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A B S T R A C T

Enteral nutrition formulas are products that provide macro and micronutrients to patients who cannot receive
their nutrition orally. In this study, the levels of 23 metals known to have potential health risks were determined
by inductively coupled plasma mass spectrometry in a total of 28 enteral nutrition formula. Metal exposure was
calculated according to three different daily energy intake scenarios (Scenario 1 = 50% oral nutrition + 50%
enteral nutrition formula, Scenario 2 = 25% oral nutrition + 75% enteral nutrition formula and Scenario 3 =

100% enteral nutrition formula) and evaluated in terms of non-carcinogenic health risks. The mean levels of Fe,
Co, Ni, Cu, Zn, Mo, Se, Li, Be, V, As, Sr, Ag, Cd, Sb, Ba, La, Hg and Pb in the samples analyzed were determined
12,000 ± 3300, 64 ± 1.6, 10 ± 13, 1300 ± 400, 8500 ± 2500, 75 ± 30, 61 ± 21, 0.34 ± 0.36, 0.05 ± 0.08, 7.3
± 2, 1.6 ± 0.6, 457 ± 166, 0.02 ± 0.1, 0.14 ± 0.12, 0.01 ± 0.1, 74 ± 103, 0.63 ± 0.4, 0.05 ± 0.03 and 0.14 ±

0.7 μg/L. These metals were considered safe in terms of non-carcinogenic health risks when analyzed individ-
ually. However, when the target hazard quotient values of all metals were evaluated together, hazard index
values were higher than the reference value of 1, for both men and women, indicating potential health risks.

1. Introduction

Enteral nutrition formulas (ENFs) are specialised products that are
administered directly into the stomach or intestine of patients who are
unable to meet their daily nutritional and energy needs with a regular
diet, either by oral intake or using a tube or catheter (Iturbide-Casas
et al., 2019). Most of the ENFs offered for sale in the market are in liquid
form, and there are ENFs developed for many different purposes, such as
standard (polymeric), disease-specific, and specialty formulations with
phytonutrients (Brown et al., 2015). The patient’s clinical condition
determines the use of ENFs, the treatment is administered, and the in-
dividual needs or age of the patient, and all of these processes are carried
out under the supervision of a specialist (Church and Zoeller, 2023).
ENFs are enriched with many different macro- and micronutrients to
provide humans with the essential nutrients and energy required
(Cámara-Martos and Iturbide-Casas, 2019). However, since the US Food
and Drug Administration does not recognise medical foods as drugs,
there is no regulatory requirement to determine the safety and clinical
effects of ENFs before production and marketing (Food and Drug
Administration, 2023). However, it should be noted that ENFs, like
many other food products, may contain some metals that pose potential

risks to human health, considering both the raw and auxiliary materials
used in the product formulation and the process conditions.

Metals pollute the environment through natural phenomena, such as
erosion of rocks, volcanic eruptions and man-made activities, such as
industrial activities, urbanization, motor vehicle use and wastes (Gar-
rett, 2000; Rodríguez-Espinosa et al., 2018; Vareda et al., 2019). The
transfer of metals to human metabolism occurs through inhalation,
ingestion and skin (Fu and Xi, 2020). Metals are bioaccumulative and
are challenging to metabolize after being taken into the body (Liu et al.,
2019). Although some metals, such as cobalt (Co), iron (Fe), selenium
(Se), zinc (Zn), chromium (Cr), manganese (Mn) and copper (Cu), are
essential elements for various biochemical and physiological functions
in humans, it has also been reported that these metals may cause various
diseases due to their accumulation properties (Zoroddu et al., 2019;
Jomova et al., 2022). On the other hand, metals, such as cadmium (Cd),
arsenic (As), mercury (Hg) and lead (Pb), are heavy metals that are not
essential for all living organisms. Accumulation of metals has been
associated with mutagenic, teratogenic and carcinogenic toxicity in
many systems, such as gastrointestinal, cardiovascular and neurological
(Fu and Xi, 2020; Dasharathy et al., 2022; Priyadarshanee et al., 2022;
Michalczyk et al., 2023).
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ENFs should adequately fulfil daily nutrient and energy requirements
for humans. However, many researchers have reported the deficiency of
some metals necessary for humans, in patients fed with ENF for a long
time. Gottrand et al. (2013) reported that at least one of the metals Ca,
Cu, Fe, Mg, P, Se and Zn were deficient in 94% of children due to
long-term ENF use, while Santos et al. (2016) reported that Fe deficiency
occurred in approximately 50% of patients who underwent gastrostomy
due to long-term ENF use. Iturbide-Casas et al. (2019) reported that the
concentration levels detected in ENFs for Fe, Mg, Mn, Zn and Ca were
lower than the labelling information. In addition, the presence of some
metals with toxic properties, such as Pb, As and Cd in ENFs, has also
been reported in different studies (Maziero and Viana, 2022; Menezes
et al., 2024).

All these studies indicate that there are some concerns about the
nutritional status of patients using ENFs. Therefore, further investiga-
tion of metal levels in these artificial formulae is needed to ensure the
quality and safety of ENFs (possibility of nutrient deficiency or toxic
effects) (Menezes et al., 2024). Although the close association of metals
with many diseases has been documented, the number of studies
examining metal levels in ENFs and assessing health risks is very limited.
In some studies on ENFs, Iturbide-Casas et al. (2019) examined six
metals (Ca, Mg, Fe, Zn, Cu and Mn), Anunciação et al. (2021) five metals
(K, P, Cu, Fe and Zn), Maziero and Viana (2022) five metals (Al, Cd, Cu,
Mo and Pb), Menezes et al. (2024) 13 metals (Ca, Fe, K, Na, P, Zn, As, Al,
Cd, Cr, Cu, Mn, and Pb). According to the available literature, to our
knowledge, no study has reported Be, Ag, Sn, Sb, Ba, Hg, Li, V, Co, Ni, Se,
Sr, Zr and La andmaking health risk assessments to date. This study aims
to (i) determine the levels of 23 metals (Be, Ag, Cd, Sn, Sb, Ba, Hg, Pb, Li,
V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Sr, Zr, Mo and La) in ENFs devel-
oped for adult patients, (ii) identify metal exposure resulting from ENF
consumption, and (iii) evaluate the exposure level in terms of
non-carcinogenic health.

2. Materials and methods

2.1. Samples

In this study, a total of 28 enteral nutrition formulas with different
brands and ingredients were evaluated for heavy metal contamination.
All samples have been developed for adult use. Sample 1 − 25 and
Sample 26− 28 are in liquid and powder forms, respectively. While the
packaging type of Samples 1− 15 and 22− 25 is plastic, the other

samples are in tetrapak packaging. Two products from each product
with different production and batch numbers were purchased from
pharmacies. Samples were analyzed in the laboratory immediately after
purchase.

