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This study offers a comparative study of the analytical and numerical methods

for investigating a contact problem. The contact problem comprises a function-

ally graded layer supported by a half-plane and loaded with a distributed load

from the top surface. First, the analytical and numerical solutions to the prob-

lem are acquired by utilizing a theory of elasticity and finite element method,

respectively. The problem is transformed into a system of integral equations in

which the contact stress is an unknown function. The solution of the integral

equation was achieved with Gauss–Jacobi integration formulation. The finite

element model of the problem is created using ANSYS software, and the two-

dimensional analysis of the problem is performed. Results were obtained from

the samples for different material properties and loading conditions. The dis-

tributed load width and non-homogeneity parameters significantly impact on

contact mechanics. The results indicate that the contact area and the contact

stress obtained from finite element method (FEM) are close to the analytical

results. As a result, acceptable error rates were obtained. Finally, this study

provides evidence of a good agreement between the two methods.
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1 | INTRODUCTION

The subject of contact mechanics has an essential place in mechanical and civil engineering, and it has become increas-
ingly popular, especially in the last 30 years. It is accepted that contact mechanics emerged with the article “On the con-
tact of elastic solids,” written by Heinrich Herz in 1882. Basically, contact mechanics is the study of problems to
determine, explain, or define the damage and shaping methods [1].
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In this direction, the application areas of contact mechanics include the primary engineering fields such as founda-
tions, railways, highways, airport superstructures, cylindrical shafts, and shafts, as well as the behavior of human joints
and biomechanics, including prosthesis and implant issues. Heinrich Hertz studied the balance of two elastic bodies in
contact, assuming that the contact zone is elliptical, and developed a formulation for contact stress and strains. In lay-
ered materials, the sudden change of material properties on the bonding surface can damage the materials in contact
beginning from the bonding surface and cause the materials to separate from each other over time. To prevent this
problem, a new material class, Functionally Graded Materials (FGMs), has emerged in engineering applications. FGMs
are heterogeneous composite materials in which material properties may differ from one surface to another on the
material, depending on a defined function. In particular, the necessity of a homogeneous material that provides high
strength to spacecraft, is resistant to thermal effects, and exhibits thermal resistance has increased the orientation to
the field of FGM, which can combine these features. Due to their ability to reduce surface tensions, FGMs have had
various applications, such as mechanical, electronics, chemical engineering, aerospace, energy, optical materials, and
biomedical engineering, since their emergence [2–8].

Contact mechanics is an important research topic for many researchers. Researchers approach the solution of differ-
ent types of contact problems with two methods: analytical and numerical. In addition to these two methods, there are
also problems created with layers containing FGM. For this reason, contact problems examined using analytical and
numerical analysis methods in the literature occupy an extensive area [9–16].

