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The present study focuses on themodeling and analyzing the nonlinear vibration
patterns and parametric excitation of embedded Euler–Bernoulli nanobeams
subjected to thermo-magneto-mechanical loads. The Euler–Bernoulli nanobeam
is developed with external parametric excitation. The governing equation of
motion is derived by utilizing nonlocal continuum theory and nonlinear von
Karman beam theory. Subsequently, the homotopy perturbation technique is
employed to determine the vibration frequencies. Finally, the modulation equa-
tion of Euler–Bernoulli nanobeams is derived for simply supported boundary
condition. In order to validate our findings, we conduct a comparative analysis
against existing literature, thereby underscoring the effectiveness and robust-
ness of our proposed methodology. The influence of stress, magnetic potential,
temperature, damping coefficient, Winkler coefficient, and nonlocal parame-
ters are tested numerically on nonlinear frequency-amplitude and parametric
excitation–amplitude responses. The numerical examples indicate the signifi-
cant impact of physical variables on the nonlinear frequency and parametric
excitation. The primary objective of this study is to investigate the effects of
external physical variables on the dynamic behavior of nanobeams, particularly
in nonlinear regimes. This study provides insights into the design and control
of nanostructures under complex load conditions, contributing to developing
advanced materials and nanosystems.

1 INTRODUCTION

The captivating electromechanical properties of carbon nanostructures, such as carbon nanotubes and nanobeams, have
drawn the interest of numerous researchers and scholars in the fields of advanced materials and the design process in
engineering. These nanostructures have found application in a variety of electromechanical devices, including translu-
cency of light [1–3], vibratory systems [4–7], gas atom diagnosis [8], storage units [9], and amalgamated substances [10].
Nevertheless, even though the importance of small-scale effects on the characteristics and properties of nanostructures
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is recognized, more than classical plate theory (CLPT) is needed in assessing the size effect in these structures [11]. As
a result, the nonlocal elasticity theory, introduced by Eringen [12], has been widely adopted to examine the size effect
of nanostructures. Alongside implementing nonlocal elasticity theory, researchers have conducted numerous theoretical
investigations [13–24] and made significant advancements. Presently, the majority of research on micro/nano beams has
been directed towards their nonlinear properties. Notably, the nonlinear or high-amplitude vibration of beams, whether
nano ormicro, subjected to significant displacements, holds a crucial position in engineering literature and investigations.
Several notable works have contributed to this field: Simsek [25, 26] explored the nonlinear vibration of nanobeams using
nonlocal elasticity and strain gradient theories, revealing the impact of small-scale effects regarding the nonlinear fre-
quency response. Nazemnezhad and Hosseini-Hashemi [27] examined the nonlinear vibration behavior of functionally
graded (FG) nanobeams under different boundary conditions, emphasizing the influence of the gradient index on non-
linear vibration characteristics. Additionally, Nourbakhsh et al. [28] utilized von Karman theory to analyze the effect of
nonlinearity on the nonlinear frequency response of microbeams. Oskouie et al. [29] presented the nonlinear frequency
response of viscoelastic Euler–Bernoulli nanobeams, emphasizing the impact of viscoelastic properties on nonlinear vibra-
tion characteristics. Meanwhile, Ghadiri et al. [30] utilized the multiple time scales method to study the nonlinear forced
vibration of nanobeams experiencing a moving concentrated load supported by a viscoelastic foundation. He [31] inves-
tigated a coupling method utilizing both homotopy perturbation techniques (HPT) for analyzing nonlinear problems.
Additionally, He [32] provided a new interpretation of the HPT in an addendum. Eltaher et al. [33] examined the coupling
effects of nonlocal and surface energy on the vibration analysis of nanobeams. Reddy [34] discussed nonlocal theories
about beams’ bending, buckling, and vibration. Aydogdu [35] investigated a comprehensive nonlocal beam theory and its
application to analyze nanobeams’ bending, buckling, and vibration. More recently, recognizing the importance of para-
metric excitation in electromechanical systems, researchers have investigated its impact on energy harvesting systems
[36–38], using a Duffing oscillator to simulate the performance of energy harvesters. Additionally, researchers utilized
parametric excitation to study tapered-composite plates’ nonlinear vibration [39].Moreover,Wang [40] analyzed the effect
of van der Waals interaction on the instability of double-walled nanobeams subjected to parametric excitation. Similarly,
Krylov et al. [41] discussed the pull-in instability of micro devices under parametric excitation, employing Mathieu and
Hill’s equations. Yan et al. [42] offered valuable insights into the behavior of Timoshenko beams subjected to parametric
and external excitations.Meanwhile, Eringen [43, 44] examined the theory of nonlocal polar elastic continua, investigating
the differential equations governing nonlocal elasticity and exploring solutions related to screw dislocation and surface
waves. Reddy [45, 46] contributed to the field by investigating continuummechanics and delving into nonlocal nonlinear
formulations for the bending of beams and plates, encompassing both classical and shear deformation theories. Emam [47]
examined the static and dynamic analysis of post-buckling in geometrically imperfect composite beams, whereas Emam
and Nayfeh [48] concentrated on the post-buckling behavior and free vibrations of composite beams. Murmu et al. [49]
investigated the influence of in-planemagnetic fields on the transverse vibration of single-layer graphene sheets embedded
within a material, employing an equivalent nonlocal elasticity approach. Kitipornchai et al. [50] presented a continuum
model for analyzing the vibration characteristics of multilayered graphene sheets. Nayfeh and Mook [51] studied nonlin-
ear oscillations, while Nazemnezhad and Hosseini-Hashemi [27] concentrated on nonlocal nonlinear free vibration of FG
nanobeams. Nazemnezhad et al. [52, 53] introduced a semi-analytical method to address the nonlinear dynamic response
of S–S and C–C beams under large vibration amplitudes, encompassing a comprehensive theory and applying a single-
mode approach to analyze free and forced vibration and further expanded their study to include a multimode approach to
steady-state forced periodic response. Azrar et al. [54, 55] examine the dynamic stability and vibrations of a bogie system
on a flexible track and the stability of parametric vibrations in a cross-ply laminated composite plate. Characteristics and
behaviors of various nanobeam configurations under different environmental and boundary conditions were investigated
by refs. [56–64]. A literature review suggests that the nonlinear vibration and parametric excitation of magneto-thermo-
elastic embedded nanobeams have yet to be extensively explored. This research thoroughly investigates these aspects by
examining the nonlinear vibration behaviors and parametric excitation effects on Euler–Bernoulli nanobeams embedded
in a medium, under thermo-magneto-mechanical loads and external parametric excitation. Initially, a simplified model
of the nanobeam is developed, followed by the application of an external axial force to induce parametric excitation. The
study then derives the governing nonlinear differential equation of motion using nonlocal continuum theory and non-
linear von Karman beam theory, which is solved using the HPT. The modulation equation and dynamic instability of
the Euler–Bernoulli nanobeam are derived, allowing for an analysis of both trivial and nontrivial steady-state solutions.
Finally, the plots are given with physical explanations for stress, magnetic potential, temperature, damping coefficient,
Winkler coefficient, and nonlocal parameters on nonlinear frequency-amplitude and parametric excitation–amplitude
responses.
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F IGURE 1 Geometry of the problem.