2.2. Analysis of metals

2.2.1. Reagents and standards
All chemicals and reagents used were of analytical reagent grade.

65% HNO3 (Lot no: Z0804341-222) 30% HCl (Lot no: Z0850018-323)
and 35% H2O2 (Lot no: K46680900525) were purchased from Supelco
(Darmstadt, Germany) and Merck (Darmstadt, Germany), respectively.
ICP-CAL2-1 solution (Lot no: 222105034) was purchased from AccuS-
tandard (New Haven, USA), Hg standard solution (Lot no: 0120793620)
was purchased AccuStandard (New Haven, USA), Mo standard solution
(Lot no: 223025141) was purchased from AccuStandard (New Haven,
USA), La standard solution (Lot no: HC16447327) was purchased from
Supelco (Darmstadt, Germany), Zr standard solution (Lot no:
HC02466670) was purchased from Supelco (Darmstadt, Germany), ICP
multi-element standard solution III (Lot no: 51-333CRY2) was pur-
chased from Agilent (Santa Clara, USA), tuning solution (Lot no: 43-
90GSX2) and internal standard solution (Lot no: 51-331CRY2) from
Agilent (Santa Clara, USA).

2.2.2. Sample preperation and ICP − MS analysis
All ENF samples were prepared by using Microwave digestion system

(Milestone Ethos Up, Italy). The “Mixed Samples” method of the Mile-
stone Ethos Up was used for the enteral nutrition formulas. For the
digestion process, approximately 1000 mg of the samples were weighed.
The 9 ml of HNO3 and 1 ml of H2O2 were added to the weighed samples
after that the samples have been sealed with the Ptfe vessels (poly tetra
fluoro ethylene high pressure) and incubated in the microwave at 210 ◦C
for 40 min. The samples that removed from the microwave, were cooled
for approximately 20 min. Samples were taken into the 15-mL falcon
tubes and diluted 15 ml of ultrapure water (Millipore/IQ 7005, Massa-
chusetts, USA). All samples were filtered through a 0.45 μm filter. After
that, the elemental analysis was performed in the ICP-MS device. The
solution (9 ml of HNO3 and 1ml of H2O2) was used as the blank solution.
Analyses were carried out in three parallel.

7800 Inductively Coupled Plasma Mass Spectrometry (ICP–MS)
(Agilent Technologies, Tokyo, JHS, Japan) was used for heavy metal
analysis. All glass, quartz and nickel parts (glass micro mist nebulizer (U-

Table 1
Analysis of the recovery, LOD, LOQ and calibration (R2) for the heavy metals.

Elements Concentration (μg/L) Mean Recovery (%) Linear equation x, y (μg/L) R2 LOD (μg/L) LOQ (μg/L)

Li 0, 10, 25, 50,100, 250, 500 112 y = 0.0038*x+0.0061 0.9991 0.397 1.323
Be 0, 10, 25, 50,100, 250, 500 89 y = 0.0030*x+1.1441E-004 0.9991 0.067 0.224
V 0, 10, 25, 50,100, 250, 500 111 y = 0.1367*x+0.0157 0.9992 0.003 0.010
Cr 0, 10, 25, 50,100, 250, 500 127 y = 0.1655*x+0.0178 0.9993 0.022 0.072
Mn 0, 10, 25, 50,100, 250, 500 104 y = 0.1049*x+0.0073 0.9992 0.012 0.041
Fe 0, 10, 25, 50,100, 250, 500 120 y = 0.1393*x+0.3646 0.9990 0.546 1.820
Co 0, 10, 25, 50,100, 250, 500 111 y = 0.2629*x+0.0080 0.9992 0.002 0.008
Ni 0, 10, 25, 50,100, 250, 500 110 y = 0.0714*x+0.0460 0.9995 0.015 0.049
Cu 0, 10, 25, 50,100, 250, 500 84 y = 0.1901*x+0.0484 0.9988 0.028 0.093
Zn 0, 10, 25, 50,100, 250, 500 131 y = 0.0330*x+0.0414 0.9993 0.467 1.557
As 0, 10, 25, 50,100, 250, 500 100 y = 0.0269*x+2.8807E-004 0.9995 0.003 0.009
Se 0, 10, 25, 50,100, 250, 500 122 y = 0.0023*x+0.0021 0.9999 0.026 0.087
Mo 0, 10, 25, 50,100, 250, 500 101 y = 0.0949*x+0.0023 0.9999 0.003 0.010
Sr 0, 10, 25, 50,100, 250, 500 150 y = 0.1422*x+0.0080 0.9990 0.082 0.273
Zr 0, 10, 25, 50,100, 250, 500 86 y = 0.2679*x+0.0035 0.9995 0.013 0.044
Ag 0, 10, 25, 50,100, 250, 500 88 y = 0.0136*x+5.2351E-004 0.9978 0.003 0.012
Cd 0, 10, 25, 50,100, 250, 500 83 y = 0.0034*x+9.1730E-005 0.9990 0.001 0.002
Sn 0, 10, 25, 50,100, 250, 500 120 y = 0.0083*x+8.6624E-004 0.9996 0.009 0.030
Sb 0, 10, 25, 50,100, 250, 500 87 y = 0.0119*x+3.9589E-004 0.9995 0.002 0.007
Ba 0, 10, 25, 50,100, 250, 500 99 y = 0.0044*x+4.6797E-004 0.9991 0.016 0.053
La 0, 10, 25, 50,100, 250, 500 102 y = 0.6252*x+0.0022 0.9996 0.006 0.020
Hg 0, 2.5, 5, 7.5, 10, 12.5 72 y = 0.0014*x+1.6096E-005 0.9988 0.008 0.027
Pb 0, 10, 25, 50,100, 250, 500 88 y = 0.0169*x+0.0015 0.9991 0.005 0.018
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series, Australia), quartz spraying chamber (double pass, USA), quartz
connector (HMI kit, USA), quartz torch (2.5 mm, Japan), sample cone
and skinner cone (for x-lens, USA)) were removed and cleaned according
to cleaning procedure before the elemental concentration determination
of the enteral nutrition samples.

9Be, 107Ag, 114Cd, 118Sn, 121Sb, 137Ba, 201Hg and 208Pb were quan-
tified in standard mode (no gas), while for 7Li, 51 V, 52Cr, 55Mn, 56Fe,
59Co, 60Ni, 63Cu, 66Zn, 75As, 78Se, 88Sr, 90Zr, 95Mo and 139La the He mode
which reliably eliminates all common polyatomic interference using
kinetic energy discrimination (KED). The system was purged with heli-
um for 45 min before starting the analysis. The system was activated
after making the necessary adjustments of the plasma gas: 15 L/min,
auxiliary gas: 1 L/min, carrier gas: 1 L/min, makeup/dilution gas: 1 L/
min and carrier gas pressure of 1.45 kPa. After the system was activated
the torch axis, the resolution axis, the EM, the standard lenses tune, the
plasma correction, the full spectrum and the performance report tests
were performed respectively. The calibration of the system passing these
tests was performed with a tuning solution (1 μg/L Ce, Co, Li, Mg, Tl, Y).
The values obtained as a result of the tuning operation were checked and
there was not detected any deviation in system. A batch was created for
the enteral nutrition samples to be analyzed and the system was com-
manded. During the analysis, the standard solutions prepared primarily
by using the stock solutions were injected and the calibration curves
were checked. The analysis was continued after the control of the cali-
bration curves, and the elemental concentrations of the samples have
been determined.

