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Abstract
Concrete is the most widely used material in the building industry due to its affordability, durability, and strength. However,
considering carbon emissions, it is believed that concrete will be replaced by geopolymers in the future. As numerous
parameters significantly affect the strength of geopolymers, the performance of potential algorithms for strength prediction
needs to be evaluated for different binders to select an appropriate algorithm. This study employsmachine learning approaches
to provide the best prediction method for the flexural strength and compressive strength of geopolymers. A new dataset
containing 533 compressive strength and 533 flexural strength values of geopolymers with different binders such as waste
glass (GW), obsidian (OB), and fly ash was created. The best prediction solution, with R2 � 0.981 for compressive strength
and R2 � 0.898 for flexural strength, was obtained from the extreme gradient boosting (XGBoost) algorithm. Additionally,
several other machine learning models were employed, including linear regression, k-nearest neighbors, deep neural network,
and random forest, with corresponding determination coefficient (R2) values of 0.763, 0.804, 0.93, and 0.96, respectively.
These models were trained and evaluated using a dataset encompassing features such as binder types, age, and heat, to forecast
the mechanical properties of geopolymers. Among these models, XGBoost demonstrated the highest R2 value, indicating
superior performance in predicting both compressive and flexural strengths. The findings of this study provide valuable
insights into the selection of appropriate machine learning algorithms for predicting mechanical properties in geopolymers,
thus contributing to advancements in sustainable construction materials.
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1 Introduction

Nowadays, the construction sector is under strain due to
global warming and high carbon emissions, the implications
of which are increasing significantly. For this reason, the
transformation of the construction sector has been one of the
hot topics in recent years, on the path to a green and low-
carbon mission. Because of the CO2 released during both
manufacturing and consumption, the cement industry, which
executes the binding task of construction materials, accounts
for a considerable share of the entire carbon footprint amount
[1–3]. To give an example; the cement sector is in charge of
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approximately 5–7%of global CO2 emissionswith an annual
CO2 emission of 2.2 Gt and is one of the sectors that cause
the most environmental problems [4–7]. Therefore, there has
been a great interest in sustainable construction materials
over the last few years. In this context, many researchers in
search of innovative material for a green transformation indi-
cate that geopolymer composites can completely or partially
replace cementitious materials [8–10].

Geopolymers have recently increased their use in the con-
struction sector as they significantly reduce the amount of
CO2 emitted to the environment and enable the disposal
of factory waste materials thanks to their ability to be pro-
duced from waste materials. Geopolymer composites have
been shown to reduce CO2 emissions by approximately 60%
compared to traditional cementitious materials [11]. How-
ever, geopolymer composites have not replaced concrete in
the production of structural systems on a global scale because
some application disadvantages have not yet been suffi-
ciently overcome [12]. Numerous secondary construction
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applications, including pipelines, box culverts, pavements,
and bridges, can make use of them [13–15].

Geopolymer mortars are formed by chemical reactions of
materials such as FA, ground granulated blast furnace slag
(GGBS), andmetakaolin (MT) rich in silica and aluminawith
alkaline activators [16–18]. Geopolymers, in other words,
are inorganic compounds with three-dimensional Si–O–Al
frameworks that are solvent in alkaline solutions and syn-
thesized by aluminosilicates. Geopolymers are a novel class
of ecologically friendly construction materials that provide
several benefits over cementitious compounds, including
reduced density, excellent fire and acid resistance, minimal
shrinkage, great durability, and high compressive and flexu-
ral strength [19, 20].

Although geopolymers have recently been the main sub-
ject of widespread academic studies and some practical
applications, there are currently no production standards for
geopolymers. Even if there are some recommendations and
design guides, these documents do not constitute a global
specification [21]. For this reason, the amount of thematerials
in geopolymer mixtures can be determined mostly by trial-
and-error method. In addition, since there are many different
materials in the composition of geopolymers, obtaining the
desired compressive and flexural strength based on many
parameters like the ratio of binders to eachother, alkali/binder
ratio, preferred alkali type, sand/binder ratio, alkali molar
concentration, water/binder ratio, curing temperature, dura-
tion, and type [2]. The proper parameters are not always met
for the desired compressive strength and flexural strength,
necessitating a retry of the trials. Because of this, there is
a great loss of labor, time, and natural resources in experi-
mental studies. A potential solution to this issue is machine
learning algorithms, which have gained popularity in recent
years.

ML algorithm techniques such as artificial neural net-
works (ANN) [22], deep neural networks [23], decision trees
(DT) [24], and random forests (RF) [25] have gained popular-
ity in recent years. Today, the need for fast solutions caused
by increasing industrialization has led to the evolution of
algorithms and the increase in their accuracy. The perfor-
mance criteria of algorithms can generally be determined by
the R2 coefficient. For example, in the past, machine learning
solutions with an R2 coefficient of 60–70% could be consid-
ered adequate, while today these solutions cannot be said
to be accurate enough. Studies also support this situation.
To evaluate the strength of FA-based geopolymers, Nazar
et al. [26] employed an ANNmethod. Nazar et al. [26] found
the R2 value 0.91. Su et al. [27] attempted to determine the
strength ofGGBS andMT-based geopolymer pastes employ-
ing regularized multivariate polynomial regression (RMP).
The performance of the algorithm used is 0.927 in terms of
R2. Huynh et al. [28] reported that the R2 value for the deep
neural network algorithm was 0.912 in their academic study

in which they predicted the experimental mechanical out-
comes of geopolymer concretes utilizing FA as a precursor.

The mechanical characteristics of geopolymer materials
can vary greatly based on the type of precursor or binder
used, the type and molar quantity of activator utilized, and
the curing configuration. This is assumed to be due to
the nonlinear interaction between the parameters utilized,
the geopolymer matrix, and the mechanical characteristics.
Nguyen et al. [29] found that the mechanical strength of
GGBS and FA-based geopolymers varied between 50.4 and
86.5 MPa. According to Kurt et al. [30], the flexural strength
of OB, GGBS, and MT-based geopolymer mortars ranged
from 0 to 21 MPa. Since it is very important to predict the
mechanical characteristics of the building material used in
structural engineering applications with sufficient accuracy,
it is vital to utilize proper machine learning algorithms as
well as significant laboratory investigations. The previous
studies [31–34] investigated the prediction of properties for
geopolymer composites using machine learning methods.
They explored various aspects such as mechanical strength,
microstructure, and environmental sustainability, contribut-
ing to the advancement of predictive modeling in the field of
geopolymer materials. There are also several studies in the
literature that estimate the mechanical strengths of geopoly-
mer composites with machine learning algorithms. Li et al.
[2] investigated the optimum design to be used in the produc-
tion of geopolymers, taking into account the cost and carbon
emission factors, using the dataset created by combining
the strength properties of GGBS and FA-based geopolymers
concrete. In the study [2], a dataset consisting of varying
parameters such as slag, F-class FA, sodium silicate, sodium
hydroxide, GW, water content, superplasticizer, curing con-
ditions, moisture, and aggregate size was created. Also, Li
et al. [2] aimed for the best mix with limiting factors by
utilizing different ML algorithms like particle swarm opti-
mization, RF, gradient boosting (GB), and backpropagation
neuron network (BPNN). The algorithms with the best pre-
diction performance are BPNN (R2 � 0.76) and GB (R2 �
0.7). Rahmati and Toufigh [22] employed an ANN, support
vector regression (SVR), andnonlinear support vector regres-
sion (NSVR) approach to predict the compressive strength
of FA and GGBS-based geopolymers subjected to high tem-
peratures between 100 and 1000 °C. The results revealed that
ANN algorithms performed better. Amin et al. [24] estimated
the strength of FA and GGBS-based geopolymer concretes
using a combination of some machine learning algorithms
like ensemble and single-based. In the study [24], algo-
rithms such as DT, SVR, RF, and other models were applied.
According to the performance indicators, the R2 value pro-
duced via DT provided the best prediction with 0.93 and
the lowest statistical error. Shen et al. [35] evaluated the
compressive strength of geopolymers generated from solid
waste using machine learning approaches such as RF, GB,
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and XGBoost. Different methods produced high R2 values
in [35], such as RF producing an R2 of 0.911, GB pro-
ducing an R2 of 0.931, and XGBoost producing an R2 of
0.939. It was evident in [35] that the XGBoost algorithm
performs the best. Qi et al. [36] employed hybrid machine
learning models for the quick screening of coal waste fly
ash based on its link between chemical composition and
amorphous phase structure. This study employs a variety of
methods, including hybridML, regression tree (RT), RF, and
the Artificial Bee Colony (ABC) algorithm. The R2 value
was found as 0.87 as a consequence of the analyses per-
formed. Using Ca(OH)2 powder, Lin et al. [37] predicted the
mechanical characteristics of hydrothermally solidified clay
and construction materials. Various methods were utilized in
the study including RF, gated recurrent unit (GRU), kNN,
BPNN, XGBoost, and Gaussian process regression (GPR).
The GPR method produced the best results, R2 value of
0.989 [37]. Tanyildizi [38] predicted the chemical process
of FA-based geopolymers using ML methods such as deep
long short-termmemory (LTSM), KNN, and SVR. The algo-
rithms utilized predicted the dissolution peak time values
with precisions of 99.49%, 99.43%, and 92.86%, respec-
tively. Although multiple algorithms were utilized in the
above-mentioned experiments based on variable factors such
as binder material, alkali activator, curing duration and tem-
perature, and experiment set, different findingswere achieved
from the diverse algorithms. Consequently, the performance
of the algorithms used in the research should be evaluated for
the purpose of minimizing workmanship and work duration
in the fabrication of geopolymer production.