Some studies in the literature that solve FGM problems analytically are listed below. Muskhelishvili (1953) and
England (1971) used the analytical continuation method based on the theory of complex variables to solve pressure
problems [17, 18]. After the method, the general solution of the pressure problem is made by the reduction method to
the linear equation system that can be expressed with the basic Plamelj function. Adams (1978) used the theory of elas-
ticity to examine the behavior of an elastic layer sitting on a semi-infinite plane under the effect of a single moving load.
As a result of the study, the contact stresses were determined, as well as the location and size of the contact zone for
various material properties and velocity magnitudes [19]. Saito and Terasawa (1980) investigated the vibration of an
infinite beam supported by a Pasternak foundation and under the effect of a moving load. They obtained the equations
of motion using the theory of elasticity and the solution using the Fourier transform. The results were compared with
those obtained from the Timoshenko and Bernoulli-Euler beam theorems [20]. Dempsey et al. (1990) investigated the
contact problem of an infinitely long elastic layer based on Winkler under different loadings. Different loading cases
acting on the layer were solved separately according to elasticity and beam theory, and the results obtained were com-
pared [21]. Giannakopoulos and Suresh (1997) investigated the contact stresses in axisymmetric functionally graded
materials loaded with frictionless flat, conical, and spherical rigid blocks [22]. Chao and Gao (2000) used the analytical
continuation method to solve a problem created for a thermoelastic half-plane with a rigid punch of various shapes. As
a result of the study, the effects of applied loads, punch profile, and material properties on the contact stress under the
punch face were examined in detail [23]. Güler and Erdo�gan (2004) studied the contact problem in graded coatings lim-
ited by homogeneous substrates loaded with rigid thrusts in triangular and rectangular profiles [24]. Ke and Wang
(2006) investigated the contact problem when friction forces act perpendicularly by applying a singular force with an
elastic punch to an elastic half-plane covered with a thin layer [25]. Yang and Ke (2008) investigated the frictionless
contact problem for a tripartite structure consisting of a pavement layer, a Functionally Graded (FG) layer, and a sub-
strate under a rigid cylindrical block. The coating layer and the substrate are homogeneous materials with different
physical properties. The intermediate layer is FGM, and the shear modulus varies arbitrarily throughout the thick-
ness [26]. Aizikovich et al. (2011) developed an analytical method that efficiently solves contact problems in materials
with properties that vary arbitrarily across depth [27]. Volkov et al. (2013) investigated the contact problem in the case
of the FG elastic layer loaded with a circular block, in line with the approximate analytical solution method [28]. Yan
and Li (2015) investigated the frictionless separation contact problem between an FG layer and an elastic layer,
accepting that the FG layer is isotropic and the shear modulus of the layer varies depending on an exponential function
along the thickness [29]. In addition to the summarized studies above, the literature also includes studies evaluating
layered structures' behavior under different wave types outside the contact problem [30–36].

Numerical methods, one of the methods of solving contact problems, have led to the development of studies in this
field in line with the technological developments in recent years. Methods such as integral transformation techniques,
finite differences, and finite elements can be examples of these studies. The finite element method is important in solv-
ing contact problems in terms of allowing the relationship of elements in a particular geometry to each other, the
mechanical and physical properties of materials, and the definition of complex boundary conditions [37–46].
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In the literature, many studies on contact problems are solved using the finite element method. Schwarzer et al. (1995)
solved the contact problem in a laminated layer with a notch analytically and numerically [47]. Güler et al. (2012) pres-
ented a two-dimensional analytical solution that can be applied to three-dimensional problems with its adaptability for
plane stress and plane strain geometries. The study used the determined analytical formulation as a basis for validating the
finite element results [48]. Abhilash and Murthy (2014) determined the two-dimensional elastic contact of a semi-infinite
plane covered with FGM and loaded with a punch using the finite element method [49]. Liu et al. (2018) examined the
contact problem of two bonded layers sitting on a half-plane. The study assumed the system was homogeneous on the top
layer and FGM on the bottom. The problem was solved analytically and numerically, and the results were compared [50].

According to the literature, the FG layer's shear modulus varies based on an exponential function. In general, how
the material stiffness parameter affects the contact stresses and contact region length has been researched. However,
the difference in the problem geometry, loading, and geometry that are applied distinguishes this research from other
studies of a similar nature in the literature. This research used the analytical solution based on the theory of elasticity
(ET) and the numerical solution based on the finite element method (FEM) to investigate the frictionless and detached
contact mechanics of the FG layer resting on an elastic half-plane (HP) under two symmetrical distributed loads. For
the different dimensionless quantities, dimensionless contact stresses between the FG layer and half plane were deter-
mined. The results of each of these methods were compared with one another.

2 | THEORETICAL APPROACH (THEORY OF ELASTICITY)

2.1 | Definition of the problem

In this part, the frictionless contact problem of the FG layer supporting the elastic HP is investigated depending on the
theory of elasticity. Figure 1 presents the geometry and loading cases of the problem. The FG layer's shear modulus
changes depending on an exponential function along the layer height, as given in Equation (1). It is supposed that the
shear module of the HP is the same everywhere, that is, homogeneous.

μ1 yð Þ¼ μ0e
βy, 0≤ y≤ hð Þ ð1Þ

The expressions in the figure and equation are defined as follows.