2 FORMULATING THE PROBLEM

Figure 1 illustrates the schematic of a nanobeam embedded in a visco-Pasternak foundation, subjected to an axial force (F)
along the x-axis with a height h and length L. The axial force is represented as a function undergoing harmonic excitation
with frequency (Ω̄). Moreover, the vertical displacement of the nanobeam is indicated by w along the z-axis.

2.1 Constitutive relations

By Eringen’s nonlocal elasticity theory [11, 12, 43, 44], the stress experienced at a reference point X is postulated to be
contingent upon the strain field throughout the body at each pointX’. The nonlocal stress tensor 𝜎 at point𝑋 is formulated
as follows:

𝜎 = ∫
𝑉

𝐾
(||𝑋′ − 𝑋|| , 𝜏)𝜎′(𝑋′

)𝑑𝑋′ (1)

Here, 𝜎′ denotes the classical stress tensor and 𝐾(|𝑋′ − 𝑋|) represents the Kernel function, which signifies the non-
local modulus. Eringen [12, 44] illustrates that it is feasible to express the integral constitutive relation in an equivalent
differential form as: (

1 − (𝑒0𝑎)
2
∇2

)
𝜎 = 𝜎′ (2)

∇2 =
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
represents the Laplacian operator, (𝑒0𝑎) introduces the nonlocal parameter, 𝑒0 is a material-specific

constant, and 𝑎 is the internal characteristic length. Determining the value of 𝑒0 typically involves experimental methods
or matching the dispersion relation of plane waves with those of atomic lattice dynamics. Subsequently, the nonlocal
constitutive relation for the Euler–Bernoulli nanobeam can be expressed as:

𝜎𝑥𝑥 − (𝑒0𝑎)
2 𝜕2𝜎𝑥𝑥
𝜕𝑥2

= 𝐸𝜀𝑥𝑥 (3)

Here, 𝜎𝑥𝑥, 𝜀𝑥𝑥 denote the normal stress and strain, respectively, while E represents Young’s modulus. Following the
Euler-Bernoulli beam model, the axial force and the resultant bending moment can be formulated as

{N,M} = ∫
𝐴

𝜎𝑥 (1, 𝑧) 𝑑𝐴 (4)

Here, z represents the transverse coordinate in the deflection direction, andA denotes the area of the cross-section of the
nanobeam. Utilizing classical beam theory as outlined by Reddy [45, 46], the displacements can be expressed as follows:

𝑢1 (𝑥, 𝑧, 𝑡) = 𝑢 (𝑥, 𝑡) − 𝑧
𝜕𝑤

𝜕𝑥
, 𝑢2 = 0, 𝑢3 (𝑥, 𝑧, 𝑡) = 𝑤 (𝑥, 𝑡) (5)
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In Equation (5), 𝑢 and𝑤 represent the axial and transverse displacements of the nanobeam along the 𝑥 and 𝑧 directions,
respectively. Now, considering the nonlinear von Karman strain, we can express it as:

𝜀 = 𝜀0 + 𝑧𝑘 (6)

where 𝜀 is the strain vector, and 𝜀0 and 𝑘 are the nonlinear strain vector and the change in the curvature vector, respectively,
defined as follows:

𝜀0 =
𝜕𝑢0
𝜕𝑥

+
1

2

(
𝜕𝑤

𝜕𝑥

)2

, 𝑘 = −
𝜕2𝑤

𝜕𝑥2
(7)

In this context,𝑢0 represents the initial axial displacement in the strain expression,which captures the axial deformation
before accounting for the additional effects due to transverse displacements and curvature. From Equations (3)–(7), the
axial load and the bending moment as follows:(

1 − (𝑒0𝑎)
2
∇2

)
𝑁 = 𝐸𝐴𝜀0

(
1 − (𝑒0𝑎)

2
∇2

)
𝑀 = 𝐸𝐼𝑘 (8)

where, 𝐼 = ∫𝐴 𝑧2𝑑𝐴 represents themoment of inertia. Therefore, the equation of motion can be expressed as refs. [47, 48]:

𝐸𝐼
𝜕4𝑤

𝜕𝑥4
−

𝜕

𝜕𝑥

(
𝑁
𝜕𝑤

𝜕𝑥

)
+ (𝑒0𝑎)

2 𝜕3

𝜕𝑥3

(
𝑁
𝜕𝑤

𝜕𝑥

)
+ 𝜌𝐴

𝜕2

𝜕𝑡2

[
𝑤 − (𝑒0𝑎)

2 𝜕2𝑤

𝜕𝑥2

]
= 𝑓 − (𝑒0𝑎)

2 𝜕
2𝑓

𝜕𝑥2
(9)

The axial normal force N can be determined as follows:

𝑁 = 𝑀𝑥 + 𝑇𝑥 + 𝑁𝑥 + 𝐹𝑐𝑜𝑠Ω𝑡 −

[
𝐸𝐴

2𝐿

]
∫

𝐿

0

(
𝜕𝑤

𝜕𝑥

)2

𝑑𝑥 (10)

In Equation (10)𝑀𝑥, 𝑇𝑥,𝑁𝑥 represents a uniaxial magnetic field, thermal load caused by temperature change and in-
plane load caused by initial stress, respectively. Additionally, the term of 𝐹𝑐𝑜𝑠Ω𝑡 is also the axial force capable of inducing
parametric excitation, and we can define the parameters of the axial normal force as follows:

𝑀𝑥 = 𝜂𝐻2
𝑥
𝜕2𝑤

𝜕𝑥2
, 𝑇𝑥 = 𝛼𝐸𝐴𝑇, 𝑁𝑥 = 𝜉𝜎0 (11)

Here, 𝐻𝑥, 𝜂 represents the in-plane uniaxial magnetic field and the magnetic field permeability, respectively. Specif-
ically, 𝑀𝑥 explains the Lorentz force along the x-axis [49]. Regarding 𝑇𝑥, 𝛼, A, and T denote the coefficient of thermal
expansion, the cross-sectional area and the difference between the temperature and its initial reference temperature,
respectively. Moreover, 𝜉 and 𝜎0 are the compression ratio and the initial stress, respectively. In this study, it is assumed
that 𝜉 = 1 and initial stress is along the 𝑥-axis direction. Additionally, in Equation (9), f is defined as follows:

𝑓 = 𝐾𝑤 𝑤 + 𝑐𝑑
𝜕𝑤

𝜕𝑡
(12)

where, 𝑘𝑤 and 𝑐𝑑 represent the linear coefficient of Winkler and damper modulus parameter, respectively. The Winkler
type foundation can be characterized based on the model from reference [50]. Finally, to obtain the equation of motion,
we substitute Equations (10)–(12) into Equation (9) as follows:

−𝐸𝐼
𝜕4𝑤

𝜕𝑥4
−

{
𝑀𝑥 + 𝑇𝑥 + 𝑁𝑥 + 𝐹𝑐𝑜𝑠Ω𝑡 −

[
𝐸𝐴

2𝐿

]
∫

𝐿

0

(
𝜕𝑤

𝜕𝑥

)2

𝑑𝑥

}
𝜕2𝑤

𝜕𝑥2
+ 𝑐𝑑

𝜕𝑤

𝜕𝑡
+ 𝐾𝑤𝑤

+ (𝑒0𝑎)
2 𝜕4𝑤

𝜕𝑥4

{
𝑀𝑥 + 𝑇𝑥 + 𝑁𝑥 + 𝐹𝑐𝑜𝑠Ω𝑡 −

[
𝐸𝐴

2𝐿

]
∫

𝐿

0

(
𝜕𝑤

𝜕𝑥

)2

𝑑𝑥

}

− (𝑒0𝑎)
2
𝐾𝑤

𝜕2𝑤

𝜕𝑥2
− (𝑒0𝑎)

2
𝑐𝑑

𝜕3𝑤

𝜕𝑡𝜕𝑥2
= 𝜌𝐴

[
𝜕2𝑤

𝜕𝑡2
− (𝑒0𝑎)

2 𝜕4𝑤

𝜕𝑡2𝜕𝑥2

]
(13)
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To facilitate a good comparison between results, nondimensional parameters can be articulated as follows:

𝑋 =
𝑥

𝐿
, 𝑤0 =

𝑊

𝐿
, 𝛾 =

𝑒0𝑎

𝐿
, 𝐾𝑤 =

𝐾𝑤𝐿
4

𝐸𝐼
, 𝑇𝑥 =

𝑇𝑥𝐿
2

𝐸𝐼
, 𝑁𝑥 =

𝑁𝑥𝐿
2

𝐸𝐼
, 𝑀𝑥 =

𝑀𝑥𝐿
2

𝐸𝐼
, 𝑐𝑑 = 𝑐𝑑

√
𝐿4

𝐸𝐼
, Ω = Ω

√
𝜌𝐴𝐿4

𝐸𝐼

(14)

By incorporating these nondimensional parameters and substituting them into Equation (13), the governing equation
of nanobeam can be derived as follows:

𝜕4𝑤0
𝜕𝑋4

−

{
𝑀𝑥 + 𝑇𝑥 + 𝑁𝑥 + 𝐹𝑐𝑜𝑠Ω𝑡 −

[
𝐸𝐴

2𝐿

]
∫

𝐿

0

(
𝜕𝑤0
𝜕𝑥

)2

𝑑𝑥%

}
𝜕2𝑤0
𝜕𝑋2

+ 𝑐𝑑
𝜕𝑤0
𝜕𝑡

+ 𝐾𝑤𝑤0

+ (𝛾)
2 𝜕

4𝑤0
𝜕𝑋4

{
𝑀𝑥 + 𝑇𝑥 + 𝑁𝑥 + 𝐹𝑐𝑜𝑠Ω𝑡 −

[
𝐸𝐴

2𝐿

]
∫

𝐿

0

(
𝜕𝑤0
𝜕𝑥

)2

𝑑𝑥%

}
(𝛾)

2
𝐾𝑤

𝜕2𝑤0
𝜕𝑋2

−%(𝛾)
2
𝑐𝑑%

𝜕3𝑤0
𝜕𝑡𝜕𝑋2

=

(
𝜕2𝑤0
𝜕𝑡2

− (𝛾)
2 𝜕4𝑤0
𝜕𝑡2𝜕𝑋2

)
(15)

3 HPT

The HPT offers an analytical approximate solution for problems that exhibit continuity within the solution domain. This
technique involves considering a differential equation.