The main objectives of this paper are as follows:

• To create a new dataset comprising compressive strength
and flexural strength values of geopolymers with differ-
ent binders, including OB, GW, and FA, to facilitate the
evaluation of potential algorithms for strength prediction.

• To utilize ML approaches in order to provide the best
prediction method for flexural strength and compressive
strength of geopolymers, aiming to address the significant
impact of various parameters on the strength of geopoly-
mers.

• To determine and compare the performance of various
machine learning algorithms, such as LR, DNN, RF, kNN,
and XGBoost, in predicting the mechanical properties of
geopolymers, thereby evaluating the effectiveness of these
algorithms.

• To assess the sensitivity of the prediction models to differ-
ent input variables (OB, GW, FA, age, and heat) through
sensitivity analysis, aiming to identify the most influential
factors on the prediction accuracy of compressive strength
and flexural strength.

2 Literature Review

Machine learning techniques, one of the most important sub-
fields of artificial intelligence, are constantly improving. It
can be used effectively in different fields such as engineering,
space, agriculture, and health in science [39]. Machine learn-
ing is often utilized to determine if there is any association
between the dataset and its constituent parts [26]. XGboost,
LR, RF, kNN, and DNN techniques were used for this work.
Since the mathematical model referenced by each algorithm
is different, the algorithms can produce solutions at different
performance levels for the problem they are used. Therefore,
many researchers aim to improve the performance of various
algorithms by taking inspiration from different statistical sit-
uations. As an example, amachine learning technique known
as LR determines whether or not there is a direct correlation
between the dependent and independent variables. One of
the earliest machine learning algorithms, linear regression is
based on several of the premises, the first of which is that
inputs and outputs have a linear relationship. Nonetheless,
the connection between the problem’s inputs and outputs
is frequently nonlinear in civil engineering applications. In
addition, since errors in the inputs and the model itself can
be independent of each other, complex structural engineer-
ing more complex and highly accurate algorithms are often
needed for the problems [40]. For instance, DNN is a deep
learning technique that, like neuron networks in the human
brain, creates a network architecture by connecting several
sub-layers [41]. KNN is a slack learning model that may be
used for tasks involving classification and regression. To pre-
dict the outcomes from these training samples, the classifier
utilized in the KNNmethod chooses k training points that are
near to the test set point. The Euclidean distancemetric is uti-
lized to figure out the distance between the test and training
data [42]. In contrast, RF employs a decision tree as its basic
learner and randomly breaks the feature set using bootstrap
to generate a decision tree. This method assigns regression
coefficients to describe the linear link; the gradient descent
method then chooses the optimal set of provided regression
coefficients. An enhancement of gradient boosting decision
tree regression (GBDT) is the ensemble boosting technique
known as XGB. By including a penalty component in the
GBDT objective function, the number of leaf nodes and their
values in the treemodel is restricted, minimizingmodel com-
plexity and avoiding over-fitting [40]. At this stage, random
forest builds decision trees independently of one another,
whereas XGBoost creates new trees to supplement the algo-
rithm’s weak trees. This is the primary difference between
the two algorithms [43, 44]. Table 1 lists research in the lit-
erature on various algorithms used in machine learning and
provides details on these investigations.

As seen in Table 1, many different algorithms have been
used to predict the strength of geopolymers produced with
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Table 1 List of related publications

Author’s Precursor Techniques/approaches used

Li [2] FA and GGBS Particle swarm optimization (PSO), random forest
(RF), gradient boosting (GB), backpropagation
neural network (BPNN)

Rahmati and Toufigh [22] FA and GGBS Artificial neural network (ANN) and support vector
regression (SVR)

Âmin [24] FA and GGBS Decision tree (DT), support vector regression (SVR),
random forest (RF)

Shen [35] Solid waste (waste concrete, red clay brick, hollow
brick, roof tile and ceramics)

Random forest(RF), gradient boosting (GB) and
extreme boosting (XGB)

Qi [36] Coal Fly Ash(CFA) Regression tree (RT), random forest (RF), ABC
algorithm

Lin [37] Clay (kaolin), Ca(OH)2 Powder Regression tree (RT), random forest (RF), ABC
algorithm

Tanyildizi [38] FA Deep long short-term memory (LSTM), The k-nearest
neighbors (kNN) and support vector regression (SVR)

Asteris [45] FA and GGBS Artificial neural network (ANN), linear and nonlinear
multivariate adaptive regression splines (MARS-L
and MARS-C), Gaussian process regression (GPR),
and minimax probability machine regression
(MPMR)

Adesanya [46] FA and GGBS Artificial neural network (ANN) and multiple linear
regression (MLR)

Xue [47] Microscopic strength properties of concrete-like
composites

Artificial neural network (ANN)

Gomaa [48] FA Random forest (RF)

many different precursors. According to the literature review,
the precursors usually used are fly ash and blast furnace slag.
Our work is motivated by the fact that ML approaches have
not been utilized to evaluate the strength values of geopoly-
mer mortars manufactured from waste glass. To address this
gap in the scientific literature, 533 strength values for com-
pressive strength and flexural strength were analyzed using
the LR, RF, KNN, DNN, and XGboost algorithms, sepa-
rately. 80%of the datawere utilized to train algorithms,while
the remaining 20% was used for testing. The impact of the
inputs on mechanical parameters like compressive strength
and flexural strength was investigated using the SOBOL sen-
sitivity analysis. The data presented in the study are limited to
data obtained as a result of comprehensive laboratory exper-
iments.

In the scope of this work, binders such as OB, GW, and
FA were employed to make geopolymer mortars. Although
research employing FA are popular, strength data built by
using alternative precursors are not accessible in the litera-
ture. Academic papers on the ML prediction of geopolymer
mortars created using obsidian and waste glass powder
are extremely few. In addition, increasing algorithm accu-
racy requirements have recently popularized the use of the
XGBoost algorithm, whose R2 value is usually above 95%.

Moreover, the performance of the XGBoost algorithm has
not been tested on the precursors (OB and GW). To fill up
this gap in the literature, 13 distinct combinations of OB,
GW, and FA each had its own dataset of 533 compressive
strength and 533 flexural strength values.

3 Materials andMethods

Descriptions of machine learning methods utilized in the
work are included in this section. The components and
properties of the dataset used for algorithm selection and sen-
sitivity analysis have been extensively defined. The machine
learning-based data mining flow diagram that performs the
mechanical strength prediction is presented in Fig. 1; through
this diagram, the step-by-step operations can be better under-
stood. The procedure applied during the creation of the
dataset within the parameters of the study is shown in detail
in Fig. 2.
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Fig. 1 The flow diagram for the mechanical strength prediction using ML in data mining

3.1 Materials

3.1.1 Data Collection

The dataset comprised the compressive strength and flexural
strength values of two-part geopolymers containingGW,OB,
and FA as binders. Geopolymer mortar samples were pro-
duced in 13 different combinations using different binders
such as examples GW, OB, and FA, standard sand, and 12
Molar NaOH alkaline activator. A predictive investigation
into the influence of molar ratios on the compressive strength
of geopolymer mortars is detailed in [49]. Three 40 × 40 ×
160 mm prismatic samples were created for each combina-
tion. Each poured prismatic specimen provided one flexural
and two compressive strength values. The three samples pro-
duced for each combination obtained three flexural and six
compressive strengths. The produced mortar samples were
kept in the mold for 24 h to set them in room condition. The
samples taken from the mold were exposed to the curing pro-
cess for 72 h in ovens at different temperatures like between
75 and 120 °C in 15 °C increments. After the curing process,

the samples were left in airtight ziplock bags in the labora-
tory until the day of breakage. These acquired mechanical
strength values comprise the dataset. The dataset consists of
five different inputs, namely GW, OB, FA, Age, and Heat,
and output with compressive and flexural strengths as sep-
arate outputs. The whole process, including the laboratory
process, experiments, and tests that make up the dataset, is
given schematically in Fig. 2.

3.1.2 Obsidian

Obsidian, also known as volcanic glass, is naturally occur-
ring. The obsidian utilized in the tests conducted within the
study was sourced from the obsidian deposits found in the
Cagırankaya locality of the Ikizdere district in Rize province.
Initially, the obsidian obtained in rock form was crushed
using a jaw crusher to reduce the grain size. Subsequently, the
reduced-grain-size obsidian was ground in a ball mill with
a ratio of obsidian weight to ball weight of 1/24, preparing
it for use in the study. The specific gravity is 2.6. Chemical
contents are provided in Table 2.
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Fig. 2 Experiment and data collection scheme

Table 2 Chemical composition of binders

Chemical
content

Obsidian (%) Fly Ash (%) Glass waste
(%)

SiO2 73.624 58.921 70.938

Al2O3 13.779 22.357 1.997

K2O 5.296 2.958 0.614

Na2O 3.959 0.614 12.945

Fe2O3 1.263 6.357 0.22

CaO 1.044 3.264 8.537

TiO2 0.207 1.016 0.17

MgO 0.075 1.818 3.664

SO3 0.022 0.211 0.302

P2O5 0.02 0.345 0.005

L.O.I 0.51 1.70 0.600

3.1.3 Fly Ash

Fly ash, a waste material from thermal power plants in the
industrial sector, was utilized in the production of geopoly-
mers as part of the study. The fly ash was obtained from
the Zonguldak Catalagzi thermal power plant. Based on the
chemical components determined through X-Ray Fluores-
cence Spectrometry (XRF) analysis, it is classified as class
V according to TS EN 450 [50] standard and F-class FA
according to ASTM C618 [51], as the sum of SiO2 + Al2O3

+ Fe2O3 exceeds 70%. The specific gravity is 2.06. Chemical
contents are provided in Table 2.

