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ABSTRACT The traditional VonNeumann computing architecture, which necessitates data transfer between
external memory and the processor, incurs significant energy and time costs when running deep learning
(DL) and machine learning (ML) architectures. The primary issue with the energy and time efficiency of
this architecture stems from the frequent and intensive data transfers between memory and the processor.
Therefore, memristive synaptic devices are utilized to overcome this energy and time inefficiency while
performing cognitive tasks. The fundamental working principle of memristive devices is to reduce the
need for data transfer by combining memory and processing in the same location, thereby significantly
decreasing both energy consumption and the time required for operations. However, to achieve the desired
level of efficiency in terms of energy and time consumption from neuromorphic systems, the performance
of these systems needs to be further improved with respect to accuracy and test error rates for classification
applications. Achieving high accuracy performance in such deep learning or machine learning models
necessitates optimization processes not only at the hardware level but also at the algorithmic level. In this
context, this paper presents a comprehensive examination and comparison of the frequently used SGD and its
momentum variants for deep learning and machine learning applications in memristor-based neuromorphic
computing systems. The study thoroughly investigates the performance of criticalmetrics such as the learning
properties, energy efficiency, and accuracy rates of the nano-scale titanium dioxide (TiO2) based synaptic
device. The experimental results for the MNIST dataset showed AdaDelta 89.48%, AdaGrad 79.00%,
Adam 79.13%, AdaMax 79.68%, Momentum 88.55%, Nadam 81.20%, RMSprop 84.91% and SGD 89.47%
accuracy. The experimental results for the CIFAR dataset showed AdaDelta 90.51%, AdaGrad 82.08%,
Adam 83.10%, AdaMax 81.76%, Momentum 91.25%, Nadam 82.45%, RMSprop 88.11% and SGD 90.21%
accuracy.

INDEX TERMS Deep learning, machine learning, memristors, neuromorphic computing, optimization
algorithms, synapses.

I. INTRODUCTION
Today, machine learning and deep learning are rapidly
becoming widespread and finding various application
areas [1]. Thesemethods, which began in the academicworld,

The associate editor coordinating the review of this manuscript and

approving it for publication was Berdakh Abibullaev .

have quickly grown to become significant in both academic
and industrial applications. They are also indispensable
components of data science [2]. Thanks to advancements in
computer technologies, they have gained an important place
in artificial intelligence fields [3]. However, the traditional
Von-Neumann architecture falls short in methods inspired
by biological neural networks [4]. This inadequacy is due
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FIGURE 1. (a) and (b) Comparison between the von Neumann architecture and neuromorphic architecture. These two architectures fundamentally differ
in their operation, organization, programming, communication, and timing, as shown here.

to the fact that information processing structures are quite
different from biological neural systems. Fig. 1(a) shows
that in sequential processing, computation and memory are
separate, while Fig. 1(b) shows that in parallel processing,
computation and memory are integrated and processes
occur asynchronously. For example, while supercomput-
ers use 1 MW of power, the human brain consumes
only 10W [5]. Classical systems havemademachine learning
fundamental in many areas. Machine learning’s success
is driven by optimization techniques. These algorithms
learn parameters from data through optimization model [2].
Modern processors offer advanced learning capabilities [6].
However, traditional methods are energy-intensive and costly,
making hardware-based neural networks important [7].
Faster, more efficient optimization methods enable machine
learning on larger datasets [8]. These methods enhance
performance, leading to more accurate predictions and faster
processing.

In conclusion, machine learning and deep learning
algorithms have advanced significantly with increasing
processing power and datasets [9]. However, high computa-
tional power can create efficiency and performance issues.
To overcome these problems, hardware-based neuromorphic
architectures and memristive devices are needed [10].
Research has shown that memristive devices are efficient for
brain-based computing [11], [12], [13].

II. RELATED STUDIES
Information processing hardware is crucial for the impact
of AI in our daily lives. However, despite advancements,
the energy consumption of hardware running deep neural
networks remains much higher than that of the biological
brain [14], [15]. Perceptrons, being single-layer structures,
have limited functionality. To overcome this limitation,
multilayer perceptrons (MLPs) have been developed. As
shown in Figure 2(a),MLPs are feed-forward neural networks
that map input vectors to output vectors and are effective
for complex tasks requiring higher accuracy [16], [17].
Figure 2(b) shows the flow diagram of the MLP, which