Measurements were carried out with power of 1200WRF, carrier gas
flow of 1 L/min and nebulizer pump speed of 0.30 rps. An argon gas was
used as carrier gas. 2% HNO3 and ultra-pure water were used as washing
solutions of the system and 1% HCl was used as washing solution of the
injector. With the help of “Mass Hunter 4.4 Workstation Software 7800
ICP-MS Top C.01.04″, measurements were automatically calculated
using the formula [Dilution factor= (Final weight or volume/Sample
quantity or volume) × Dilution coefficient] as a ppb.

2.2.3. Quality control
Calibration curves were created different concentrations using stock

solutions. The performance of the method was evaluated through re-
covery experiments by spiking 100 μg/L for Sample 5 and 13. For
studied elements, the limit of detection (LOD), limit of quantification
(LOQ) and recovery level values were given Table 1. The R2 prepared
with standard solutions of all heavy metals was >0.99. The mean re-
coveries ranged from 72.2% to 150% for all heavy metals.

2.3. Health risk assessment

2.3.1. Metal exposure
The first stage of health risk assessments is to calculate the exposure

of individuals due to ENF consumption. In this study, the deterministic
model was preferred to calculate both easy-to-apply and point exposure.
ESPEN (The European Society for Clinical Nutrition and Metabolism)
recommended starting an enteral nutrition formula in cases where the
patient has <60% of the estimated daily energy intake due to insuffi-
cient food intake for more than 10 days (Arends et al., 2017). Consid-
ering the recommendations of ESPEN, daily heavy metal exposure from
consumption of ENFs was calculated for 3 different scenarios, based on
the ideal daily energy intake for a healthy adult male and female. As a
general approach, the daily energy needs of a healthy adult male and
female are approximately 2500 and 2000 kcal/day, respectively. The
determined scenarios are; Scenario 1 = 50% oral nutrition +50% ENF,
Scenario 2= 25% oral nutrition+75% ENF and Scenario 3= 100% ENF.
Metal exposure from ENF consumption was calculated using the
following formula (Basaran et al., 2024).

EDI=

(

HMc ×
SCEx
ENFx

)

bw

EDI is the estimated daily metal exposure from ENF (μg/kg bw/day),
SCEx is scenarios based on daily energy intake recommended by ESPEN
(kcal/day), ENFx is energy value of each ENF (kcal/100 mL), HMc is the
concentration of metal in ENF (μg/100 mL), bw is body weight (70 and
80 kg for female and male, respectively).

2.3.2. Target hazard quotient (THQ)
THQ describes the non-carcinogenic health risk posed by exposure to

the respective toxic compound. While THQ≥1 indicates a potential
health problem that is not carcinogenic, THQ<1 means there is negli-
gible risk about health hazard (Basaran, 2022a). THQ was calculated
using the following formula:

THQ=
EDI
RfD

EDI is the estimated daily metal exposure (μg/kg bw/day), RfD is
oral reference dose. RfD for Li, Be, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se,
Sr, Zr, Mo, Ag, Cd, Sn, Sb, Ba, La, Hg and Pb is 2× 10-3, 2× 10-3,
5.04× 10-3, 3× 10-3, 1.4× 10-1, 7× 10-1, 3× 10-4, 2× 10-2, 4× 10-2,
3× 10-1, 3× 10-4, 5× 10-3, 6× 10-1, 8× 10-5, 5× 10-3, 5× 10-3,
1× 10-3, 6× 10-1, 4× 10-4, 2× 10-1, 5× 10-5, 1× 10-4 and 4× 10-3

mg/kg bw/day, respectively (United States Environmental Protection
Agency, 2024; Su et al., 2020).

2.3.3. Hazard index (HI)
The HI assumes that humans are simultaneously exposed to many

potentially toxic compounds due to consumption of a particular food. In
this case, calculating the cumulative effect of toxic compounds on
humans reduces the error in risk assessments (Pekmezci and Basaran,
2024). The HI’s evaluation criteria are the same as THQ’s criteria. The
HI is the sum of the individual THQs of the evaluated items for each ENF
and calculated according to the following formula.

HI=
∑23

i=1
THQ1

2.4. Statistical analysis

The analysis were completed by transferring the research data to IBM
SPSS Statistics 26 program (Armonk, New York U.S.A). While evaluating
the data, descriptive statistics (mean ± SD) were given for numerical
variables.

Table 2
Levels of metals detected in ENFs (μg/L, mg/L*).

Metals Fe* Zn* Mn Cu* Mo Se

Samples (n
¼ 28)

12 ±

3.3
8.5 ±

2.5
2 ± 0.8 1.3 ±

0.4
75 ± 30 61 ±

21
Metals Cr Sr* Ba V Ni Co
Samples (n
¼ 28)

41 ±

19
0.46 ±

0.17
74 ±

103
7.3 ± 2 10 ± 13 1.6 ±

1.6
Metals As Li Be Zr Sn Ag
Samples (n
¼ 28)

1.6 ±

0.6
0.34 ±

0.36
0.05 ±

0.08
<LOD <LOD 0.02 ±

0.1
Metals Cd Sb La Hg Pb
Samples (n
¼ 28)

0.14 ±

0.12
0.01 ±

0.1
0.63 ±

0.4
0.05 ±

0.03
0.14 ±

0.7

B. Basaran and H. Turk



Food and Chemical Toxicology 192 (2024) 114914

4

3. Results and discusssion

3.1. Levels of metals

The levels of metals identified in the ENFs examined within the scope
of the study are shown in Table 2.

3.1.1. Iron (Fe)
The levels of Fe in the samples varied between 1 − 64 mg/L, with an

average Fe level of 12 ± 3.3 mg/L across all samples. The highest and
lowest average Fe levels were detected in Sample 27 (64 ± 0.7 mg/L)
and Sample 26 (1 ± 0.2 mg/L) respectively. The values obtained for Fe
in this study were consistent with the declared Fe value on the labels of
11 samples. The average Fe levels in ENFs was reported as 13 mg/L
(Iturbide-Casas et al., 2019) and 21.4 mg/L (Menezes et al., 2024) in
various studies. However, Anunciação et al. (2021) reported a signifi-
cantly lower Fe value (2 − 2.9 mg/L) in their study of 3 ENFs compared
to this study and other studies in the literature.

3.1.2. Zinc (Zn)
The Zn levels of the samples ranged from 0.6 − 44 mg/L, with an

average Zn level of 8.5± 2.5 mg/L for all samples. The top three samples
with the highest average Zn levels were Sample 27 (41 ± 3.6 mg/L),
Sample 12 (15± 2.4 mg/L), and Sample 22 (12 ± 2 mg/L), respectively.
The values obtained for Zn in this study were in line with the Zn values
defined on the labels of 20 samples. The average Zn levels in ENF were
reported as 13.2 (11 − 15) mg/L by Iturbide-Casas et al. (2019), 1.7 −

3.1 mg/L by Anunciação et al. (2021), and 10.4 (9.1 − 66) mg/L by
Menezes et al. (2024).