FIGURE 1 Definition of the problem. [Colour figure can be viewed at wileyonlinelibrary.com]
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μ2: The shear modulus of the HP.
μ1: The shear modulus of the FG layer.
μ0: The shear modulus on the lower surface of the FG layer.
β: The non-homogeneity parameter (β≠ 0).
ν1: The Poisson constant of the FG layer.
ν2: The Poisson constant of the HP.
a2-a1: The distributed load length.
b: Contact distance between FG layer and HP.
h: The height of the FG layer.

The HP is homogeneous and has a constant shear modulus. The FG layer's top surface is under two symmetrical dis-
tributed loads. It is assumed that contact between all surfaces is frictionless, and the effect of gravity force is neglected.
Thickness in the z-direction is taken to be a unit.

In the problem equations, (1) indexed expressions belong to the FG layer and (2) indexed expressions belong to the
HP. Displacement and stress relations used in the solution of the problem can be written for the FG layer and elastic
half plane as follows:

For FG layer displacement and stress expressions:

u1 x,yð Þ¼ 2
π

Z∞
0

X4
j¼1

Aje
njysin ξxð Þdξ

v1 x,yð Þ¼ 2
π

Z∞
0

X4
j¼1

Ajmje
njycos ξxð Þdξ

ð2Þ

σ1x ¼ 2μ0e
βy

π κ1�1ð Þ
Z∞
0

X4
j¼1

Aj 3� κ1ð Þmjnjþ ξ κ1þ1ð Þ� �
enjycos ξxð Þdξ

σ1y ¼ 2μ0e
βy

π κ1�1ð Þ
Z∞
0

X4
j¼1

AjCje
njycos ξxð Þdξ

τ1xy ¼ 2μ0e
βy

π

Z∞
0

X4
j¼1

AjDje
njysin ξxð Þdξ

ð3Þ

For elastic FG layer displacement and stress expressions:

u2 x,yð Þ¼ 2
π

Z∞
0

B1þB2yð Þeξy� �
sin ξxð Þdξ

v2 x,yð Þ¼ 2
π

Z∞
0

�B1þ κ2
ξ
� y

� �
B2e

ξy

� �� �
cos ξxð Þdξ

ð4Þ

1
2μ2

σ2x x,yð Þ¼ 2
π

Z∞
0

ξ B1þB2yð Þþ 3� κ2
2

� �
B2

� �
eξy

3
5cos ξxð Þdξ

1
2μ2

σ2y x,yð Þ¼ 2
π

Z∞
0

�ξ B1þB2yð Þþ 1þ κ2
2

� �
B2

� �
eξy

3
5cos ξxð Þdξ

1
2μ2

τ2xy x,yð Þ¼ 2
π

Z∞
0

ξ B1þB2 y

0
BB@

1
CCAþ 1� κ2

2

� �
B2

2
664

3
775eξy

3
775sin ξxð Þdξ

ð5Þ
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where μi(x,y) and νi(x,y) are the x and y components of the displacement vector and σx(x,y), σy(x,y), τxy(x,y) are the stress
components of the layers. κi = (3-4νi)κi ¼ 3�4νið Þ for plane strain and νi is the Poisson's ratio. Aj (j= 1,2,3,4), B1, and
B2 are the unknown coefficients for the layers, which will be determined from the boundary conditions of the problem.

Boundary conditions of the contact problem can be written as
Boundary conditions:

σy1 x,hð Þ¼ �p0; a1 <x <a2
0; x > a2x< a1

� 	

τxy1 x,hð Þ¼ 0, 0≤ x <∞ð Þ

σy2 x,0ð Þ¼ �p1 xð Þ; 0≤ x < b

0; b≤ x<∞

� 	

σy1 x,0ð Þ¼ σy2 x,0ð Þ, 0≤ x <∞ð Þ

τxy1 x,hð Þ¼ 0, 0≤ x<∞ð Þ

τxy2 x,hð Þ¼ 0, 0≤ x <∞ð Þ

ð6Þ

∂

∂x
ν1 x,0ð Þ�ν2 x,0ð Þ½ �, 0≤ x < bð Þ ð7Þ

Equilibrium conditions of the problem may be expressed as

Zb

�b

p1 xð Þdx¼ 2 a2�a1ð Þp0 ð8Þ

where p0 is a known distributed load, and p1(x) is the unknown contact pressures on the contact areas (b). a1 and a2
represent the starting and ending points of the distributed load, respectively.