𝐿𝑦 + 𝑁𝑦 = 𝑓 (𝑥) , 𝑥 𝜖 Ω (16)

Under the boundary conditions, 𝐵 (𝑦, 𝜕𝑦
𝜕𝑥
) = 0, 𝑥 ∈ 𝛤. Here, 𝐿 is the linear operator, 𝑁 is the nonlinear operator, 𝐵 is

the boundary operator, 𝛤 represents the boundary of the domain 𝛺, and (𝑥) is the known analytic function. HPT defines
a Homotopy as 𝜐 (𝑥, 𝑝) = Ω × [0, 1] → 𝑅 that satisfies the following inequalities:

𝐻 (𝜐, 𝑝) = (1 − 𝑝) [𝐿 (𝑣) − 𝐿 (𝑦0)] + 𝑝 [𝐿 (𝑣) + 𝑁 (𝑣) − 𝑓 (𝑥)] = 0 (17)

or

𝐻 (𝜐, 𝑝) = 𝐿 (𝑣) − 𝐿 (𝑦0) + 𝑝𝐿 (𝑦0) + 𝑝 [𝑁 (𝑣) − 𝑓 (𝑥)] = 0 (18)

where 𝑥 𝜖 Ω and 𝑝 𝜖 [0, 1], and 𝑦0 is an initial approximation which satisfies the boundary condition. Now from
Equations (17) to (18) one can obtain:

𝐻 (𝜐, 0) = 𝐿 (𝑣) − 𝐿 (𝑦0) = 0,

𝐻 (𝜐, 1) = 𝐿 (𝑣) + 𝑁 (𝑣) − 𝑓 (𝑥) = 0.
(19)

In topology, 𝐿(𝑣) − 𝐿(𝑦0) and 𝐿(𝑣) + 𝑁(𝑣) − 𝑓(𝑥) is explore the homotopic.
Consider the power series solution of (17) and (18) as follows:

𝜐 = 𝜐0 + 𝑝𝜐1 + 𝑝2𝜐2 + 𝑝3𝜐3 +⋯ (20)

Hence, the approximate solution of (17) can be obtained:

y = lim
𝑝→1

𝑣 = 𝑣 + 𝜐0 + 𝜐1 + 𝜐2 +⋯ (21)
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3.1 Implementation of boundary conditions in HPT

3.1.1 Simply supported-simply supported (S–S)

𝑤0 =
𝑑2𝑤0
𝑑𝑥2

=
𝑑4𝑤0
𝑑𝑥4

= 0 at 𝑥 = 0,

𝑤0 =
𝑑2𝑤0
𝑑𝑥2

=
𝑑4𝑤0
𝑑𝑥4

= 0 at 𝑥 = 1

(22)

So, after using the above boundary conditions in the 𝑛𝑡ℎ order approximate solution the systemof homogenous equation
can be written as,

𝑀(𝜆)[𝐴 𝐵 𝐶 𝐷]
𝑇
= 0 (23)

For a nontrivial solution, the determinant of the coefficient matrix must be zero. The determinant of the coefficient
matrix yields a characteristic equation in terms of 𝜆. Positive real roots of this equation are the normalized free vibration
frequencies for the case considered.

3.2 HPT formulation for present problem

Consider the nondimensional differential Equation (15); this equation can be reformulated as:

𝜕4𝑤0
𝜕𝑋4

=
𝑁

𝛾2𝑁 − 1

𝜕2𝑤0
𝜕𝑋2

+
1

𝛾2𝑁 − 1

𝜕2𝑤0
𝜕𝑡2

−
𝛾2

𝛾2𝑁 − 1

𝜕4𝑤0
𝜕𝑡2𝜕𝑋2

− 𝑐𝑑
𝜕𝑤0
𝜕𝑡

− 𝐾𝑤𝑤0 (24)

The homotopy can be applied as ref. [59]:

𝜕4𝑤0
𝜕𝑋4

= 𝑝

[
𝑁

𝛾2𝑁 − 1

𝜕2𝑤0
𝜕𝑋2

+
1

𝛾2𝑁 − 1

𝜕2𝑤0
𝜕𝑡2

−
𝛾2

𝛾2𝑁 − 1

𝜕4𝑤0
𝜕𝑡2𝜕𝑋2

− 𝑐𝑑
𝜕𝑤0
𝜕𝑡

− 𝐾𝑤𝑤0

]
(25)

where 𝑝 is the homotopy parameter, 𝑝 ∈ [0, 1]. It is obvious that when 𝑝 = 0, the equation becomes homogenous that is,

𝜕4𝑤

𝜕𝑋4
= 0 (26)

The initial approximation 𝑊0 is obtained by solving the homogenous Equation (26), hence