3.1.3. Manganese (Mn)
The Mn levels of the samples ranged from 0.11 − 6.7 mg/L, with an

average Mn level of 2 ± 0.8 μg/L for all samples. The top three samples
with the highest average Mn levels were Sample 12 (6 ± 1 mg/L),
Sample 14 (4.6 ± 2 mg/L), and Sample 24 (4 ± 0.4 mg/L), respectively.
The values obtained for Mn in this study were lower than the Mn value
specified on the labels of 7 samples. Iturbide-Casas et al. (2019) and
Menezes et al. (2024) found the average Mn level in ENFs (4.63 and
4.83 mg/L, respectively) to be approximately 2 times higher compared
to this study.

3.1.4. Copper (Cu)
The average Cu level of all samples was 1.3 ± 0.4 (0.03 − 4) mg/L.

The highest and lowest average Cu levels were found in Sample 27 (3.5

± 0.7 mg/L) and Sample 28 (0.03 ± 0.01 mg/L) respectively. The Cu
levels obtained in this study were lower than the Cu values specified on
the labels of 3 samples. The average Cu level in ENFs was reported as
2.53 (2 − 3.3) mg/L (Iturbide-Casas et al., 2019), 0.41 − 0.43 mg/L
(Anunciação et al., 2021), and 2.13 mg/L (Maziero and Viana, 2022).
The Cu values obtained in this study are consistent with the study by
Menezes et al. (2024) (1.39 mg/L).

3.1.5. Molybdenum (Mo)
The average level of Mo in all samples was 75 ± 30 μg/L, with Mo

levels in samples ranging from 0.4 − 216 μg/L. The highest and lowest
average Mo levels were found in Sample 12 (193± 33 μg/L) and Sample
26 (1.3 ± 1.2 μg/L) respectively. In this study, values for Mo were lower
than the Mo value defined on the labels of 5 samples. Maziero and Viana
(2022) reported Mo levels in ENFs as 140 (70 − 200) μg/L.

3.1.6. Selenium (Se)
The average Se level of all samples was 61 ± 21 μg/L, with Se levels

of samples varying between 9 − 199 μg/L. The highest and lowest
average Se levels were detected in Sample 27 (165 ± 47 μg/L) and
Sample 26 (5± 2.5 μg/L) respectively. The values obtained for Se in this

study were lower than the labelled Se value in 5 samples. There is no
study in the literature reporting the level of Se in ENFs.

3.1.7. Chromium (Cr)
The average Cr level of all samples was 41 ± 19 (LOQ − 122) μg/L.

The Cr level of 3 samples was below the LOQ value. The highest average
Cr level was found in Sample 25 (121± 3 μg/L). In this study, the values
obtained for Cr were lower than the Cr value defined on the label of 6
samples. The findings regarding Cr in this study are lower compared to
the study by Menezes et al. (2024) (average 87 (21–190) μg/L).

3.1.8. Strontium (Sr)
The Sr levels of the samples varied between 6 − 1329 μg/L, with an

average Sr level of 0.46 ± 0.17 mg/L determined for all samples. The
average highest and lowest Sr levels were found in Sample 26 (1243 ±

122 μg/L) and Sample 28 (6 ± 0.7 μg/L) respectively. There is no study
in the literature reporting the level of Sr in ENFs.

3.1.9. Barium (Ba)
Ba was detected in 86% of the samples examined, and the levels of Ba

in Sample 1, 2, 3, and 4 were below the LOQ value. The average Ba level
of all samples was 74± 103 (<LOQ − 422) μg/L. The highest average Ba
level was detected in Sample 7 (374 ± 130 μg/L). There is no study in
the literature reporting Ba levels in ENFs.

3.1.10. Vanadium (V)
In 93% of the samples examined, V was detected, with only Sample 1

and 28 having V levels < LOQ. The V levels of the samples ranged from
<LOQ − 37 μg/L, with an average V level of 7.3 ± 2 μg/L detected in all
samples. There is no study in the literature reporting the level of V in
ENFs.

3.1.11. Nickel (Ni)
The Ni levels of the samples ranged from <LOQ − 81 μg/L, and the

average Ni level of all samples wasdetermined as 10 ± 13 μg/L. Ni was
detected in 75% of the samples. There is no study in the literature
reporting Ni levels in ENFs.

3.1.12. Cobalt (Co)
The average Co level of all samples was determined to be 1.6 ± 1.6

(<LOQ − 12) μg/L. In 14% of the samples (Sample 1, 2, 16, and 28), the
Co level was found to be lower than the LOQ value. The highest average
Co level was detected in Sample 17 (5.9 ± 3.4 μg/L There is no study in
the literature reporting the level of Co in ENFs.

3.1.13. Arsenic (As)
The average As level of all samples was 1.6± 0.6 (<LOQ − 5.5) μg/L.

The first three samples with the highest average As level were Sample 26
(5 ± 0.8 μg/L), Sample 5 (5 ± 1 μg/L) and Sample 22 (5 ± 1 μg/L),
respectively. Menezes et al. (2024) found the As level lower than LOQ
(0.7 μg/L) in all ENFs examined.

3.1.14. Lithium (Li)
Li was detected only in Sample 28 (Mean = 9.6 ± 2) among the

samples examined, and the Li level in all other samples was lower than
the LOQ value. The average Li level of all samples was 0.34± 0.36 (LOQ
− 11) μg/L. There is no study in the literature reporting Li levels in ENFs.

3.1.15. Beryllium (Be)
The average Be level of all samples was 0.05 ± 0.08 μg/L, with Be

levels of samples ranged from <LOQ − 0.4 μg/L μg/L. In 57% of the
samples examined, Be was detected as < LOQ. The highest average Be
level was detected in Sample 6 (0.4 ± 0.03 μg/L). There is no study in
the literature reporting the level of Be in ENFs.
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3.1.16. Zirconium (Zr)
In all samples examined, the Zr level was lower than the LOD value.

ENF’lerde There is no study in the literature reporting Zr levels in ENFs.

3.1.17. Tin (Sn)
The Sn level was found to be lower than the LOD value in all samples

examined. There is no study in the literature reporting Sn levels in ENFs.

3.1.18. Silver (Ag)
Ag was detected only in Sample 25 (0.2 ± 0.1 μg/L) and Sample 27

(0.2 ± 0.1 μg/L) among the samples examined. The average level of Ag
in all samples was 0.02 ± 0.1 (LOQ − 0.5) μg/L. There is no study in the
literature reporting the level of Ag in ENFs.

3.1.19. Cadmium (Cd)
Cd was detected in 62% of the samples examined. Cd levels of the

samples varied between < LOQ − 1 μg/L, and the average Cd level of all
samples was 0.14 ± 0.12 μg/L. The highest average Cd level was
determined in Sample 27 (1± 0.1 μg/L). It has been reported that the Cd
level of ENFs varies between < LOQ (0.01) − 0.6 μg/L (Menezes et al.,
2024) and <LOD (0.02) − 8 μg/L (Maziero and Viana, 2022).

3.1.20. Antimony (Sb)
Among the samples examined, Sb (Mean = 0.3 ± 0.5) was detected

only in Sample 13. The average level of Sb of all samples was 0.01 ± 0.1
(<LOQ − 0.7) μg/L. There is no study in the literature reporting Sb levels
in ENFs.