The solution of the system of the integral equations.
By using boundary Conditions (6), Aj (j = 1,2,3,4), B1 and B2 coefficients can be determined in terms of p1(x)

(Appendix A). After some routine manipulations and using the symmetry conditions p1(x) = p1(�x), one may obtain
the following system of singular integral equation.

p0M xð Þþ 2
π

Zb

�b

P1 tð Þ k x, tð Þþ 1
t�x

� �
κ1þ1
8μ0

þ κ2þ1
8μ2

� �� 	
dt¼ 0 ð9Þ

where M(x), k(x,t) and Δ are explained in Appendix B.
The numerical solutions of the integral equations will be achieved by Gauss-Jacobi Integration Formulation, which

is given in the studies of Erdogan et al. (1973) and Krenk (1975) [51, 52]. The following dimensionless quantities can be
introduced to simplify the numerical analysis of the integral equation.

z¼ ξh, dz¼ hdξ, x¼ bs, t¼ br, dt¼ bdr ð10Þ

ϕ rð Þ¼ h
P
P1 tð Þ ð11Þ

Substituting these dimensionless quantities given in (10) into (8) and (9), these equations may be written as follows

YAYLACI ET AL. 5
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Z1

�1

ϕ rð Þ b
h
k s,rð Þþ 1

r� s

� �
κ1þ1
8

þμ0 κ2þ1ð Þ
8μ2

� �� 	
dr¼� p0

p=h
M sð Þ ð12Þ

b
h

Z1

�1

ϕ rð Þdr¼ a2�a1ð Þp0
p

ð13Þ

One may notice that because of the smooth contact at the endpoint b, the unknown function p1(x) is zero at the
ends; thereby, the index of the integral Equation (12) is “�1”. Its solution may be expressed as Erdo�gan and Gupta
(1972) [53].

gj rj

 �¼Gj rj


 �
wj rj

 �

, wj rj

 �¼ 1� rj


 �αj 1þ rj

 �βj , j¼ 1,2 ð14Þ

Using the Gauss–Jacobi integration formulas, the integral Equation (12) and equilibrium Conditions (13) become

XN
i¼1

W ig rið Þ b
h
k sk,rið Þþ 1

ri� sk

� �
κ1þ1
8

þμ0 κ2þ1ð Þ
8μ2

� �� 	� �
¼ 1
h
M sð Þ ð15Þ

b
2 a2�a1ð Þ

X
Wi rið Þg rið Þ¼ 1 ð16Þ

where r1i and s1k are the roots of the related Jacobi polynomials and W1i
N is the weighting constant

ri ¼ cos
iπ

Nþ1

� �
i¼ 1,…Nð Þ

sk ¼ cos
π

2
2k�1
Nþ1

� �
k¼ 1,…Nþ1ð Þ

WN
i ¼ π

1� r2i
Nþ1

� �
i¼ 1,…Nð Þ

ð17Þ

The extra equation in (15) corresponds to the consistency condition of the original integral Equation (12). It may
also be shown that the (N/2 + 1)-th equation in (15) is automatically satisfied. Thus, Equations (15) and (16) give 2 N
+ 2 algebraic equations to determine the 2N + 2 unknowns G1(r1i) and b. The system of equations is linear G1(r1i) but
highly nonlinear in b. Therefore, an interpolation and iteration scheme must be used to obtain this unknown.

3 | NUMERICAL APPROACH (FINITE ELEMENT METHOD)

This application, which includes a contact problem consisting of functionally graded material, has been analyzed
through the finite element model. The problem handled in the analysis phase was modeled using the ANSYS Mechani-
cal APDL 2013 package program, and finite element analysis was provided with the program's help [54].