3.1.4 Glass Waste

GW from doors and windows commonly found in buildings
was utilized in the study. Thewaste glass underwent grinding
in a ball mill, ensuring a GW weight-to-ball weight ratio of
1/24, rendering it suitable for use in the study. The specific
weight is 2.6. Chemical contents are provided in Table 2.

3.1.5 Feature Statistics Analysis

In this section, we present the feature statistics for two key
datasets: compressive strength and flexural strength. The
analysis provides insights into the distribution and charac-
teristics of the features within each dataset. Tables 3 and
4 display the feature statistics for the compressive strength
dataset and the flexural strength dataset, respectively.

These statistics provide valuable insights into the distri-
bution and characteristics of the features within each dataset,
which can inform further analysis and modeling efforts. Dif-
ferences in the mean, median, and dispersion values between
the two datasets suggest that the datasetsmight have different
underlying distributions. Understanding these differences is
crucial for further analysis and modeling efforts, as it helps
in selecting appropriate modeling techniques and interpret-
ing the results accurately. There are no missing values for
any of these features, and each feature has 533 data points.
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Table 3 Feature statistics for
compressive strength dataset Feature Mode Mean Median Dispersion Min Max Missing Count

OB 0 81.571 0 1.612 0 450 0 533

GW 0 76.133 0 1.728 0 450 0 533

FA 0 76.133 0 1.728 0 450 0 533

Age 7 39.653 28 0.896 0 90 0 533

Heat 75 97.432 90 0.172 75 120 0 533

CS 0 16.705 0 1.114 0 60.13 0 533

Table 4 Feature statistics for
flexural strength dataset Feature Mode Mean Median Dispersion Min Max Missing Count

OB 0 55.441 0 2.072 0 450 0 533

GW 0 51.745 0 2.205 0 450 0 533

FA 0 51.745 0 2.205 0 450 0 533

Age 0 26.951 7 1.285 0 90 0 533

Heat 75 97.454 90 0.172 75 120 0 533

FS 0.00 2.593 0 1.646 0 17.5 0 533

Overall, the feature statistics analysis provides a foundation
for understanding the datasets and informs subsequent steps
in the data analysis process.

3.2 Methods

In this subsection, we have described the machine learning
methods employed in our study to predict the compressive
strength and flexural strength of geopolymer mortar. Each
method offers unique advantages and characteristics, con-
tributing to a comprehensive analysis of the relationship
between mortar properties and strength properties. Through
the application of these methods, we aim to enhance our
understanding of the factors influencing themechanical prop-
erties of geopolymer mortar and facilitate the development
of optimized mortar formulations.

3.2.1 Linear Regression

LR is a statistical method used to establish the relationship
between one or more independent variables (input) and a
dependent variable (target) [52]. In our study, we utilize LR
to understand how individual variables, namelyOB,GW, FA,
Age, and Heat, affect the compressive strength and flexural
strength of geopolymer mortar. By analyzing the coefficients
derived from the linear regressionmodel, we can quantify the
impact of each independent variable on the target variables
and make predictions for new observations based on these
coefficients.

3.2.2 Deep Neural Network Algorithm

We employ the radial basis function networks (RBFN)
method, a type of DNN, to predict compressive strength
and flexural strength of geopolymer mortar using a com-
prehensive dataset [53, 54]. RBFN is a supervised learning
algorithm that constructs a learning model based on mortar
properties such as OB, GW, FA, Age, and Heat, as well as
their associated compressive and flexural strengths. By utiliz-
ing core and spread functions within its architecture, RBFN
identifies patterns and correlations in the dataset, allowing
for accurate predictions of compressive strength and flexural
strength based on input characteristics.

3.2.3 Random Forest Regressor

TheRFalgorithm leveragesmultipleDTs to predict compres-
sive strength andflexural strength of geopolymermortar [55].
Each decision tree is trained independently on different sub-
sets of the dataset, andpredictions fromall trees are combined
to produce an average prediction, enhancing the accuracy and
robustness of the model. Notably, RF canmitigate the impact
of noisy or outlier data points, thereby improving prediction
reliability [56, 57].

3.2.4 k-Nearest Neighbor Method

KNN method is a machine learning approach used for clas-
sification and regression tasks, relying on the similarity
between observations [58]. In our study, we represent each
observation using a vector ofmortar properties (OB,GW,FA,
Age, Heat), with compressive strength and flexural strength
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as the target variables. By considering the k closest neighbors
to a given point, the kNN model predicts the target variable
values based on the average orweighted average of the neigh-
bors’ target values, providing insights into the relationship
between mortar characteristics and strength properties.

3.2.5 Extreme Gradient Boosting (XGBoost)

XGBoost, a tree-based learning technique, utilizes gradient
boosting to combine weak prediction models into a strong
predictive model [59]. By sequentially building trees to cor-
rect prediction errors of previous trees, XGBoost effectively
captures complex patterns in the dataset. In our study, the
XGBoostmodel learns the relationship betweenmortar prop-
erties (OB, GW, FA, Age, Heat) and compressive strength
and flexural strength, thereby enabling accurate predictions
of strength properties based on input variables.

3.2.6 Sensitivity Analysis

This section describes the sensitivity analysis conducted on a
dataset used for compressive and flexural strength prediction.
The dataset consists of six features: OB, GW, FA, Age, Heat,
and compressive strength and flexural strength. The goal of
the analysis is to come out the impact of each feature on the
prediction of compressive strength and flexural strength. To
ascertain the significance of inputs in the geopolymer mortar
dataset, a Sobol sensitivity analysis was conducted.

The analysis attempted to figure out the individual and
cumulative impacts of each variable. The results revealed
that OB and GWwere critical in the prediction process. Fur-
thermore, these variables were also found to be important
properties for flexural strength. These findings suggest that
improving and optimizing concrete performance requires a
focus on these variables.

The Sobol analysis measures the first-order effects of the
output variable, the effect of one input variable on the output
independent of the others [60, 61]. Additionally, total-order
effects (ST) assess the impact of one input variable alongwith
all other factors, whereas second-order effects (S2) assess the
impact of two input variables together on output. In the Sobol
analysis, each dataset’s input variable is employed, and its
impact on the output variable is measured. The outcomes are
presented as first-order (S1), S2, and ST. The second-order
index depicts the combined influence of two input variables
on output, whereas the first-order index depicts the indepen-
dent effect of input variables on output. The total-order index
displays the combined impact of all input variables and out-
put variables [62]. The effect of input variables (OB,GW, FA,
Age, and Heat) on compressive strength and flexural strength
is measured. The analysis’s S1, S2, and ST indices show
how important input variables are classified for compressive
strength and flexural strength prediction. This study is crucial

for figuring out key input factors, bettering the performance
of the compressive strength and flexural strength prediction
model, and comprehending the connections and effects of
the variables in the dataset. Sobol sensitivity analysis is a
valuable tool in data-based decision-making processes and
provides important information for accurate modeling and
predictability [61].

3.2.7 Evaluation Indicators

R2 was selected as a main performance indicator because it
is a widely accepted metric for assessing the overall fit of
regression models [37, 48, 63]. It provides a clear indication
of the proportion of variance explained by the model, mak-
ing it suitable for comparing different models and evaluating
their predictive performance. However, we acknowledge that
using R2 alone may not provide a comprehensive assessment
of model performance. Therefore, we also utilized additional
evaluationmetrics such asRMSE,MSE, andMAE to provide
a more comprehensive evaluation of the XGBoost model’s
performance in predicting mechanical properties in geopoly-
mer mortars.

• R2 (coefficient of determination): It measures the pro-
portion of the variance in the dependent variable that
is predictable from the independent variables. R2 values
range from 0 to 1, where a higher value indicates a better
fit of the model to the data.

• RMSE (root mean square error): It represents the square
root of the average of the squared differences between pre-
dicted and actual values. RMSE provides a measure of the
typical error in the predictions.

• MSE (mean squared error): It calculates the average of the
squares of the errors between predicted and actual values.
Like RMSE, MSE is a measure of the model’s accuracy,
with lower values indicating better performance.

• MAE (mean absolute error): It computes the average of the
absolute differences between predicted and actual values.
MAE provides a measure of the average magnitude of the
errors in the predictions.

Table 5 provides formulas for performance evaluation
metrics commonly used in regression analysis and machine
learning for predictive models.

4 Results and Discussion

This research seeks to understand how five factors impact
the strengths of mortars. For this purpose, several machine
learning algorithms tried to predict 533mechanical strengths
(compressive + flexural) data. 80% of the 533 data were
employed for testing, while 20% were used for training.