3.1.21. Lanthanum (La)
La value was not detected in Sample 1 and 20 among the samples

examined. The average level of La of all samples was 0.63 ± 0.4 (<LOQ
− 3) μg/L. There is no study in the literature reporting La levels in ENFs.

3.1.22. Mercury (Hg)
Among the samples examined, Hg value was detected only in Sample

27 (Mean = 1.5 ± 0.2) The Hg levels of the samples varied between <

LOQ − 2 μg/L, and the average Hg level of all samples was 0.05 ± 0.03
μg/L. There is no study in the literature reporting Hg levels in ENFs.

3.1.23. Lead (Pb)
The average Pb levels of all samples was 0.14 ± 0.7 μg/L, and the Cd

level of all samples varie between (<LOQ − 4.4) μg/L. Pb was detected
in 11% of the samples examined (Samples 7, 9 and 12). Menezes et al.
(2024) reported that the mean of Pb level in ENFs ranged from <LOQ
(0.13) − 10 μg/L. Maziero and Viana (2022), on the other hand,
explained that the mean Pb value 16 (9 − 30) μg/L in ENFs received
from commercial pharmacies in Brazil was reported, and that 2 out of 5
samples analyzed exceeded the maximum level (0.01 mg/kg) by Bra-
zilian legislation.

3.2. Risk assessment

3.2.1. Metal exposure
Metal exposure levels resulting from ENF consumption according to

body weight of male and female individuals were calculated according
to three different scenarios determined according to energy intake and
shown in Table 3.

According to the three different scenarios, daily Fe intake resulting
from ENF consumption was determined approximately in the range of 7
− 14 and 8.4− 17.5 mg/day for male and female individuals, respec-
tively. Recommended dietary allowance (RDA) values for Fe were re-
ported as 18 and 8mg/day for adult (19− 50 years old) women andmen,
respectively (National Institutes Health, 2019). In this case, the contri-
bution rates of Fe intake from ENF consumption to the daily RDA of
female and male individuals are 39 − 78 and 105− 220%, respectively.
Fe intake from ENF consumption is lower for women and higher for men
compared to RDA values. In this study, it can be said that Fe intake from
ENF consumption differs considerably between male and female in-
dividuals. Fe is an abundant element in the world and is a biologically
essential component of all living organisms (Sánchez et al., 2017). The
relationship between Fe and human health has been known since
ancient times (Briguglio et al., 2020). However, Fe cannot be taken up
sufficiently by organisms due to oxides formed by contact with oxygen
(Abbaspour et al., 2014). Fe deficiency is a serious public problem
causing anaemia (Bathla and Arora, 2022). Today, it is assumed that Fe
deficiency causes about half of all anaemia cases (Petry et al., 2016), and
it has been reported that excess Fe can cause Parkinson’s disease, dia-
betes and various damages in many organs and systems (Jomova and
Valko, 2011; Bjørklund et al., 2020; D’Mello and Kindy, 2020; Gao et al.,
2022a).

According to three different scenarios, the daily Zn intake resulting
from ENF consumption was approximately in the range of 5.23 − 10.5
and 6.3− 13.1 mg/day for female and male individuals, respectively.
RDA values for Zn were reported as 8 and 11 mg/day for adult females
and males, respectively (National Institutes Health, 2019). The contri-
bution rates of Zn intakes from ENF consumption to the daily RDA were
determined as 65, 98 and 131% for females and 57, 90 and 120% for
males for three different scenarios, respectively. Therefore, scenario two
is sufficient for daily Zn intake for both male and female individuals. The
other scenarios correspond to low or high levels of daily Zn intake. Zn is
a very common trace element in nature. It is indispensable for the
growth and development of all living organisms (Chasapis et al., 2012).
It is the second most abundant transition metal ion in living organisms
after Fe (Cuajungco et al., 2021). There is approximately 1.4–2.3 g Zn in
an adult human body (Jeng and Chen, 2022). Zn is one of the essential
nutrients of considerable importance in terms of public health. It is
estimated that Zn deficiency affects approximately 2 billion people
worldwide and approximately 0.8 million people die each year world-
wide due to health complications related to zinc deficiency (Waqeel and
Khan, 2022). Zn, which is a cofactor of more than 300 enzymes, is also a
multipurpose trace element involved in the stabilisation of the structure

Table 3
Levels of metal exposure due to ENF consumption according to daily energy
needs (μg/kg bw/day).

Metals Scenario 1 Scenario 2 Scenario 3

Female
(1000
kcal)

Male
(1200
kcal)

Female
(1500
kcal)

Male
(1875
kcal)

Female
(2000
kcal)

Male
(2500
kcal)

Li 0.001 0.001 0.002 0.002 0.002 0.003
Be 0.001 0.001 0.001 0.001 0.001 0.001
V 0.06 0.07 0.10 0.11 0.13 0.14
Cr 0.36 0.38 0.54 0.60 0.73 0.79
Mn 19.5 20.5 29.3 32.0 39.0 42.7
Fe 100 105 150 164 200 219
Co 0.01 0.02 0.02 0.02 0.03 0.03
Ni 0.09 0.09 0.13 0.15 0.18 0.20
Cu 11.7 12.3 17.5 19.2 23.4 25.6
Zn 74.7 78.4 112 123 149 163
As 0.01 0.02 0.02 0.02 0.03 0.03
Se 0.57 0.60 0.85 0.93 1.14 1.24
Sr 4.12 4.33 6.19 6.77 8.25 9.02
Zr 0.00 0.00 0.00 0.00 0.00 0.00
Mo 0.70 0.74 1.05 1.15 1.41 1.54
Ag 0.0001 0.0001 0.0002 0.0002 0.0002 0.0002
Cd 0.001 0.001 0.002 0.002 0.002 0.002
Sn 0.00 0.00 0.00 0.00 0.00 0.00
Sb 0.0002 0.0002 0.0002 0.0003 0.0003 0.0004
Ba 0.82 0.86 1.23 1.34 1.64 1.79
La 0.005 0.006 0.008 0.009 0.011 0.012
Hg 0.0001 0.0002 0.0002 0.0002 0.0003 0.0003
Pb 0.002 0.002 0.002 0.002 0.003 0.003

Scenario 1 = 50% oral nutrition + 50% enteral nutrition formula, Scenario 2 =

25% oral nutrition + 75% enteral nutrition formula and Scenario 3 = 100%
enteral nutrition formula.
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of many proteins (Chasapis et al., 2012). Adequate Zn intake in healthy
and sick individuals has many critical roles in human metabolism, such
as response to oxidative stress, maintaining the immune system, DNA
replication and damage repair, preventing the appearance of skin le-
sions, and assisting wound healing (Chasapis et al., 2020; Cuajungco
et al., 2021; Wu et al., 2022; Costa et al., 2023).