Recent developments in computer technology have made FEM-based package programs more common and applica-
ble in terms of analysis and design applications in engineering. As a result of this widespread use, the finite element
method has become one of the most widely used methods for solving complex contact problems in the field of contact
mechanics. Even for problems that seem impossible, a solution can be reached using the finite element method. Finite
element analysis is done on the mesh system obtained by dividing the system into finite elements. At this stage, as the
finite element dimensions get smaller, the shape is divided into more finite elements, and margin of error decreases. In

6 YAYLACI ET AL.
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addition, it provides ease of application in systems with different and complex material properties without simplifying
geometry. Dividing the shape into more finite elements by reducing the finite element size may increase the solution
time of the system while also requiring computers with more sensitive technology. One of the most important reasons
why the finite element method is widely preferred is these advantages [55–57].

The receding contact problem is modeled in two dimensions for our functionally graded layer to elastic and isotro-
pic. The system is physically symmetrical in terms of geometry, material properties, and loading. Therefore, half of the
problem is modeled. The material properties were determined for the contact problem modeled in two dimensions, and
then the mesh system was created. Boundary conditions of the contact state and load steps are applied. Finally, solution
options were determined, and analysis results were obtained.

In the analyses, geometric properties are taken as L = 100 m (length of the layer in the x direction), h = 1 m (thick-
ness of the lower layer in the y direction), the load p0 = 1000 N/m, and the Poisson's ratio is given as constant for layer
ν = 0.25. A code has been developed by changing the layers along the y-axis to define the material properties in func-
tional grades in the ANSYS program and added to the program's log files. Other solution parameters vary according to
the desired results and are selected accordingly.

In this method, a mesh structure is created that is divided into many interconnected small sub-regions of the
structure to be solved. Each small subregion in this mesh structure is a finite element, and nodes connect each finite
element. This mesh state of the structure divided into elements is also called the numerical model. In summary, this
method is a mathematical expression of a physical system. In determining the appropriate element size, choosing the
most ideal element size that can be applied for more precise calculations and to obtain more approximate results is
very important. Because, as the selected element size decreases, that is, as the number of finite elements in the mesh
structure increases, more convergent results are obtained. The first dimension selected in the application was
reduced to the ideal size that would not affect the analysis results significantly, and the mesh structure was created
using the ideal size obtained. As a result, the mesh structure we created under the appropriate boundary conditions
using the selected element dimensions contains 25,369 elements and 44,944 node points. We have determined that
the building element we will use in the application is the PLANE183 element defined in the ANSYS program. The
PLANE183 element is a non-rotational element with eight nodes and two degrees of freedom for each node. In addi-
tion, this structural element can be displaced and deformed in the x and y directions. It provides good performance
compared to other elements due to its four nodal points in forming the mesh structure and is resistant to large-scale
deformations. Modeling the existing contact problem in our study is another important issue. For this, contact pair
TARGE169 and CONTA172 elements, which are quite compatible with each other, were selected. The harmony
between these two elements can be expressed as TARGE169 element displacement, applied loads and moments are
in harmony with each other in defining the CONTA172 sliding contact state. A total of 2097 lines of contact ele-
ments and 4194 contact nodes exist in the finite element model. Finally, the mesh structure, contact elements, and
boundary conditions of the application are given in Figure 2. The deformed shape that occurs after the analysis of
these models is shown in Figure 3.

4 | NUMERICAL EXAMPLE AND RESULT DISCUSSION

In this part, the contact areas and contact stresses that become under various loads, materials, and geometric properties
are examined using ET and FEM. The results obtained from the numerical solutions are presented with figures and
evaluated. In all solutions, the values of μ0=μ2 ¼ 1 and κ1=κ2 ¼ 1 were used. Other values related to material, loading,
and geometry are considered depending on the ratios used in the analyses. The start distance of the distributed load
(a1) and the end distance of the distributed load (a2) values change in the change of rates. At (a1/h) and (a2/h) ratios,
h is kept constant. The dimensionless parameters are given below.

a1/h: The start distance of the distributed load.
a2/h: The end distance of the distributed load.
β: The non-homogeneity parameter of the FG layer.
The output parameter:
p1(x)/p0: The contact stresses between the HP and the FG layer.