123



Arabian Journal for Science and Engineering

Table 5 Performance Evaluation Metrics for Predictive Models in
Regression Analysis and Machine Learning

Performance ındicator Formula

R2 R2 � 1 − SSR
SST where SSR (sum of

squared residuals) is the sum of the
squared differences between the actual
and predicted values of the dependent
variable. SST (total sum of squares) is
the sum of the squared differences
between the actual dependent variable
values and the mean of the dependent
variable

RMSE RMSE �
√

1
n

n∑
i�1

(
yi − ŷi

)2 Where n is

the number of observations. yi is the
actual value of the dependent variable
for observation i. ŷi is the predicted
value of the dependent variable for
observation i

MSE MSE � 1
n

n∑
i�1

(
yi − ŷi

)2 where n is the

number of observations. yi is the
actual value of the dependent variable
for observation i. ŷi is the predicted
value of the dependent variable for
observation i

MAE MAE � 1
n

n∑
i�1

∣∣yi − ŷi
∣∣ where n is the

number of observations. yi is the
actual value of the dependent variable
for observation i. ŷi is the predicted
value of the dependent variable for
observation i

Additionally, comparisons between the actual strength values
attained through intense laboratory research and the values
forecast by ML algorithms are demonstrated. Ultimately,
Sobol sensitivity analysis is conducted, and all inputs’ impor-
tance weights on the outcomes are given. The XGboost
algorithmoutscored the others,with anMSEof 8.811,RMSE
of 2.968, MAE of 1.582, and R2 of 0.981. With an MSE of
90.383, an RMSE of 9.507, an MAE of 5.987, and an R2

of 0.763, the linear regression model had the lowest predic-
tion performance metrics based on numerical data. The two
approaches’ respective MSE and RMSEwere found to differ
by around 10.3 and 3.2 times, respectively.

Thegraphical data demonstrate that compressive strengths
between 30 and 45 MPa can be predicted well, however, the
prediction ability of compressive strength values between 0
and 30 MPa is poorer than that of higher strengths. It can be
observed that the XGboost algorithm performs well in terms
of forecasting real values.

For flexural strength, among the algorithms,XGBoost per-
formed best, with 2.668MSE, 1.633RMSE, 0.816MAE, and

0.898 R2 and the LRmodel performed the poorest, with 6.77
MSE, 2.602 RMSE, 1.417 MAE, and 0.716 R2. There is a
2.5 times difference in MSE and a 1.6 times difference in
RMSE between the two techniques (Figs. 3, 4). There is also
around 25% difference between their R2.

4.1 Linear Regression Algorithm

Figure 5 presents the comparison data for compressive
strength and flexural strength obtained from the LR model.
Figure 5a, c exhibits a correlation between the model and
real results for compressive strength and flexural strength,
respectively. According to the data placement, for compres-
sive strength; although most of the data are located on the
center line, about 40% of the total data are located outside the
± 20% error line. This indicates that the LR model predicts
some of the data quite well but predicts a significant amount
of data quite poorly. Figure 5b displays the distribution of the
real data, predicted data, and error rates for the LR model’s
compressive strength. According to these statistics, the LR
model’s minimum, maximum, and average error values are,
respectively, 0.87, 15.54, and 7.74 MPa. The performance
metrics of the LR model are given in Fig. 3. The R2, MAE,
RMSE, and MSE metrics of the LR model for the test data
are 0.763, 5.987, 9.507, and 90.383, respectively. From these
values, it can be inferred that the capacity of the LR model
to correlate prediction and actual values is quite weak in
general. Using LR, ANN, and AdaBoost algorithms, Ansari
et al. [62] attempted to predict the compressive strength of
FA-based geopolymer concretes. The performance metrics
of R2, MAE, and RMSE for the LR model are 0.651, 5.027,
and 7.211, respectively. In addition, the data outside the ±
20% error line constitute 25% of the total data. These results
demonstrated that the study’s linear regression model was in
line with the literature. The flexural strength data in Fig. 5c
show that while most of the data are on the center line, almost
28% of the total data are outside the ± 20% error line. The
distribution of actual data, prediction data, and error rates
for the flexural strength of the linear regression model is
shown in Fig. 5d. These numbers clearly demonstrate that the
LR model’s minimum, maximum, and average error values
are, respectively, 0.45, 4.70, and 2.03MPa. The performance
metrics of the LR model are given in Fig. 4. The R2, MAE,
RMSE, and MSE metrics of the LR model for the test data
are 0.716, 1.417, 2.602, and 6.77, respectively.

4.2 k-Nearest Neighbor Model (KNN)

The comparison data of the kNN prediction model for the
compressive strength and flexural strength of mortars are
given in Fig. 6. Figure 6a, c indicates the association between
the model-predicted values and the real ones for compres-
sive strength and flexural strength, respectively. According
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Fig. 3 Performance parameters of different algorithms for compressive strengths

Fig. 4 Various performance metrics of different algorithms for flexural strengths

to the configuration of the data in the graph for compres-
sive strength, about 46% of all data are located on the center
line, while about 22% of the total data are located outside
the ± 20% error line. This demonstrated that while the kNN
model predicted certain data with a big variance, it typically
performed better than the linear regression model. Figure 6b
exhibits the distributionof experimental data, prediction data,
and error rates for the compressive strength of the kNN
model. The kNN model has minimal, maximum, and aver-
age error values of 0.97, 11.21, and 5.82 MPa, respectively.
Furthermore, the performance metrics of the kNNmodel are

given in Fig. 3. The R2, MAE, RMSE, and MSE metrics
of the kNN model for the test data are 0.804, 4.669, 8.643,
and 74.709, respectively. These numerical metrics indicated
that the kNN model improves the estimation performance
over the LR model. Tanyildizi [38] estimated values for the
chemical process of FA-based geopolymers using LSTM,
kNN, and SVR algorithms. It was seen that the kNN model
of our study was consistent with the study mentioned in the
literature. According to the flexural strength data in Fig. 6c;
although most of the data are on the centerline, about 21%
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Fig. 5 Compressive and flexural strengths real and estimated data graph obtained from the LR algorithm: a compressive strength, b error values for
compressive strength, c flexural strength, d error values for flexural strength

of the total data are outside the ± 20% error line. The distri-
bution of actual data, prediction data, and error rates of the
kNN model for flexural strength is shown in Fig. 6d. The
results obtained indicates that the kNN model’s minimum,
maximum, and average error values are, respectively, 0.13,
2.86, and 1.26 MPa. The kNN model performance metrics
are given in Fig. 4. The R2, MAE, RMSE, and MSE metrics
of the model for the test data are 0.835, 0.964, 2.041, and
4.165, respectively.

4.3 Deep Neural NetworkModel (DNN)

Figure 7 displays the comparison data of the mechanical
strength prediction model for DNN. The correlation between
DNN prediction model data and experimental data for com-
pressive strength is given in Fig. 7a. According to the
distribution of the data, about 49%of the total data are located
in the centerline, while about 24% of all data are located
outside the ± 20% error line. This may point out that the
error rates of kNN and DNN models are similar. Figure 7b
illustrates the real data, predicted data, and realized error
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Fig. 6 Compressive and flexural strengths real and estimated data graph obtained from the kNN algorithm: a compressive strength, b error values
for compressive strength, c flexural strength, d error values for flexural strength

rates of the DNN model for compressive strength. The DNN
model has minimal, maximum, and average error values of
0.56, 12.49, and 5.19 MPa, respectively, given the error rates
data. The R2, MAE, RMSE, and MSE metrics of the DNN
model for the test data are 0.93, 0.2848, 5.17, and 26.732,
respectively. These results revealed that the DNN model’s
prediction performance was at a high level. Emarah et al.
[63] estimated 862 compressive strength values that have
FA-based geopolymer concrete by utilizing ANN, DNN, and
ResNet algorithms. The R2 for the performance metric of the
DNN model was 0.878, and the mean-absolute-percentage

deviation (MAPD) for the error rate was 9.476. The R2 value
of our DNN model is about 6% higher than the study [63]
in the literature, while the average error value is about 83%
lower. With these values, it can be concluded that the per-
formance of the DNN model used in our study is quite good
compared to the literature. From the flexural strength data
displayed in Fig. 7c, about 17% of the total data are beyond
the ± 20% error line, even though most of the data are on
the center line. Figure 7d presents the pattern of distribu-
tion of the real data, predicted data, and the error rates that
obtained from the DNN model for flexural strength. These
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Fig. 7 Compressive and flexural strengths real and estimated data graph obtained from the DNN algorithm: a compressive strength, b error values
for compressive strength, c flexural strength, d error values for flexural strength

numbers implied that the DNN model’s lowest, maximum,
and average error levels were, respectively, 0.49, 3.57, and
1.82 MPa. The results of prediction metrics for the DNN
model are given in Fig. 4. The values of 0.864, 0.834, 1.797,
and 3.23 are the model’s R2, MAE, RMSE, and MSE for the
test data, as well.