According to three different scenarios, daily Mn intake resulting from
ENF consumption was approximately in the range of 1.37 − 2.73 and
1.64− 3.41 mg/day for female and male individuals, respectively. RDA
values for Mnwere reported as 1.8 and 2.3 mg/day for adult females and
males, respectively (National Institutes Health, 2019). The contribution
rates of Mn intakes from ENF consumption to the daily RDA were
determined as 76, 114 and 152% for women and 71, 111 and 148% for
men for three different scenarios, respectively. According to scenario
number two, it can be said that daily Mn intake is sufficient for the daily
needs of women andmen. Scenario number three causes 50%more daily
Mn intake. Adequate Mn intake is necessary for defense against oxida-
tive stress, strengthening the immune system and maintaining other
physiological processes in human metabolism (Miah et al., 2020). High
exposure to Mn leads to manganism disease, which is associated with a
syndrome similar to Parkinson’s disease (Mattison et al., 2024). Mn
deficiency can lead to impairment of the skeletal-bone system, reduced
fertility and birth defects, impaired glucose tolerance and various
neurodegenerative diseases (Aschner et al., 2005; Soares et al., 2020;
Rondanelli et al., 2021; Dai et al., 2021).

According to three different scenarios, the daily Cu intake from ENF
consumption was approximately in the range of 0.82 − 1.64 and 0.98−
2.1 mg/day for female and male individuals, respectively. RDA values
for Cu were reported as 0.9 mg/day for adult females and males (Na-
tional Institutes Health, 2019). The contribution rates of Cu intakes from
ENF consumption to the daily RDA are 91 − 182 and 108− 227% for
men and women, respectively. Therefore, it can be said that scenario 1 is
sufficient for men and women in Cu intake from ENF consumption.
Scenarios 2 and 3 correspond to a Cu intake much higher than the daily
requirement. Cu is an essential microelement for human metabolism
(Kamiya, 2022). Since Cu cannot be produced and stored in the human
body, it must be regularly taken fromwater and food (Yang et al., 2022).
Cu plays an important role in many physiological and biological pro-
cesses in humanmetabolism, including normal growth and development
of children, iron metabolism, antioxidant defense and immune function
(Bost et al., 2016; Bisaglia and Bubacco, 2020; Grzeszczak et al., 2020;
Ruiz et al., 2021; Jomova et al., 2022). Although it is an essential
micronutrient for humans, high levels of Cu exposure easily lead to
Fenton-type redox reactions, causing oxidative stress, cell death and
inflammatory responses (Bost et al., 2016; Kamiya, 2022; Chen et al.,
2022).

The daily Mo intake from ENF consumption according to three
different scenarios was approximately in the range of 49 − 98 and 60−
120 μg/day for female and male individuals, respectively. The RDA
values for Mo are the same for adult men and women and are reported to
be 45 μg/day (National Institutes Health, 2019). The contribution rates
of Mo intakes from ENF consumption to the daily RDA are 108 − 217
and 131− 267% for men and women, respectively. Therefore, it can be
said that Mo intake from ENF consumption is above the daily require-
ment for men and women in all three different scenarios. Mo is recog-
nised as an important trace element for human health (EFSA Panel on
Dietetic Products Nutrition and Allergies, 2013). Evidence of Mo defi-
ciency and toxicity in humans is limited (Novotny, 2011). The tolerable
upper intake level for Mo is determined as 2 mg/day (Institute of
Medicine Panel on Micronutrients, 2001). Mo has an important role as a
cofactor in the functioning of more than 60 enzymes that catalyze
chemical reactions involved in the global cycle of N, C and S (Smedley
and Kinniburgh, 2017). Four Mo-dependent enzymes are known in
humans, each harbouring a pterin-based Mo cofactor (Moco) in the
active site (Smedley and Kinniburgh, 2017). In humans, Moco deficiency
has been associated with neurological abnormalities and mortality in

early childhood (Schwarz, 2016).
The daily Se intake resulting from ENF consumption according to

three different scenarios was in the range of approximately in the range
of 40 − 80 and 48− 100 μg/day for female and male individuals,
respectively. The RDA values for Se are the same for adult women and
men, reported as 55 μg/day (National Institutes Health, 2019). The
contribution rates of Se intake due to ENF consumption to the daily RDA
were determined as 73, 108 and 145% for females and 87, 135 and
182% for males for three different scenarios, respectively. Therefore,
considering the daily Se requirement, it can be said that scenario 2 for
women and scenario 1 for men are more appropriate. Se has been
considered a toxic element for a long time. However, it has been un-
derstood that Se is a trace element for living organisms (Schwarz and
Foltz, 1957). In recent years, Se has been added to food products to
increase the bioavailability of these foods (Basaran, 2022b). It has been
reported that Se has a protective effect against diseases, such as car-
diovascular diseases and cancer, including COVID-19, (Khatiwada and
Subedi, 2021; Kuria et al., 2021; Barchielli et al., 2022), and it has also
been explained that selenosis (selenium poisoning) may occur due to
high levels of Se intake (Kieliszek and Błażejak, 2016). The NOAEL (No
Observed Adverse Effect Level) and LOAEL (Lowest Observed Adverse
Effect Level) values for Se were reported to be 0.015 and 0.023
mg/kg/day, respectively (United States Environmental Protection
Agency, 1991).

According to three different scenarios, the daily Cr intake resulting
from ENF consumption was determined to be approximately in the range
of 25 − 51 and 31− 64 μg/day for female and male individuals,
respectively. RDA values for Cr were reported as 25 and 35 μg/day for
adult females and males, respectively (National Institutes Health, 2019).
The contribution rates of Cr intakes from ENF consumption to the daily
RDA are 100 − 204 and 90− 182% for men and women, respectively It
can be said that the daily Cr intake of scenario 1 is sufficient for the daily
needs of male and female individuals. Cr is a component of the glucose
tolerance factor and regulates the rate of glucose removal from the blood
by increasing insulin activity (Kazi et al., 2008). Cr is also involved in the
processing of carbohydrates and fats and pathologies related to weight
loss may occur in Cr deficiency (Monga et al., 2022). The International
Agency for Research on Cancer has defined Cr (III) in Group 3 (not
classifiable as to its carcinogenicity to humans), and Cr (IV) in Group 1
(carcinogenic to humans) (International Agency for Research on Cancer,
2024).

The daily metal exposure levels of women from ENF consumption
were determined approximately in the range of 290 − 580, 57− 115,
4.5− 9, 6.3− 13, 1− 2.1, 1− 2.1 μg/day for Sr, Ba, V, Ni, Co and As,
respectively, considering three different scenarios. When three different
scenarios were considered, the daily metal exposure levels of males from
ENF consumption were found approximately in the range of 350 − 720,
70− 140, 5.4− 11, 7.5− 16, 1.3− 2.6, 1.2− 2.6 μg/day for Sr, Ba, V, Ni,
Co and As, respectively. The daily exposure levels of Li, Be, Zr, Sn, Ag,
Cd, Sb, La, Hg and Pb from ENF consumption of both male and female
individuals were less than 1 μg/day for all three scenarios. The tolerable
daily intake (TDI) contribution rates of Ni, Ba and Sr intakes from ENF
consumption for all individuals (male and female) were<19%,<9% and
<7%, respectively. The contribution of V to TDI was <0.7%, Cd and Hg
<0.3%, Li, Be, Ag, Sb and La <0.05%. Therefore, the contribution levels
of Sr, Ba, V, Ni and Co exposure levels to Provisional tolerable daily
intake (PTDI) from ENF consumption are very low, and therefore, the
potential health risks are also low. Since TDI values for Pb and As were
not determined, the contribution rates of these metals were not
calculated.