YAYLACI ET AL. 7
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FIGURE 2 Mesh structure of the geometry. [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 3 Deformed geometry of the finite element model. [Colour figure can be viewed at wileyonlinelibrary.com]
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b/h: The contact areas between the HP and the FG layer.

The harmony of the results was evaluated by considering the mean absolute error (E). Mean absolute percent
error is employed as the conformity function to evaluate the performance of the numerical results and is defined
as [58].

%E¼ RETi �RFEMi

RETi

����
����x100 i¼ 1,2,3,…,nð Þ ð18Þ

where RETi and RFEMi are the analytical and numerical results of contact areas and contact stresses. n denotes the total
number of results.

FIGURE 4 Change of contact area (b/h) with (a2/h). [Colour figure can be viewed at wileyonlinelibrary.com]
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4.1 | Contact area

In Figure 4, the start distance of the distributed load is kept constant (a1/h = 0 and a1/h = 0.05). The contact areas
(b/h) change is shown for the different non-homogeneity parameter (β = 1, β = 0.001, and β = �1) values selected
according to the end distance of the distributed load (a2/h). Accordingly, it is observed that the contact areas (b/h)
increase with increasing the end distance of the distributed load (a2/h). In Figure 5, the end distance of the distributed
load is kept constant (a2/h = 1). The contact areas (b/h) change is shown for the different non-homogeneity parameter
(β) values selected according to the start distance of the distributed load (a1/h). Accordingly, it is observed that the con-
tact areas (b/h) increase with the increasing start distance of the distributed load (a1/h). In addition, it is observed in
Figures 4 and 5 that as the value of the non-homogeneity parameter (β) increases, the contact areas (b/h) also increase.

4.2 | Contact stress

The contact stresses between the FG layer and the HP reach the maximum value at the axis of symmetry (x = 0), while
the value is zero at the endpoints of contact (x = ±b). At (a1/h) and (a2/h) ratios, h is kept constant. The start distance
of the distributed load (a1) and the end distance of the distributed load (a2) values change in the change of rates.
In Figures (6–9), the contact stress variations are shown for different values of the end distance of the distributed load
(a2/h), the start distance of the distributed load (a1/h), and the non-homogeneity parameter (β). As can be seen from
Figures 6 and 7, the non-homogeneity parameter (β) increases, and the contact stresses (p1(x)/p0) decrease in the
regions close to the symmetry axis and increase as they approach the point where the contact ends. As the end distance
of the distributed load (a2/h) increases, the contact stresses (p1(x)/p0) increase (Figure 8). It can be seen from Figure 9
that as the start distance of the distributed load (a1/h) increases, the contact stresses (p1(x)/p0) decrease.

Table 1 presents the similarity of results of FEM and ET methods for contact stress and contact area shown in
Figures 6–9 using root-mean-square error (RMSE) and coefficient of determination (R 2). The harmony of results with
each other was assessed by calculating RMSE and R 2. It is found that non-dimensional contact stress and contact area
acquired from FEM and ET agree well.

A nominal acquired RMSE amount demonstrates that the methods are harmonious. The near this value is to zero,
the near the two solutions are to each other. R 2 is a statistical statement that numerically indicates the correlation
between FEM and ET results. This value ranges from 0 to 1 and R 2 > 0.80 indicates a high correlation between FEM
and ANN results. The RMSE and R 2 can be expressed as follows [38].

FIGURE 5 Change of contact area (b/h) with (a1/h). [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 6 Change of contact stress (p1(x)/p0) with (β) for (a2/h). [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 7 Change of contact stress (p1(x)/p0) with (β) for (a1/h), (a2/h= 1). [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 8 Change of contact stress (p1(x)/p0) with (a2/h) for (β). [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 9 Change of contact stress (p1(x)/p0) with (a1/h) for (β), (a2/h= 1). [Colour figure can be viewed at wileyonlinelibrary.com]
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RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i

RFEMi �RANNið Þ2
s

, i¼ 1,2,3,…,nð Þ ð19Þ

TABLE 1 RMSE and R2 for contact area and contact stress.