𝑤0 = 𝐴𝑥4 + 𝐵𝑥3 + 𝐶𝑥2 + 𝐷 (27)

The basic assumption of the HPT is that the solution of Equation (25) can be written as power series in 𝑝

𝑤𝑎𝑝𝑟𝑟𝑜𝑥 = 𝑤0 + 𝑝𝑤1 + 𝑝2𝑤2 +⋯ (28)

By substituting the value of 𝑤𝑎𝑝𝑟𝑟𝑜𝑥 from Equation (28) in Equation (25)

𝜕4

𝜕𝑋4

[
𝑤0 + 𝑝𝑤1 + 𝑝2𝑤2 +⋯

]
= 𝑝

[
𝑁

𝛾2𝑁 − 1

𝜕2

𝜕𝑋2

[
𝑤0 + 𝑝𝑤1 + 𝑝2𝑤2 +⋯

]
+

1

𝛾2𝑁 − 1

𝜕2

𝜕𝑡2

[
𝑤0 + 𝑝𝑤1 + 𝑝2𝑤2 +⋯

]
−

𝛾2

𝛾2𝑁 − 1

𝜕4

𝜕𝑡2𝜕𝑋2

[
𝑤0 + 𝑝𝑤1 + 𝑝2𝑤2 +⋯

]
−𝑐𝑑

𝜕

𝜕𝑡

[
𝑤0 + 𝑝𝑤1 + 𝑝2𝑤2 +⋯

]
− 𝑘𝑤

[
𝑤0 + 𝑝𝑤1 + 𝑝2𝑤2 +⋯

]]
(29)
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SELVAMANI et al. 7 of 16

TABLE 1 Comparison of amplitude ratio value with literature data.

Amplitude ratio Ref. [27] Ref. [52] Present work
1 1.0937 1.0892 1.0758
2 1.3750 1.3178 1.3690
3 1.8438 1.6257 1.8401

Now comparing the coefficients of 𝑝 in Equation (29) the recurrence relation can be obtained as

𝜕4𝑤𝑖
𝜕𝑋4

=

[
𝑁

𝛾2𝑁 − 1

𝜕2𝑤𝑖−1
𝜕𝑋2

+
1

𝛾2𝑁 − 1

𝜕2𝑤𝑖−1
𝜕𝑡2

−
𝛾2

𝛾2𝑁 − 1

𝜕4𝑤𝑖−1
𝜕𝑡2𝜕𝑋2

− 𝑐𝑑
𝜕𝑤𝑖−1
𝜕𝑡

− 𝐾𝑤𝑤𝑖−1

]
(30)

where 𝑖 ≥ 1 and initial guess 𝑤0 is given in Equation (27).
The solution to Equation (24) can be approximated as per ref. [31].

𝑤0 = lim
𝑝→1

𝑤𝑎𝑝𝑟𝑟𝑜𝑥 = 𝑤0 + 𝑤1 + 𝑤2 +⋯ (31)

The convergence of the series in Equation (31) is proved in refs. [31, 32].

4 NUMERICAL RESULTS

The frequency ratio (𝜔𝑁𝐿, 𝜔𝐿) at different maximum amplitude-to-radius (𝜔𝑚𝑎𝑥∕𝑟) ratios of isotropic beam with simply
supported boundary conditions.
In this section, numerical results are examined based on applying both thermo-magneto-mechanical loading and exter-

nal parametric excitation. The focus lies in understanding the impact of parametric excitation by examining instability
regions and bifurcation points. Key parameters are defined across various regions of the graph to aid comprehension. This
helps to elucidate the concepts and enhance clarity. The system’s material properties, including those of the nanobeam
and elastic matrix, consist of the following parameters: Young’s modulus 𝐸 = 1100 Gpa, mass density ρ = 1.3 g/cm3, Win-
kler coefficient 𝑘𝑤= 0.5 and a viscoelastic damping coefficient of 3 × 10−7 Pa.s. Additionally, the nanobeam diameter is
d = 3 nm, and the small-scale parameter is considered smaller than 2 nm, according to reference [34].
Firstly, Table 1 is presented to verify the formulation’s accuracy. The numerical results of the present study reported in

the table are compared with other available research and literature [27, 52] so that they are partly similar and close to our
research. Table 1 shows the nonlinear frequency ratio (𝜔𝑁𝐿, 𝜔𝐿) for amplitude-to-radius (𝜔𝑚𝑎𝑥∕𝑟) ratio of isotropic beam
with simply supported boundary conditions. The nonlinear frequency ratio is tabled for different amplitudes ratio [1, 2, 5].
Due to using a similar analytical approach, the results presented in ref. [27] show more accuracy than the present work’s
numerical results.
Figure 2 illustrates the frequency atwhich parametric excitation induces nonlinear behavior, representing the frequency