Sr is mostly deposited in human bones and may promote bone
growth and prevent osteoporosis (Marx et al., 2020; Kołodziejska et al.,
2021), reduce oxidative stress by exhibiting antioxidant properties
(Yalin et al., 2012; Shen et al., 2022), and may also contribute to the
treatment of diseases, such as cardiovascular disease, hypertension and
diabetes (Ru et al., 2024).
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Ba is a non-essential element for terrestrial organisms and is reported
to be toxic at high concentrations (Krishna et al., 2020). It has also been
reported that high levels of Ba exposure can cause vomiting and diar-
rhoea, heart and kidney failure, anxiety and nervous system diseases in
humans (Kravchenko et al., 2014; Peana et al., 2021).

V has not been shown to be a trace element or to have any nutritional
value for humans (Imtiaz et al., 2015). It has been reported that high
levels of V exposure may cause irreversible damage to the kidneys
(European Food Safety Authority, 2004). It has also been described that
V compounds can initiate some gastrointestinal problems, such as
diarrhoea, vomiting, general dehydration with weight loss (Wilk et al.,
2017).

Ni is safe for most adults in amounts not exceeding 1 mg per day
(Goverment of Canada, 2023). However, its relevance to human health
is still controversial and high levels of Ni exposure have been reported to
have serious adverse effects on human health (Begum et al., 2022). The
International Agency for Research on Cancer has identified Ni as
possibly carcinogenic to humans in Group 2B (International Agency for
Research on Cancer, 2024).

The main role of Co is its integral functionality in the coenzyme
vitamin B12 (Jomova et al., 2022). High levels of exposure have been
shown in several studies to cause some adverse health effects (Linna
et al., 2020; Kovochich et al., 2021).

As exposure is recognised as a global public health concern (Wilson,
2015). The Codex Alimentarius has withdrawn its previous PTWI (Pro-
visional Tolerable Weekly Intake) for As (2.1 μg/kg/day), stating that it
is not possible to establish a safe intake limit (The Codex Alimentarius,
2011). As increases the risk of developing various types of cancer,
weakens the immune system, leaving individuals vulnerable to diseases,
and damages the cardiovascular and nervous systems (Liu et al., 2023;
Sen et al., 2023; Rahmani et al., 2023). The International Agency for
Research on Cancer has identified arsenic and arsenic compounds as
directly carcinogenic to humans in Group 1 (International Agency for
Research on Cancer, 2024).

Although Li is not a trace element for humans, low Li intakes have
been reported to be associated with suicide, bipolar disorders and

aggressive behaviour (Collins et al., 2010; Ishii and Terao, 2018). Li is
also an effective psychopharmacological agent widely used in the
treatment of neuropsychiatric disorders (Strawbridge et al., 2023).
Therefore, dietary intake of Li has been recommended (Naeem et al.,
2021).

Be and its compounds have been identified by the International
Agency for Research on Cancer as directly carcinogenic to humans in
Group 1 (International Agency for Research on Cancer, 2024). It has
been described that Be exposure is associated with various types of
cancer, especially lung cancer (Wambach and Laul, 2008; Boffetta et al.,
2020). In addition, adverse effects of Be on the respiratory system and
skin have been shown (Hiller et al., 2023).

The effects of Zr on living organisms are not yet fully known. Zr is
neither essential nor toxic in the traditional sense (Ghosh et al., 1992).
The daily intake of Zr is estimated to be 4.15 mg (Schroeder and Balassa,
1966). Although the toxicity level has been reported to be low in
experimental and clinical studies on Zr (Lee et al., 2010), the relation-
ship between Zr and Alzheimer’s disease should be taken into consid-
eration since it can accumulate by crossing the brain barrier (Ghosh
et al., 1992; Wang et al., 2021a).

The natural biological role of Sn in living organisms is unknown and
it can be poorly absorbed by organisms (Rüdel, 2003). It has also been
reported that Sn exposure can cause various health problems in the
gastrointestinal tract, such as nausea, vomiting and diarrhoea (Blunden
and Wallace, 2003; Granjeiro et al., 2020).

Ag exposure in humans can occur from many sources. Ag is an
antibacterial agent used in dermal and mucosal medical applications
(Hamad et al., 2020). It has been reported that Ag has a low potential for
skin irritation but may cause genotoxicity and further research is needed
on its carcinogenic potential (Hadrup et al., 2018). Ag can also accu-
mulate as particles in the human body, causing a blue-grey discoloura-
tion known as argyria (Slater et al., 2022).

Cd has long been recognised as an environmental pollutant that
poses a risk to human health (Schaefer et al., 2020). It has been
described that Cd can accumulate in different organs, especially the liver
and kidneys, and can cause cancer (especially lung and prostate cancer)
(European Food Safety Authority, 2009), and high levels of Cd exposure
have also been associated with impaired cardiovascular and nervous
system (Wang et al., 2021b; Zhao et al., 2023). The International Agency
for Research on Cancer classified cadmium and cadmium compounds in
Group 1 (carcinogenic to humans) (International Agency for Research
on Cancer, 2024). The Codex Alimentariusstated that TDI for Cd was 1
μg/kg bw/day (7 μg/kg bw/week) (The Codex Alimentarius, 2011),
while European Food Safety Authority (2009) stated as 0.36 μg/kg
bw/day (2.5 μg/kg bw/week).

It is controversial whether Sb is a trace element for humans and
whether it has harmful effects on human health (Boreiko and Rossman,
2020). Studies have reported that high levels of Sb in the human body
may increase the risk of breast and prostate cancer (Kotsopoulos et al.,
2012; Shi et al., 2023). It has also been explained that Sb can cause or
promote various diseases through cellular or molecular damage (Lai
et al., 2022).

La is administered orally to patients with renal insufficiency as a
calcium and aluminum-free phosphate binder (Harrison and Scott,
2004), and it has been reported that long-term exposure to La may have
a significant adverse effect on the rate of signal transmission in the
human brain, may cause disruption in various tissues, and has been
associated with some adverse neurobehaviours (Zhu et al., 1997; Feng
et al., 2006; Malvandi et al., 2021).

Hg is a toxic metal not essential in the human body, and its effects on
human health are a global concern (Park and Zheng, 2012; Ha et al.,
2017). Hg exposure is a serious risk factor for various diseases in many
organs and systems (European Food Safety Authority, 2008; Hu et al.,
2021; Azar et al., 2021; Gao et al., 2022b). The International Agency for
Research on Cancer classified Hg, inorganic mercury in Group 3,
whereas it classified methylmercury in Group 2B (International Agency

Table 4
THQ levels of metals.