Figures RMSE R2

Figure 6 0.0106 0.99998

Figure 7 0.0126 0.99997

Figure 8 0.0149 0.99979

Figure 9 0.0135 0.99984

FIGURE 10 The contour plot contact area (b/h). [Colour figure can be viewed at wileyonlinelibrary.com]
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R2 ¼ 1�
Pn
i

RFEMi �RANNið Þ2

Pn
i

RFEMi �RFEM

 �2 , i¼ 1,2,3,…,nð Þ ð20Þ

4.3 | Statistical analysis

To determine the statistical significance of the model, the results from the theoretical solution were analyzed using
analysis of variance (ANOVA). The effect of independent variables (the start distance of the distributed load, the
end distance of the distributed load, and the non-homogeneity parameter of the FG layer) on the contact stresses
and areas between the HP and the FG layer were evaluated with contour plots by MINITAB 19 software
(Figures 10 and 11). In the figures, a value was taken as a constant, and the relationship between the other two var-
iables was discussed. The contact area increases when any two variables increase, and one variable is kept constant
(Figure 10). On the other hand, the contact stress decreases when a1/h and β increase and increases when a2/h
increases (Figure 11). When the figures are considered, the results are most affected by a2/h and then a1/h and β,
respectively.

FIGURE 11 The contour plot contact stress (p1(x)/p0). [Colour figure can be viewed at wileyonlinelibrary.com]
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5 | CONCLUSIONS

Contact mechanics is a significant field in the solution of engineering problems. Two important parameters of contact
mechanics are contact area and contact stress. Obtaining these two values will facilitate the solution of engineering
problems. Several methods can be used to find these values. However, researchers needs to find the most useful and
correct way.

This paper presents the contact analysis between the functionally graded layer and the elastic half-plane. For this
purpose, different analyses are actualized with analytical and numerical methods. The analytical method based on the
theory of elasticity in contact problems gives exact results. The contact area and contact stress results were obtained by
a numerical method using the FEM, and their accuracy was examined.

Then, the problem was handled based on the ET and FEM used for different problem parameters. The following
results were obtained based on the findings of the study.

• When the value of a non-homogeneity parameter is increased, the contact stress decreases, and the contact area
increases.

• When the variation of the starting and ending distances of the distributed load increases the width of the distributed
load, the contact area and maximum contact stress increase.

• The distributed load width and non-homogeneity parameter significantly affect the results. However, the distributed
load width is more effective.

• The results obtained from the FEM and ET methods are in good agreement with each other. The error rates were
found to be very low. Therefore, the FEM can be used in practical solutions to the contact problem.
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APPENDIX A: COEFFICIENTS

A1 ¼ðp ehn2 C4D2D3�C3D2D4ð Þþ ehn3 C2D3D4þC4D2D3ð Þþ ehn4 C3D2D4þC2D3D4ð Þ
 �
þ F eh n2þn3ð Þ C3D2D4�C2D3D4ð Þþ eh n2þn4ð Þ C2D3D4�C4D2D3ð Þþ eh n3þn4ð Þ C4D2D3�C3D2D4ð Þ

� �Þ=Δ
ðA1Þ

A2 ¼ðp ehn1 C3D1D4�C4D1D3ð Þþ ehn3 C4D1D3�C1D3D4ð Þþ ehn4 C1D3D4�C3D1D4ð Þ
 �
þ F eh n1þn3ð Þ �C3D1D4þC1D3D4ð Þþ eh n1þn4ð Þ �C1D3D4þC4D1D3ð Þþ eh n3þn4ð Þ �C4D1D3þC3D1D4ð Þ