4.4 Random Forest Model (RF)

The comparison data of the random forest prediction model
for compressive strength and flexural strength are given in

Fig. 8. Figure 8a demonstrates a connection between the RF
model and the experimental results for compressive strength.
According to the distribution of the data, about 22% of the
total data deviated from the error line of ± 20%. With these
results, it can be said that the random forest algorithm per-
forms predictions with excellent accuracy. The actual data,
predicted data, and the error rates between them for the com-
pressive strength of the RF model are depicted in Fig. 8b.
Given these error values, the RF model’s lowest, maximum,
and average error values are, respectively, 0.31, 11.58, and
4.21 MPa. The performance metrics of the RF model are
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Fig. 8 Compressive and flexural strengths real and estimated data graph obtained from the RF algorithm: a compressive strength, b error values for
compressive strength, c flexural strength, d error values for flexural strength

given in Fig. 3. The R2, MAE, RMSE, and MSE metrics for
theRFmodel are 0.96, 2.119, 3.992, and15.933, respectively.
These metric values can indicate that the overall prediction
level of the RFmodel is quite good. Li et al. [4] employed RF,
GB, and BPNN algorithms to predict the 28-day compres-
sive strength of GGBS and FA-based geopolymer concretes.
For the RF model, the R2 and RMSE performance indices
are 0.71 and 5.79, respectively [4]. In addition, the data out-
side the ± 20% error line constitute 11% of the total data.
The reason why the deviant data are few in the current study
is the fact that the total data are approximately 3 times the

data used in the current study. Although there were not many
deviationswithin the± 20% error line, it was found thatmost
of the data diverged from the main trend. The R2 value of the
current study is similar to the R2 value obtained by Li et al.
[2], which is about 35% higher than the R2 value obtained in
the present study. According to the flexural strength data in
Fig. 8c, althoughmost of the data are located in the centerline,
about 23% of the total data are located outside the ± 20%
error line. The distribution of the actual data, prediction data,
and the resulting error rates for the flexural strength of the
RF model is depicted in Fig. 8d. These values point out that
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the minimum, maximum, and average error values of the RF
model are 0.29, 3.04, and 1.71 MPa, respectively. The per-
formance metrics of the RF model are given in Fig. 4. 0.851,
0.868, 1.887, and 3.56 are the model’s R2, MAE, RMSE, and
MSE values for the test data, respectively.

4.5 Extreme Gradient BoostingModel

The data of the XGBoost model for the predicted com-
pressive strength and flexural strength values are given in
Fig. 9. Figure 9a depicts the link between theXGBoostmodel
and real compressive strength data. According to the place-
ment of the scatter of the data; approximately 13% of the
total data lie outside the ± 20% error line. This numer-
ical data showed that the least deviated prediction dataset
among the algorithms used was obtained in the dataset using
the XGBoost algorithm. It was also found that the data dis-
tributed on the± 20% error line were more balanced than the
RFmodel. Experimental data, prediction data, and error rates
for compressive strength are shown in Fig. 9b. These error
data implied that theXGBoostmodel’sminimum,maximum,
and average error values were 0.52, 9.25, and 3.45 MPa,
respectively. Although the minimum error was 40% higher
for the XGBoost model than for the RFmodel, the maximum
and average errors were about 25% and 22% lower, respec-
tively. The performance metrics of the XGBoost model are
given in Fig. 3. The R2, MAE, RMSE, and MSE metrics
for the XGBoost model are 0.981, 1.582, 2.968, and 8.811,
respectively. Thesemetric values demonstrated the XGBoost
model’s very good prediction ability because the R2 values
are 2.1%, 5.5%, 22%, and 28.6% higher than the other algo-
rithms, respectively. When the metrics and error rates are
analyzed, R2 increases as the prediction performance of the
algorithm improves, while MAE, RMSE, MSE, minimum,
maximum, and average error rates decrease. The compres-
sive strength of Ca-based geopolymers was predicted byHuo
et al. [41] employingmodern algorithms as KNN, SVM, BA,
RF, ET, GBDT, XGBoost, and DNN. The performance met-
rics for the XGBoost model are R2 0.91 and the average error
rate is 2.51 [41]. According to this data, the R2 value of the
current study is about 7.8% higher than Huo et al. [41] while
the average error value is about 37.4% higher. The reason
why the average error value is higher than the current study
is that the number of data they used are quite dense compared
to the current study. Approximately 19% of the total data, as
indicated by the flexural strength data in Fig. 9c, are outside
the± 20% error line, even though themajority of the data are
in the center. The distribution of actual data, prediction data,
and error rates for the flexural strength of theXGBoostmodel
is shown in Fig. 9d. Considering on the supplied parameters,
the XGBoost model’s lowest, maximum, and average error
values are 0.32, 5.49, and 1.95 MPa, respectively. The per-
formance metrics of the XGBoost model are given in Fig. 4.

The model’s R2, MAE, RMSE, and MSE metrics for the test
data are 0.898, 0.816, 1.633, and 2.668, respectively.

The R2 performances of the algorithms were realized
as LR < KNN < DNN < RF < XGBoost for compres-
sive strength. It is LR < KNN < RF < DNN < XGBoost
with a small difference for flexural strength. In accordance
with the literature, flexural strength prediction performance
is often lower than compressive strength prediction perfor-
mance. This is thought to be due to the narrower data range
of flexural strengths compared to compressive strengths [64].

Parhi andPatro [25] predicted compressive strengths using
1123 concrete compressive strength datasets. They employed
a variety of cutting-edge methods, RF, neural network (NN),
multivariate adaptive regression splines (MARS), and hybrid
ensemblemachine learning (HEML).Their research revealed
that the HEML method delivered the best outcome (R2 �
0.962). Additionally, by utilizing the XGBoost algorithm as
a meta-regressor, Parhi and Patro [25] created the HEML
technique. When Saad et al. [62] wanted to predict the com-
pressive strength of FA-based geopolymer concrete, they
favored techniques including LR, ANNs, and AdaBoost as
an ensemble machine learning (EML). The AdaBoost model
was shown to be the most successful for a precise com-
pressive strength prediction by the study’s findings, which
included an R2 of 0.944, RMSE of 2.506, andMAE of 1.259.
Also, R2 was 0.701, RMSE 5.805, and MAE 4.502, for LR
algorithm result, respectively. Our study’s R2 � 0.76 value
and the R2 � 0.71 value achieved by linear regression are
pretty comparable. The discrepancy is thought to be due to
the fact that compressive strength measurements in the pub-
lished study [62] were obtained from mortar specimens. Ma
et al. [65] used 896 data points to estimate the compres-
sive strength of FA-based geopolymers utilizing three novel
algorithms like SVR, RF, and XGBoost. They reported that
XGBoost’s prediction performance was pretty good (R2 �
0.97). The material added to the combination, of which FA is
the best significant component, addsmore to the compressive
strength than the other criteria, according to the conclusion
of the feature ranking analysis used in their research. Conse-
quently, the study based on feature ranking and other research
in the literature demonstrate the accuracy of the results that
obtained from computer science computations by utilizing
machine learning algorithms.

Mehta [66] employed ANN to forecast the strength of
concrete that was made using residual foundry sand. He
determined that compressive strength had an R2 value of
0.903 and flexural strength had an R2 value of 0.831. They
detected a reduction of 8.6% in flexural strength between
R2 levels. Although the data and methodology in this study
differ, the results are consistent with the literature since the
R2 indicator value achieved decreased flexural strength by
roughly 9.2%.
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Fig. 9 Compressive and flexural strengths real and estimated data graph obtained from the XGBoost algorithm: a compressive strength, b error
values for compressive strength, c flexural strength, d error values for flexural strength

The R2 values of several investigations in the literature
are displayed in Table 6. For the LR approach, the R2 value
from the current study is almost 17%higher than theR2 value
found by Ansari et al. [62]. The average R2 value obtained
for the KNN algorithm in the table is approximately 0.837.
While the R2 value obtained from the present study is 0.804
for the KNN algorithm, Lin [37] obtained this value as 0.906.
While the average value of the DNN algorithm in the table
is 0.846, the R2 value obtained in the current study is about

10% higher than this value. The R2 value obtained for the
RF algorithm from studies in the table is 0.88. The R2 value
obtained in this study is about 9% higher than the average R2

value in the literature for the RF algorithm. In addition, while
the average R2 value in the table for the XGBoost algorithm,
which usually hasmaximumR2 values, is 0.934, theR2 value
of the current study is about 5% higher than this value. The
fact that the R2 values of the algorithms in the current study
are higher than the R2 values of other studies in the literature
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Table 6 R2 values of different works from literature

Author’s Precursor Techniques/approaches used R2

Parhi and Patro
[25]

Diverse precursors Random forest (RF), feed-forward
backpropagation neural network
(NN), multivariate adaptive
regression spline (MARS), hybrid
ensemble machine learning
(HEML)

0.87 (RF), 0.82 (NN), 0.91 (MARS),
0.938 (HEML)

Huo et. al [41] FA and GGBS K-nearest neighbor regression
(KNN), support vector machine
(SVM), bootstrap aggregating
regression (BA), random forest
regression (RF), extra-trees
regression (ET), gradient boosting
decision tree regression (GBDT),
extreme gradient boosting
regression (XGBoost), deep
neural network regression (DNN)

0.80 (kNN), 0.87 (SVR), 0.88 (BA),
0.88 (RF), 0.90 (ET), 0.91 (GBDT),
0.91 (XGB), 0.80 (DNN)

Shen [35] Solid waste (waste concrete, red clay
brick, hollow brick, roof tile and
ceramics)

Random forest (RF), gradient
boosting (GB), and extreme
boosting (XGB)

0.911 (RF), 0.931 (GB), and 0.939
(XGB)

Lin [37] Clay (kaolin),Ca(OH)2 Powder Random forest (RF), Gaussian
process regression (GPR), gated
recurrent unit (GRU), K-nearest
neighbors (KNN),
backpropagation neuron network
(BPNN), extreme gradient
boosting (XGBoost)

0.794 (RF), 0.989 (GPR), 0.893
(GRU), 0.906 (KNN), 0.932
(BPNN), 0.952 (XGBoost)

Gomaa [48] FA Random forest (RF) 0.944 (RF)

Ansari et al. [62] FA Linear regression, artificial neural
network, and AdaBoost Regressor
(AR),

0.651 (LR), 0.714 (ANN), and 0.724
(AR)

Emarah [63] FA Artificial neural networks (ANNs),
deep neural networks (DNNs), and
deep residual networks (ResNet)

0.880 (ANNs), 0.892 (DNNs) and
0.914 (ResNet)

Mehta [66] FA Artificial neural networks (ANN),
Support vector machines (SVR),
Gaussian process (GP), and the
M5P model

0.903 (ANN), 0.884 (SVR), 0.902
(GP), 0.841 (M5P)

This Work FA, OB, and GW Linear regression (LR), k-nearest
neighbor (Knn), deep neural
network (DNN), random forest
(RF), extreme gradient boosting
(XGBoost)

0.763 (LR), 0.804 (KNN), 0.93
(DNN), 0.96 (RF) and 0.981
(XGBoost)

shows that the strength values of geopolymers using OB and
GW can be predicted with higher precision.