Metals Scenario 1 Scenario 2 Scenario 3

Female
(1000
kcal)

Male
(1200
kcal)

Female
(1500
kcal)

Male
(1875
kcal)

Female
(2000
kcal)

Male
(2500
kcal)

Li 0.001 0.001 0.001 0.001 0.001 0.001
Be <0.000 <0.000 <0.000 <0.000 0.001 0.001
V 0.013 0.013 0.019 0.021 0.025 0.028
Cr 0.121 0.127 0.182 0.199 0.242 0.265
Mn 0.139 0.146 0.209 0.229 0.279 0.305
Fe 0.143 0.150 0.214 0.235 0.286 0.313
Co 0.050 0.052 0.074 0.081 0.099 0.108
Ni 0.004 0.005 0.007 0.007 0.009 0.010
Cu 0.292 0.307 0.439 0.480 0.585 0.640
Zn 0.249 0.261 0.373 0.408 0.498 0.545
As 0.049 0.052 0.074 0.081 0.099 0.108
Se 0.114 0.119 0.171 0.187 0.227 0.249
Sr 0.007 0.007 0.010 0.011 0.014 0.015
Zr <0.000 <0.000 <0.000 <0.000 <0.000 <0.000
Mo 0.141 0.148 0.211 0.231 0.281 0.308
Ag <0.000 <0.000 <0.000 <0.000 <0.000 <0.000
Cd 0.001 0.001 0.002 0.002 0.002 0.002
Sn <0.000 <0.000 <0.000 <0.000 <0.000 <0.000
Sb <0.000 <0.000 0.001 0.001 0.001 0.001
Ba 0.004 0.004 0.006 0.007 0.008 0.009
La 0.108 0.113 0.161 0.177 0.215 0.235
Hg 0.001 0.002 0.002 0.002 0.003 0.003
Pb <0.000 <0.000 0.001 0.001 0.001 0.001

Scenario 1 = 50% oral nutrition + 50% enteral nutrition formula, Scenario 2 =

25% oral nutrition + 75% enteral nutrition formula and Scenario 3 = 100%
enteral nutrition formula.
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for Research on Cancer, 2024). The Codex Alimentarius determined to
be PTDI 0.57 μg/kg bw/day for inorganic mercury (The Codex Ali-
mentarius, 2011), and European Food Safety Authority determined to be
0.18 μg/kg bw/day for methylmercury (EFSA Panel on Contaminants in
the Food Chain, 2012).

The Codex Alimentarius concluded that it is not possible to establish
a safe intake limit for Pb exposure (The Codex Alimentarius, 2011). It
has been reported that Pb can cause various diseases in the nervous,
cardiovascular, immune, and reproductive systems and organs, such as
bone, lungs, kidneys and liver (European Food Safety Authority, 2010;
Engwa et al., 2019; Rahman and Singh, 2019). The International Agency
for Research on Cancer has classified Pb, inorganic Pb and organic Pb
compounds as Group 2B (Possibly carcinogenic to humans), Group 2A
(Probably carcinogenic to humans), and Group 3 (Not classifiable as to
its carcinogenicity to humans), respectively (International Agency for
Research on Cancer, 2024).

The higher the concentration of the metal detected in ENFs, the
higher the exposure level of that metal. Since the daily energy require-
ment of male individuals is higher than female individuals, the metal
exposure level resulting from ENF consumption is also higher. Maziero
and Viana (2022) reported that ENFs have microelement concentrations
exceeding the RDI (Recommended daily intake) and that these elements
are of concern in terms of possible toxic effects due to accumulation of

these elements in the body.

3.2.2. Non-carcinogenic risk assessment
THQ values of each metal were calculated according to metal

exposure levels resulting from ENF consumption (Table 4).
THQ values calculated for each metal in three different scenarios in

males and females were lower than the reference value of 1. When the
data were analyzed for each metal individually, no alarming findings
were found in terms of non-carcinogenic health risks. The ranking of the
metals according to THQ values was the same for both male and female
individuals and also for three different scenarios. Accordingly, the
ranking of metals according to THQ values was Cu > Zn > Fe > Mo >

Mn> Cr> Se> La> Co> As> V> Sr> Ni> Ba>Hg> Cd> Li> Pb>

Sb > Be > Ag > Zr––Sn. Menezes et al. (2024) explained that the THQ
value of three out of nine heavymetals (Pb, Mn and Cr) analyzed in ENFs
exceeded 1 in two samples.

Individuals consuming ENFs are exposed not only to one metal but to
many metals at the same time. Therefore, HI values were also calculated
in the study to evaluate the cumulative effect of all metals (Fig. 1).

The HI levels caused by the total exposure of metals from ENF con-
sumption of both male and female individuals are higher than the
reference value of 1 in three different scenarios. Therefore, the cumu-
lative effect of all metals indicates the presence of some potential non-
carcinogenic health risks. The top five metals with the highest contri-
bution to HI levels are Cu, Zn, Fe, Mo and Mn, respectively. The total
contribution of these five metals to HI levels is approximately 67% and
the total contribution of the other 18 metals is approximately 33%
(Fig. 2).

Since the daily energy requirement of males is higher than females,
they consume higher levels of ENF. This situation causes male in-
dividuals to have higher HI levels than females. There is no study ana-
lysing the HI level of ENFs in the literature, therefore, the HI values
determined in this study were compared with some foods frequently
consumed in daily life.

In a study conducted in Türkiye, Basaran et al. (2023) calculated the
HI value as 0.81 for the metal (Al, Cr, Mn, Co, Ni, Cu, As, Cd, Hg and Pb)
exposure level resulting from the consumption of normally brewed black
tea by the general population (>15-year-old). In a recent study con-
ducted in Iraq, the HI value calculated according to metal (As, Cd, Cu,
Cr, Pb, Mn, Zn and Fe) exposure levels from tea and coffee consumption
was less than 1 and the products were safe in terms of non-carcinogenic
health (Ali, 2024). Dippong and Resz (2024) reported that the HI value
for the metal (As, Cd, Mn and Pb) exposure level resulting from the
consumption of drinking water in Romania was less than 1.

Fig. 1. HI levels.

Fig. 2. Contribution rates of metals to HI levels.
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4. Conclusion

Considering the potential health risks, metal exposure is recognised
as a global public health problem. ENFs are medical foods used for the
treatment and prevention of malnutrition, supporting the patient’s
healing process and many other purposes. In this study, metal levels of
some ENFs offered for sale in Türkiye were analyzed and evaluated in
terms of health risks. It was determined that ENFs contain some metals
known to have toxic effects at different levels. It was found that patients
fed with ENFs received insufficient amounts of some microelements
necessary for human metabolism and excessive amounts of others. The
samples analyzed were evaluated as safe according to THQ values. The
average HI level indicates the presence of some health risks in ENFs. All
this information raises some health concerns about ENFs. The presence
of potential metal contamination from raw materials, water and
machinery-equipment used in the production of ENFs suggests that the
production processes of ENFs should be reviewed. When this study and
other studies in the literature are evaluated together, new and
comprehensive studies on metal levels and potential health risks of ENFs
should be conducted.

ENFs included in this study may differ from other similar products in
terms of formulation and production methods. Therefore, the metal
levels detected in ENFs in this study cannot be generalised to all ENFs on
the market. In addition, many factors are considered when adminis-
tering ENFs to patients. It should be noted that this may directly affect
metal exposure and associated health risks resulting from ENF
consumption.
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