξ: Thermal connection constant
µ: Dynamic viscosity [kg/ms] p: Perimeter [m]
Ω: Constant ρ: Density [kg/m3]
Ψ: Thermal mass flow rate w: Constant
γ: Overall transfer of heat [W]
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