4.6 Sensitivity Analysis Results

Figure 10 depicts various Sobol sensitivity index values for
compressive strength. Also, for S1 and ST indices, glass
waste powder is the best fundamental input for compressive
strength, followed by GW and FA, albeit in lower amounts.
Sobol sensitivity results implied that the OB, GW, and FA

powder amounts seem to be the best significant in ascertain-
ing the output values. Other factors (age and heat) were less
relevant single variables in their interaction effects, but they
nevertheless made a contribution to compressive strength
anticipation. These insights may assist in prioritizing the
efficient components in the compressive strength estimation
issue.

The Sobol index findings for the flexural strength dataset
are given in Fig. 11. The three most crucial ingredients were
OB,GW, and FA powder, both separately and in combination
with other elements. Age and heat were less important than
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Fig. 10 Sobol analysis results for compressive strength values

Fig. 11 Sobol analysis results for flexural strength values
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other components. The S2 indices pointed out that there were
coaction effects between specific variable pairs, stressing the
need of investigating their combined influence. OB was the
most essential input for flexural strength output, according
to the conclusions of the S1 and ST order indices. Accord-
ing to Sobol sensitivity analysis, the effect of age and heat
components on compressive and flexural strengths was quite
low. Since they were low for these datasets, their effects can
be ignored in different studies using OB and GW [67–69].

The Sobol sensitivity analysis provides valuable insights
into the influence of various parameters on the compressive
strength and flexural strength of geopolymer mortars. These
results allow us to prioritize the parameters that significantly
affect the mechanical properties, thereby informing future
research directions and optimization strategies.

Among the parameters studied, it was evident that the
binder type, represented by parameters such as OB, GW,
and FA, played a crucial role in determining the compressive
strength of geopolymer mortar. The first-order indices indi-
cated that OB had the highest influence, followed by GW
and FA. This underscored the importance of selecting the
appropriate binder material to achieve the desired compres-
sive strength properties.

The mutual influence of various factors, as indicated by
the second-order indices, further elucidated the interactions
between different parameters. The significant second-order
indices between OB-GW and OB-FA highlighted the syn-
ergistic effects of these binder materials on compressive
strength. Understanding these interactions is essential for
optimizing geopolymer mortars formulations and enhancing
their compressive strength properties. Similarly, in the flex-
ural strength sensitivity analysis, OB, GW, and FA emerged
as influential parameters, with OB exhibiting the highest
S1 index. This reaffirmed the importance of the binder
composition in determining the flexural strength of geopoly-
mer mortars. The S2 indices revealed notable interactions
between OB-GW and OB-FA, emphasizing the combined
effects of these binder materials on flexural strength. Addi-
tionally, the interactions between age and heat, although
minimal, suggested that curing conditions also contributed
to the flexural strength properties. Comparing the sensi-
tivity results between compressive strength and flexural
strength, it was evident that the same parameters, namelyOB,
GW, and FA, consistently exhibited significant influence on
both mechanical properties. This consistency underscored
the robustness of these parameters in affecting the overall
mechanical performance of geopolymer mortars.

Based on these sensitivity results, future research efforts
should focus on further optimizing the formulations of
geopolymer mortars by exploring the synergistic effects
between binder materials and other influencing factors such
as curing conditions. Additionally, advanced modeling tech-
niques can be employed to accurately predict the mechanical

properties of geopolymer mortars based on the identified
influential parameters. In conclusion, the Sobol sensitiv-
ity analysis offers insights into the factors influencing the
mechanical properties of geopolymer mortars, thereby guid-
ing the formulation and optimization of these materials for
various structural applications in the construction industry.

4.7 Comparative Generalization Analysis of ML
Models

Tables 7 and 8 present the probabilities that the performance
of one model is higher than another based on the coefficient
of determination (R2) obtained fromfivefold cross-validation
on the geopolymer dataset.

Based on the provided cross-validation results for the
geopolymer dataset focusing on compressive strength and
comparing various machine learning models, XGBoost con-
sistently demonstrated high probabilities of outperforming
other models, with probabilities ranging from 0.956 to 0.987.
This indicated that XGBoost generally achieves superior pre-
dictive accuracy compared to othermodels across the fivefold
cross-validation process. RF also showed competitive perfor-
mance, particularly against NN, LR, and KNN. However, its
dominance was not as pronounced as that of XGBoost. Ran-
dom forest was known for its robustness and ability to handle
complex datasets, which was reflected in its relatively high
probabilities of outperforming other models. NN and KNN
models generally showed lower probabilities of outperform-
ing othermodels, indicating comparativelyweaker predictive
performance in this context. NNs were powerful models
capable of learning complex relationships in data, but their
performance may vary depending on factors such as archi-
tecture and hyperparameters. Similarly, KNN’s performance
might be limited by its reliance on local similarities, espe-
cially in high-dimensional spaces. LR consistently exhibited
the lowest probabilities of outperforming other models, sug-
gesting relatively weak predictive performance. LR assumes
linear relationships between variables and may struggle to
capture nonlinear patterns present in the geopolymer dataset.
It was important to interpret these results in the context of
cross-validation,which assessed themodels’ performance on
unseen data from the same dataset. While XGBoost and RF
emerged as strong performers in this study, further evalua-
tion on independent test datasets was necessary to assess the
models’ generalization performance and robustness across
datasets. Therefore, the same analysis was carried out on the
flexural strength dataset.

The results of the fivefold cross-validation on flexural
strength dataset provided insights into the relative perfor-
mance of different machine learning models based on the
coefficient of determination. XGBoost emerged as the top
performer in terms of the coefficient of determination, with
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Table 7 Comparative
generalization analysis of model
performance based on fivefold
cross-validation results for the
compressive strength dataset

Models Neural network XGBoost Linear regression KNN Random forest

Neural network 0.044 0.99 0.982 0.06

XGBoost 0.956 0.987 0.985 0.257

Linear regression 0.1 0.13 0.219 0.018

KNN 0.018 0.015 0.781 0.022

Random forest 0.94 0.743 0.982 0.978

Table 8 Comparative
generalization analysis of model
performance based on fivefold
cross-validation results for the
flexural strength dataset

Models Neural network XGBoost Linear regression KNN Random forest

Neural network 0.021 0.754 0.867 0.043

XGBoost 0.979 0.99 0.932 0.484

Linear regression 0.246 0.1 0.807 0.011

KNN 0.133 0.068 0.193 0.08

Random forest 0.957 0.516 0.989 0.92

high probabilities of outperforming other models. The prob-
abilities of it outperforming other models ranged from 0.932
to 0.99, indicating its superior predictive accuracy com-
pared to other models. The RF model also demonstrated
competitive performance, particularly against NN, LR, and
KNN. With probabilities ranging from 0.516 to 0.989, the
RF exhibits strong predictive capability, suggesting that it
captures important patterns in the flexural strength dataset
effectively. The KNN model exhibited mixed performance,
with moderate probabilities of outperforming other models.
While KNN performed relatively well against NN and LR,
its performance was weaker compared to XGBoost and RF.
These results provided understandings into the relative per-
formance ofmodels within the specific context of the flexural
strength dataset and the coefficient of determination metric.

Based on the cross-validation results provided in both
tables, we can draw several conclusions regarding the gener-
alization performance of the models on both the compressive
strength and flexural strength datasets.

• The high probabilities of XGBoost consistently outper-
forming other models on both the compressive strength
and flexural strength datasets suggested that XGBoost
had strong generalization capabilities. This indicated that
XGBoost is robust and capable of capturing complex pat-
terns in geopolymer materials, making it a reliable choice
for predictive modeling tasks in this domain.

• While RF and NN also demonstrated competitive perfor-
mance,XGBoost consistently outperformed them, indicat-
ing its robustness and effectiveness in capturing complex
patterns in geopolymer dataset. LR and KNN, on the other
hand, exhibit lower generalization performance, indicating

that they may not be as effective in capturing the underly-
ing relationships in the dataset.