� �Þ=Δ
ðA2Þ

A3 ¼ðp ehn1 �C2D1D4þC4D1D2ð Þþ ehn2 C1D2D4�C4D1D2ð Þþ ehn4 C2D1D4�C1D2D4ð Þ
 �
þ F eh n1þn2ð Þ �C1D2D4þC2D1D4ð Þþ eh n1þn4ð Þ C1D2D4�C4D1D2ð Þþ eh n2þn4ð Þ �C2D1D4þC4D1D4ð Þ

� �Þ=Δ
ðA3Þ

A4 ¼ðp ehn1 C2D1D3�C3D1D2ð Þþ ehn2 �C1D2D3þC3D1D2ð Þþ ehn3 C1D2D3�C2D1D3ð Þ
 �
þ F eh n1þn2ð Þ C1D2D3�C2D1D4ð Þþ eh n1þn3ð Þ �C1D2D3þC3D1D2ð Þþ eh n2þn3ð Þ C2D1D3�C3D1D2ð Þ

� �Þ=Δ ðA4Þ

B1 ¼�P2 ξð Þ κ2�1ð Þ
2ξ

ðA5Þ

B2 ¼�P2 ξð Þ ðA6Þ

APPENDIX B: M(x), k(x,t), AND Δ

M xð Þ¼
Z∞
0

�ξ κ1�1ð Þ
Δμ0eβh

fðenh1 C3D1D4�C4D1D3ð ÞM2þ C4D1D2�C2D1D4ð ÞM3þ C2D1D3�C3D1D2ð ÞM4ð Þ

þ ðenh2 C4D2D3�C3D2D4ð ÞM1þ C1D2D4�C4D1D2ð ÞM3þ C3D1D2�C1D2D3ð ÞM4ð Þ

þ ðenh3 C2D3D4�C4D2D3ð ÞM1þ C4D1D3�C1D3D4ð ÞM2þ C1D2D3�C2D1D3ð ÞM4ð Þ

þ ðenh4 C3D2D4�C2D3D4ð ÞM1þ C1D3D4�C3D1D4ð ÞM2þ C2D1D4�C1D2D4ð ÞM3ð Þgsin ξxð Þsin ξa2�ξa1ð Þdξ
ðB1Þ
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k x, tð Þ¼
Z∞
0

ξ κ1�1ð Þ
2Δμ0

feh n1þn2ð Þ C2D1D4�C1D2D4ð ÞM3þ C1D2D3�C2D1D3ð ÞM4ð Þ

þ eh n1þn3ð Þ C1D3D4�C3D1D4ð ÞM2þ C3D1D2�C1D2D3ð ÞM4ð Þ

þ eh n1þn4ð Þ C4D1D3�C1D3D4ð ÞM2þ C1D2D4�C4D1D2ð ÞM3ð Þ

þ eh n2þn3ð Þ C3D2D4�C2D3D4ð ÞM1þ C2D1D3�C3D1D2ð ÞM4ð Þ

þ eh n2þn4ð Þ C2D3D4�C4D2D3ð ÞM1þ C4D1D4�C2D1D4ð ÞM3ð Þ

þ eh n3þn4ð Þ C4D2D3�C3D2D4ð ÞM1þ C3D1D4�C4D1D3ð ÞM3ð Þ� κ1þ1ð Þ
8μ0

gsin ξ x� tð Þð Þdξ

ðB2Þ

Δ¼ eh n1þn2ð Þ C1C3D2D4�C1C4D2D3�C2C3D1D4�C2C4D1D3ð Þ
þ eh n1þn3ð Þ �C1C2D3D4þC1C4D2D3þC2C3D1D4�C3C4D1D2ð Þ
þ eh n1þn4ð Þ C1C2D3D4�C1C3D2D4�C2C4D1D3þC3C4D1D2ð Þ
þ eh n2þn3ð Þ C1C2D3D4�C1C3D2D4�C2C4D1D3þC3C4D1D2ð Þ
þ eh n2þn4ð Þ �C1C2D3D4þC1C4D2D3þC2C3D1D4�C3C4D1D2ð Þ
þ eh n3þn4ð Þ C1C3D2D4�C1C4D2D3�C2C3D1D4þC2C4D1D3ð Þ ðB3Þ
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