at which the system exhibits nonlinear behavior, such as large amplitude vibrations. The relationship between this nonlin-
ear frequency and the amplitude of the parametric excitation varies depending on the nondimensional damping coefficient
𝑐𝑑. Higher oscillation amplitudes are achievable when 𝑐𝑑 is low, indicating less damping in the system. Consequently, the
nonlinear frequency tends to be higher in such cases. This implies that the nonlinear frequency increases with a rise in the
parametric excitation amplitude, producing a more intense nonlinear response. In summary, lower values of 𝑐𝑑 cause the
nonlinear frequency to decrease as the amplitude increases, whereas lower values of the nondimensional damping coeffi-
cient cause the nonlinear frequency to increase with increasing amplitude of parametric stimulation. Figure 3 displays the
relationship between the force and nonlinear frequency amplitude concerning the nondimensional Winkler coefficient
𝑘𝑤. The graph illustrates that the force amplitude decreases as theWinkler coefficient increases. However, it is noteworthy
that the Winkler coefficient does not influence the occurrence of bifurcation points. In other words, while changes in 𝑘𝑤
affect the force amplitude, they do not impact the system’s bifurcation behavior. Figure 4 shows how the nonlinear fre-
quency varies with the magnitude of parametric excitation for a range of uniaxial magnetic field values. The force nonlin-
ear frequency of a system subjected to a uniaxialmagnetic field denotes the frequency at which the system’s response turns
nonlinear due to themagnetic field’s effect. The system’s response to themagnetic field may exhibit nonlinear behavior as
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8 of 16 SELVAMANI et al.

F IGURE 2 The effect of nonlinear frequency on the amplitude of parametric excitation for different values of damping coefficient (𝑐𝑑).

F IGURE 3 The effect of nonlinear frequency on the amplitude of parametric excitation for different values of Winkler coefficient (𝑘𝑤).

F IGURE 4 The effect of nonlinear frequency on the amplitude of parametric excitation for different values of uniaxial magnetic field
(𝐻𝑥).
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SELVAMANI et al. 9 of 16

F IGURE 5 The effect of nonlinear frequency on the amplitude of parametric excitation for different values of nonlocal parameter (𝛾).

F IGURE 6 The effect of nonlinear frequency on the amplitude of parametric excitation for different values of temperature (T).

the amplitude of parametric stimulation increases, resulting in changes in the nonlinear frequency. Illustrated in Figure 5
is the nonlocal parameter’s effect on the nonlinear frequency-response curves. It is clear from the graph that increasing the
nonlocal parameter reduces the hardening behavior while enhancing the bending stiffness. The relationship between the
parametric excitation amplitude and the force amplitude of the nonlinear frequency is shown for different temperatures
in Figure 6. Additionally, it is observed that an increase in the temperature gradient results in a higher amplitude at the
lower limit point bifurcation. Conversely, elevating the initial imperfection amplitude leads to greater response amplitude
at the higher limit point bifurcation. Figure 7 illustrates the impact of varying the parameter excitation on the ampli-
tude concerning theWinkler coefficient 𝑘𝑤. Notably, as the parameter excitation declines in the amplitude of theWinkler
coefficient and damps at some point (0.1–0.15). Nevertheless, amplitude 1 shows a growing trendwhile the parametric exci-
tation keeps increasing. Moreover, it is worth noting that the smallest amplitudes occur at a parametric excitation level of
𝑘𝑤 = 1.5. In Figure 8, the amplitude for a systemunder parametric excitation depends on both the force amplitude k and the
nondimensional damping coefficient 𝑐𝑑. Lower damping generally leads to larger amplitudes near resonance. In contrast,
higher damping suppresses oscillations and keeps the amplitude relatively low. Critical dampingminimizes the amplitude
of the system’s response. In Figure 9, the effect of changing the parametric excitation on the amplitude is demonstrated
concerning the uniaxial magnetic field 𝐻𝑥. Initially, as the parameter excitation declines in the amplitude and damps at
some point (0.1–0.15). However, the amplitude exhibits a rising trend as the parametric excitation increases. It is notewor-
thy that the smallest amplitudes are observed at a parametric excitation level of 𝐻𝑥 = 0.5. The relationship between the
parametric excitation and amplitude for various temperature levels is depicted in Figure 10. It was found that there was
a gradual decrease in temperature starting at around 1.0 and damping at some point (0.1–0.15). On the other hand, the
amplitude shows a rising trend while the parametric excitation keeps increasing. Notably that the smallest amplitudes
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10 of 16 SELVAMANI et al.