To wrap up, the findings presented in this paper make
important contributions to the field of geopolymer materi-
als research, offering valuable insights into the predictive
modeling of mechanical strengths and paving the way for
enhanced understanding and optimization of predictionmod-
els for geopolymer mortar formulations. These contributions
can be listed as follows:

1. A novel machine learning framework for geopolymer
mortars made using OB, GW, and FA had been pre-
sented in the literature. Due to the nonlinear nature of
geopolymer mortars, it is a very difficult problem to pre-
dict strength predictionswith non-experimentalmethods.
For this reason, trial-and-errormethods offer a traditional
solution to this problem, but the proposedML framework
will reduce labor and time losses.

2. Prediction of mechanic strength of geopolymer mortars
produced with GW by ML algorithms based on perfor-
mance metrics such as R2, MAE, and RMSE had been
carried out for the first time.

3. XGBoost algorithm was found to be the highest-strength
prediction algorithm. The use of this algorithm increased
the accuracy of strength predictions of geopolymer mor-
tars based on GW.

4. The sensitivity analysis results indicated that GW was
the most efficient component. These studies allowed for
the determination of the important weights for the impact
parameters influencing the output variables.
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5 Conclusion

This paper presents ML predictions of the compressive
strength and flexural strength of two-part geopolymer mor-
tars using various binders such as OB, GW, and FA. Com-
prehensive laboratory research yielded 533 compressive and
533 flexural strength values. These values form the dataset
for several machine learning algorithms such as LR, DNN,
kNN, RF, and XGboost. Furthermore, the impacts of inputs
such as OB, GW, FA, Age, and Heat on output values such
as compressive strength and flexural strength, among others,
were investigated using SOBOL sensitivity analysis on the
dataset.

• TheXGBoost algorithmexhibited thehighest performance
in predicting compressive strength values, achieving an R2

value of 0.981, while the LR algorithm demonstrated the
lowest performance with an R2 value of 0.763.

• For the prediction of flexural strength values, similar
to the compressive strength prediction performance, the
XGBoost algorithm exhibited the highest performance
with an R2 value of 0.898, while the LR algorithm dis-
played the lowest performance with an R2 value of 0.716.

• The prediction performances of the algorithms are ranked
from highest to lowest as follows: XGBoost, RF, DNN,
kNN, and LR.

• Analyzing the MAE, MSE, RMSE, and R2 values, which
are important parameters for evaluation, for both predic-
tion sets, the highest prediction performance was obtained
from the XGBoost algorithm, while the lowest prediction
performance was attained from the LR algorithm.

• In the sensitivity analysis, while the order of importance
of the components for compressive strength is OB, GW,
and FA, this order is OB, GW, and FA for flexural strength.
In this case, it is explicitly seen that OB has a significant
effect in both analyses. The effect of age and tempera-
ture seems to be less effective in both analyses. According
to this finding, it was evident that the predictive perfor-
mance of the algorithms used in the mechanical properties
of geopolymer mortar samples was highly dependent on
the binder used.

• As a result of different cross-validation analyses for com-
pressive and flexural strengths, the highest performance
was obtained from the XGBoost algorithm, with probabil-
ities ranging from 0.956 to 0.987 for compressive strength
and from 0.932 to 0.990 for flexural strength.

Considering factors such as laboratory operations, time,
labor, and cost, predicting the mechanical properties of
building materials containing different binders provides sig-
nificant benefits. Therefore, it is important to predict the
mechanical properties of building materials using machine
learning algorithms. In the literature, mechanical properties
of building materials containing common binders such as
GGBS and FA are generally available. The research team
plans to explore construction materials utilizing binders not
documented in the literature and aims to uncover the relation-
ship between chemical content and mechanical properties of
materials, preparing samples using various machine learning
algorithms.
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Appendix 1: Compressive strength data
for 13 different combinations used
for prediction

Sample code 7 days 28 days 90 days

75 °C 90 °C 105 °C 120 °C 75 °C 90 °C 105 °C 120 °C 75 °C 90 °C 105 °C 120 °C

OB100GW0FA0 37.05 41.70 38.93 36.20 37.43 46.40 41.48 41.40 49.05 42.30 32.98 32.05

OB75GW25FA0 25.40 35.30 33.40 30.37 52.13 48.60 40.55 36.22 24.50 26.70 28.00 29.65

OB75GW0FA25 44.05 49.60 45.20 36.80 49.50 45.90 37.13 39.40 21.10 19.70 32.13 24.25

OB50GW50FA0 25.65 27.40 29.30 30.02 49.65 52.10 44.85 38.62 27.00 26.10 38.50 35.57

OB50GW0FA50 21.95 30.60 25.90 24.27 41.30 34.00 30.57 26.57 21.03 22.30 22.38 29.57

OB25GW25FA50 29.30 27.40 34.20 34.70 47.85 46.40 45.63 38.37 40.15 35.20 42.05 33.60

OB25GW50FA25 35.60 33.10 32.80 30.72 50.73 41.00 41.55 42.57 48.73 41.70 42.50 48.32

OB25GW0FA75 27.30 30.30 33.65 30.25 40.80 34.90 36.15 37.50 27.60 38.40 42.53 31.97

OB25GW75FA0 27.45 31.80 28.70 31.10 60.13 55.00 40.67 39.22 33.93 29.60 22.87 25.87

OB0GW25FA75 28.60 26.10 31.30 24.75 32.55 30.30 30.49 33.07 38.73 48.30 35.10 29.30

OB0GW75FA25 32.65 28.70 25.30 23.65 48.65 46.70 40.30 39.40 47.90 46.70 33.33 29.75

OB0GW100FA0 32.60 33.10 36.80 21.85 49.10 52.60 40.30 45.32 24.70 24.20 32.98 34.52

OB0GW0FA100 43.05 41.30 36.70 29.35 30.75 35.80 39.63 36.07 30.50 29.60 27.18 20.17

(75, 90, 105 and 120 °C is curing temperature for geopolymerization
process).

Appendix 2: Flexural strength data for 13
different combinations used for prediction

Sample code 7 days 28 days 90 days

75 °C 90 °C 105 °C 120 °C 75 °C 90 °C 105 °C 120 °C 75 °C 90 °C 105 °C 120 °C

OB100GW0FA0 11.25 10.80 8.10 7.80 12.45 13.40 13.75 11.75 17.00 16.90 8.20 9.20

OB75GW25FA0 13.30 6.25 9.45 9.75 17.30 15.95 11.65 6.05 4.50 5.15 4.70 4.50

OB75GW0FA25 13.90 7.45 9.95 6.70 13.55 16.90 8.80 6.05 5.75 5.45 5.35 6.00

OB50GW50FA0 15.20 4.60 9.95 4.85 16.30 11.10 7.30 5.75 5.10 5.20 5.25 5.20

OB50GW0FA50 8.60 5.95 9.50 5.20 8.24 9.15 7.80 5.25 5.80 5.60 6.35 5.60

OB25GW25FA50 12.30 6.75 6.35 7.10 11.00 10.70 9.60 8.50 7.85 6.95 7.40 4.20

OB25GW50FA25 9.70 6.10 4.50 5.25 12.60 11.70 10.50 8.20 10.25 10.05 5.90 6.30

OB25GW0FA75 11.30 7.45 7.30 6.50 12.20 7.65 8.00 6.85 7.10 5.75 8.70 6.60

OB25GW75FA0 8.75 6.40 4.70 3.75 14.40 9.60 6.90 6.00 4.10 4.15 3.00 4.45

OB0GW25FA75 6.30 3.60 6.90 3.60 7.80 8.90 8.50 8.25 8.30 9.65 7.75 4.95

OB0GW75FA25 14.65 6.50 3.65 2.25 15.40 12.60 9.50 7.40 17.50 9.80 5.65 4.50

OB0GW100FA0 13.50 4.85 6.50 2.25 14.20 13.40 4.30 5.30 3.10 2.65 5.40 4.70

OB0GW0FA100 12.00 6.05 7.45 5.90 5.70 11.00 7.10 7.25 4.60 4.40 7.10 4.80
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Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License,which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Busch, P.; Kendall, A.; Murphy, C.W.; Miller, S.A.: Literature
review on policies to mitigate GHG emissions for cement and con-
crete. Resources Conserv. Recycling 182, 106278 (2022). https://
doi.org/10.1016/j.resconrec.2022.106278

2. Li, Y.; Shen, J.; Lin, H.; Li, Y.: Optimization design for alkali-
activated slag-fly ash geopolymer concrete based on artificial
intelligence considering compressive strength, cost, and carbon
emission. J. Build. Eng. 75, 106929 (2023). https://doi.org/10.
1016/j.jobe.2023.106929

3. Huang, L.; Krigsvoll, G.; Johansen, F.; Liu, Y.; Zhang, X.: Car-
bon emission of global construction sector. Renew. Sustain. Energy
Rev. 81, 1906–1916 (2018). https://doi.org/10.1016/j.rser.2017.06
.001

4. Hassan,H.S.; Abdel-Gawwad,H.A.; Vásquez-García, S.R.; Israde-
Alcántara, I.; Flores-Ramirez, N.; Rico, J.L.; Mohammed, M.S.:
Cleaner production of one-part white geopolymer cement using
pre-treated wood biomass ash and diatomite. J. Clean. Prod. 209,
1420–1428 (2019). https://doi.org/10.1016/j.jclepro.2018.11.137

5. Tomatis,M.; Jeswani, H.K.; Stamford, L.; Azapagic, A.: Assessing
the environmental sustainability of an emerging energy technology:
solar thermal calcination for cement production. Sci. Total. Envi-
ron. 742, 140510 (2020). https://doi.org/10.1016/j.scitotenv.2020.
140510

6. Wong, C.L.; Mo, K.H.; Alengaram, U.J.; Yap, S.P.: Mechanical
strength and permeation properties of high calcium fly ash-based
geopolymer containing recycled brick powder. J. Build. Eng. 32,
101655 (2020). https://doi.org/10.1016/j.jobe.2020.101655

7. Wang, X.; Yang, W.; Liu, H., et al.: Strength and microstructural
analysis of geopolymer prepared with recycled geopolymer pow-
der. J. Wuhan Univ. Technol. Mat. Sci. Edit. 36, 439–445 (2021).
https://doi.org/10.1007/s11595-021-2428-4

8. Bayraktar, O.Y.; Kaplan, G.; Benli, A.: The effect of recycled fine
aggregates treated as washed, less washed and unwashed on the
mechanical and durability characteristics of concrete underMgSO4
and freeze-thaw cycles. J. Build. Eng. 48, 103924 (2022). https://
doi.org/10.1016/j.jobe.2021.103924

9. Zhang, S.; Li, Z.; Ghiassi, B.; Yin, S.; Ye, G.: Fracture properties
and microstructure formation of hardened alkali-activated slag/fly
ash pastes. Cem. Concrete Res. 144, 106447 (2021). https://doi.
org/10.1016/j.cemconres.2021.106447

10. Oluwafemi, J.; Ofuyatan, O.; Adedeji, A.; Bankole, D.; Justin, L.:
Reliability assessment of ground granulated blast furnace slag/ cow
bone ash- based geopolymer concrete. J. Build. Eng. 64, 105620
(2023). https://doi.org/10.1016/j.jobe.2022.105620

11. Zhang, Z.; Zhu, Y.; Yang, T.; Li, L.; Zhu, H.;Wang, H.: Conversion
of local industrial wastes into greener cement through geopolymer
technology: a case study of high-magnesium nickel slag. J. Clean.
Prod. 141, 463–471 (2017). https://doi.org/10.1016/j.jclepro.2016.
09.147

12. Swathi, B.; Vidjeapriya, R.: Influence of precursor materials and
molar ratios on normal, high, and ultra-high performance geopoly-
mer concrete: a state of art review. Construct. Build. Mater.
392, 132006 (2023). https://doi.org/10.1016/j.conbuildmat.2023.
132006

13. Alex, J.; Dhanalakshmi, J.; Ambedkar, B.: Experimental investiga-
tion on rice husk ash as cement replacement on concrete production.
Construct. Build. Mater. 127, 353–362 (2016). https://doi.org/10.
1016/j.conbuildmat.2016.09.150

14. Shashikant, G.; Prince, A.: A research article on Geopolymer con-
crete. Int. J. Innov. Technol. Explor. Eng. 8(9 Special issue 2),
499–502 (2019). https://doi.org/10.35940/ijitee.I1106.0789S219

15. Hassan, A.; Arif, M.; Shariq, M.: Influence of microstructure of
geopolymer concrete on its mechanical properties—a review. In:
Shukla, S.; Barai, S.; Mehta, A. (Eds.) Advances in Sustainable
Construction Materials and Geotechnical Engineering: Lecture
Notes in Civil Engineering, Vol. 35. Springer, Singapore (2020).
https://doi.org/10.1007/978-981-13-7480-7_10

16. Chen, K.; Wu, D.; Xia, L.; Cai, Q.; Zhang, Z.: Geopolymer con-
crete durability subjected to aggressive environments: a review of
influence factors and comparison with ordinary Portland cement.
Construct. Build. Mater. 279, 122496 (2021). https://doi.org/10.
1016/j.conbuildmat.2021.122496

17. Zaidi, F.H.A.; Ahmad, R.; Abdullah, M.M.A.B.; Rahim, S.Z.A.;
Yahya, Z.; Li, L.Y.; Ediati, R.: Geopolymer as underwater con-
creting material: a review. Construct. Build. Mater. 291, 123276
(2021). https://doi.org/10.1016/j.conbuildmat.2021.123276

18. Moustapha, B.E.; Bonnet, S.; Khelidj, A.;Maranzana,N.; Froelich,
D.; Khalifa, A.; Babah, I.A.: Effects of microencapsulated phase
change materials on chloride ion transport properties of geopoly-
mers incorporating slag and metakaolin, and cement-based mor-
tars. J. Build. Eng. 74, 106887 (2023). https://doi.org/10.1016/j.
jobe.2023.106887

19. da SilveiraMaranhão, F.; de Souza Junior, F.G.; Soares, P.; Alcan,
H.G.; Çelebi, O.; Bayrak, B.; Kaplan, G.; Aydın, A.C.: Physico-
mechanical and microstructural properties of waste geopolymer
powder and lime-added semi-lightweight geopolymer concrete:
Efficient machine learning models. J. Build. Eng. 72, 106629
(2023). https://doi.org/10.1016/j.jobe.2023.106629

20. Sakkas, K.; Panias, D.; Nomikos, P.P.; Sofianos, A.I.: Potassium
basedgeopolymer for passivefire protectionof concrete tunnels lin-
ings. Tunnel. Undergr. Space Technol. 43, 148–156 (2014). https://
doi.org/10.1016/j.tust.2014.05.003

21. Li, N.; Shi, C.; Zhang, Z.; Wang, H.; Liu, Y.: A review on mixture
design methods for geopolymer concrete. Compos. Part B Eng.
178, 107490 (2019). https://doi.org/10.1016/j.compositesb.2019.
107490

22. Rahmati, M.; Toufigh, V.: Evaluation of geopolymer concrete at
high temperatures: an experimental study using machine learning.
J. Clean. Prod. 372, 133608 (2022). https://doi.org/10.1016/j.jcle
pro.2022.133608

23. Nguyen, K.T.; Nguyen, Q.D.; Le, T.A.; Shin, J.; Lee, K.: Analyz-
ing the compressive strength of green fly ash based geopolymer
concrete using experiment and machine learning approaches. Con-
struct. Build. Mater. 247, 118581 (2020). https://doi.org/10.1016/
j.conbuildmat.2020.118581

123

http://creativecomm\penalty -\@M ons.org/licenses/by/4.0/
https://doi.org/10.1016/j.resconrec.2022.106278
https://doi.org/10.1016/j.jobe.2023.106929
https://doi.org/10.1016/j.rser.2017.06.001
https://doi.org/10.1016/j.jclepro.2018.11.137
https://doi.org/10.1016/j.scitotenv.2020.140510
https://doi.org/10.1016/j.jobe.2020.101655
https://doi.org/10.1007/s11595-021-2428-4
https://doi.org/10.1016/j.jobe.2021.103924
https://doi.org/10.1016/j.cemconres.2021.106447
https://doi.org/10.1016/j.jobe.2022.105620
https://doi.org/10.1016/j.jclepro.2016.09.147
https://doi.org/10.1016/j.conbuildmat.2023.132006
https://doi.org/10.1016/j.conbuildmat.2016.09.150
https://doi.org/10.35940/ijitee.I1106.0789S219
https://doi.org/10.1007/978-981-13-7480-7_10
https://doi.org/10.1016/j.conbuildmat.2021.122496
https://doi.org/10.1016/j.conbuildmat.2021.123276
https://doi.org/10.1016/j.jobe.2023.106887
https://doi.org/10.1016/j.jobe.2023.106629
https://doi.org/10.1016/j.tust.2014.05.003
https://doi.org/10.1016/j.compositesb.2019.107490
https://doi.org/10.1016/j.jclepro.2022.133608
https://doi.org/10.1016/j.conbuildmat.2020.118581


Arabian Journal for Science and Engineering

24. Amin, M.N.; Khan, K.; Ahmad, W.; Javed, M.F.; Qureshi, H.J.;
Saleem, M.U.; Qadir, M.G.; Faraz, M.I.: Compressive strength
estimation of geopolymer composites through novel computational
approaches. Polymers 14, 2128 (2022). https://doi.org/10.3390/po
lym14102128

25. Parhi, S.K.; Patro, S.K.: Prediction of compressive strength of
geopolymer concrete using a hybrid ensemble of grey wolf opti-
mized machine learning estimators. J. Build. Eng. 71, 106521
(2023). https://doi.org/10.1016/j.jobe.2023.106521

26. Nazar, S.; Yang, J.; Amin, M.N.; Khan, K.; Ashraf, M.; Aslam,
F.; Javed, M.F.; Eldin, S.M.: Machine learning interpretable-
prediction models to evaluate the slump and strength of fly
ash-based geopolymer. J.Mater. Res. Technol. 24, 100–124 (2023).
https://doi.org/10.1016/j.jmrt.2023.02.180

27. Su, M.; Zhong, Q.; Peng, H.: Regularized multivariate polynomial
regression analysis of the compressive strength of slag-metakaolin
geopolymer pastes based on experimental data. Construct. Build.
Mater. 303, 124529 (2021). https://doi.org/10.1016/j.conbuildmat.
2021.124529

28. Huynh, A.T.; Nguyen, Q.D.; Xuan, Q.L.; Magee, B.; Chung, T.;
Tran, K.T.; Nguyen, K.T.: A machine learning-assisted numerical
predictor for compressive strength of geopolymer concrete based
on experimental data and sensitivity analysis. Appl. Sci. 10, 7726
(2020). https://doi.org/10.3390/app10217726
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