F IGURE 7 The effect of parametric excitation (k) on the amplitude of parametric excitation (a) for different values of Winkler
coefficient (𝑘𝑤).

F IGURE 8 The effect of parametric excitation (k) on the amplitude of parametric excitation (a) for different values of damping
coefficient (𝑐𝑑).

F IGURE 9 The effect of parametric excitation (k) on the amplitude of parametric excitation (a) for different values of uniaxial magnetic
field (𝐻𝑥).

are observed at a parametric excitation level of 𝑇 = 300. In Figure 11, the relationship between parametric excitation and
amplitude is illustrated across various values of the nondimensional nonlocal parameter 𝛾. A resonant behavior is evident
as the 𝛾 value gradually decreases, starting from approximately 1.0 and tapering off between 0.1 and 0.15. This resonance is
attributed to the combined effects of parametric excitation and amplitude on the system. Figures 12 and 13 show 3D surface
curves for the amplitude “a” to study the nonlinear vibration and parametric excitation of magneto-thermo elastic embed-
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SELVAMANI et al. 11 of 16

F IGURE 10 The effect of parametric excitation (k) on the amplitude of parametric excitation (a) for different values of temperature (T).

F IGURE 11 The effect of parametric excitation (k) on the amplitude of parametric excitation (a) for different values of nondimensional
nonlocal parameter (𝛾).

F IGURE 1 2 The effect of amplitude of parametric excitation in the context of nonlinear frequency and nonlocal parameter for the
values of k = 0.2.

ded nanobeam. These figures are significant to study the dependence of these physical fields on the horizontal component
of distance.Whenever nonlinear frequency and nonlocal parameters increase, the amplitudes oscillate for different values
of k (k = 0.2 and k = 0.4). Figures 14–16 reveal a consistent positive correlation between the variables 𝑥 and 𝑒0 with the
dependent variables 𝜎𝑥𝑥, 𝐻𝑥, and 𝜎. As 𝑥 and 𝑒0 increase, all three dependent variables tend to rise. Specifically, 𝜎𝑥𝑥 and
𝐻𝑥 show amoderate increase, while σ displays a broader range of variation, indicating its greater sensitivity to changes in𝑥
and 𝑒0.
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12 of 16 SELVAMANI et al.

F IGURE 13 The effect of amplitude of parametric excitation in the context of nonlinear frequency and nonlocal parameter for the value
of k = 0.4.

F IGURE 14 The effect of normal-stress (𝜎𝑥𝑥) with the distance (x) and nonlocal parameter (𝑒0).

F IGURE 15 The effect of uniaxial magnetic field (H𝑥) with the distance (x) and nonlocal parameter (𝑒0).
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SELVAMANI et al. 13 of 16

F IGURE 16 The effect of nonlinear frequency (𝜎) with the distance (x) and nonlocal parameter (𝑒0).

5 CONCLUSION

This research aims to examine the dynamic parametric excitation and nonlinear vibration behavior of Euler-Bernoulli
nanobeams under thermo-magneto-mechanical loading. Initially, a concise model of the Euler–Bernoulli nanobeam is
developed and subjected to parametric external excitation. Utilizing the nonlocal continuum theory and nonlinear von
Karman beam theory, the governing nonlinear differential equation of motion is derived. The partial differential equation
is then converted into an ordinary differential equation using the HPT. Next, the Euler-Bernoulli nanobeam modulation
equation is found. Special attention is given to the influence of parametric excitation, and bifurcation points are scrutinized
to delineate instability regions. Notably, it is observed that the damping coefficient, along with parametric excitation,
significantly affects the system stability and frequency responsiveness. Thermo-magneto-mechanical loads are found to
induce either growth or decay in the amplitude. The following is a list of the study’s other main results:

1. The damping coefficient significantly influences system stability, while factors such as the nonlocal parameter and
Winkler coefficient are less important.

2. The influence of parametric excitation induced by an external axial force on system stability is substantial.
3. Amplitude response is observed to vary as a function of the excitation frequency. For initial amplitudes of significant

magnitude, the response decays until reaching a steady-state solution.
4. An increase in force amplitude leads to a notable separation between stable and unstable curves, creating a gap between

them.
5. The numerical results serve as reference points for conducting further analyses of nanobeams, which serve as

fundamental components in nanoelectromechanical systems.
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