is mathematically represented in Figure 2(a). In Figure 3,
the MLP shown in Figure 2(a) is presented as a physical
analogy with electrical circuit components. The input layer
processes the inputs received from the dataset, and these
signals pass through circuit elements such as resistors and
amplifiers via the hidden layers. The processed signals
that reach the output layer provide the final results. The
circuit elements undertake the tasks of signal processing
and transformation. These algorithms are inefficient with
the von Neumann architecture, which is not suitable for
parallelism and continuous information exchange [18], [19],
[20]. Hardware-based neural networks or neuromorphic
processors mimic neurons and enhance performance [21],
[22]. Neuromorphic systems process in artificial synapses,
where the signal transmission coefficient acts as the ‘‘weight’’
[23]. Fig. 4(a) shows a biological neuron, and Fig. 4(b)
illustrates an artificial neuron and their principles. In the
field of neuromorphic computing, the need for fast data
processing, parallel processing capacity, and energy-efficient
hardware has reached its peak. Considering this, a study
[24] proposed the use of Spiking Neural Networks (SNNs)
based on CMOS nanoscale memristive neuronal applications
to meet all computation and processing needs [25]. This
approach can enable neural networks to workmore efficiently
and similarly to the biological brain. Oh et al. designed
a compact and energy-efficient Mott activation neuron
using vanadium dioxide (VO2) [26]. This neuron has been
effectively integrated with a conductive bridge random access
memory (CBRAM) crossbar array. Another study illustrated
the on-site training of a five-layer convolutional neural
network utilizing a combination of transistors and memristor
arrays to adapt to the MNIST and CIFAR-10 datasets non-
ideal characteristics for classification [27]. Another study
[28] introduced a simple, single-layer, and nanoscale TiO2-
based artificial synaptic device aimed at increasing energy
efficiency and parallel processing capacity for neuromorphic
computing applications. Additionally, the principles of oper-
ation and performance analyses of optimization algorithms
in the deep learning and machine learning literature are
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FIGURE 2. (a) Mathematical model of MLP. (b) Illustration of flow diagram explaining MLP in detail.

FIGURE 3. Schematic representation of the Memristor-based implementation of the MLP.

thoroughly examined [29]. A survey of numerical opti-
mization algorithms within the scope of machine learning
applications is provided [30]. Similarly, a general summary
of gradient optimization algorithms is provided [31]. Another
study [32] achieved 73% accuracy in neuromorphic systems
using a Ag:a-Si material-based memristive synaptic device.
In another study [33], 84% accuracy was obtained in pattern
recognition tasks on the MNIST dataset using HfZrOx-based
synaptic devices. Another study [34] proposed a sign-based
Stochastic Gradient Descent (SGD) algorithm using a parallel
update approach to accelerate the learning process in synaptic
units. This study examines the use and performance analysis

of SGD and its variants in a neural network based on TiO2
synaptic devices. This performance analysis was simulated
with NeuroSim [35] and applied to neural network model
based on a nanoscale memristive artificial synaptic device
with some modifications.

AI chips are advanced silicon processors specifically
designed for machine learning tasks [36]. AI significantly
contributes to mitigating or eliminating risks to human
life across various industries [37]. As the amount of data
continues to grow exponentially, the demand for more
efficient systems to tackle complex computational and
mathematical challenges becomes increasingly clear. In
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FIGURE 4. (a) Biological Neuron-information flow through and (b) Neuron artificial neuron.

TABLE 1. Comparison of CMOS neurons with Memristor-based neurons.

response, leading technology companies have focused their
efforts on advancing AI chips and expanding their practical
applications.

Various studies have focused on the power usage issues of
CMOS neurons. Table 1 compares the power consumption
of CMOS and memristor-based neurons, highlighting their
energy efficiency performance.

III. CLASSIFICATION OF OPTIMIZATION ALGORITHMS
Optimization algorithms are classified based on objectives
such as accuracy, speed, and generalization performance [48].
Accuracy refers to the model’s ability to make correct
predictions; speed denotes the processing time; and general-
ization performance indicates the model’s adaptability to new
data. Generalization performance is critical in optimization
algorithms, and the ability to easily update parameters
makes these algorithms more practical. Additionally, energy
consumption performance on large datasets is an important
factor. Different components require various optimization
techniques and strategies. In this study, Gradient Descent
(GD) and its variations have been used in machine learning
and deep learning applications, and these algorithms are
briefly explained in the following sections. This study com-

pares eight optimizationmethods in the field of neuromorphic
computing using a TiO2 synaptic-based device.

A. GRADIENT DESCENT AND VARIANTS
Training artificial neural networks is an optimization process
aimed at determining the network parameters that minimize
the loss function. These learning models require large
datasets and numerous model parameters to be adjusted.
Finding the most suitable method for processing large
datasets presents a significant challenge. Gradient descent
is a crucial method for reducing loss functions by regularly
updating the model parameters in the opposite direction
of the gradient [48]. Various versions of gradient descent
offer different algorithmic strategies to address the challenges
encountered during the optimization process. There are also
many models used in machine learning. SGD [50] is a
model-based method that creates a model by optimising the
parameters and makes future predictions with this model. It
provides a fast and effective optimisation in larger data sets.
kNN [51], on the other hand, does not learn a model, but
makes predictions directly on the training data. It is a simple
and understandable method in itself, but its slowness in the
test phase and memory usage may be a problem in large
data sets. For example, kNN method was used in this study
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FIGURE 5. Schematic representation of biological and artificial synapses. Just like a biological synapse with neurotransmitters and receptors,
PRE and POST spikes are utilized here as well.

[49]. Therefore, SGD method is a more suitable model for
our study. Below is a summary of gradient descent and its
variations.

1) STOCHASTIC GRADIENT DESCENT (SGD)
SGD [52] has been frequently recommended for solving
machine learning and deep learning optimization problems
because it is simple, understandable, and effective in AI
models [53]. The mathematical equation for SGD is shown
in Equation 1.

θt+1 = θt − α∇Fi(θt) (1)

In Equation 1 above; θt is the weight vector at step t . α is
the learning rate, determining how much we will move at
each step. Fi(θt ) is the gradient vector, the gradient of the loss
function for the randomly selected subset i. In this equation,
a random subset of data is selected in every iteration, and the
gradient is computed for the examples in this subset. This
gradient is subtracted from the current value of the weight
vector to update the weight vector.

2) ADAM (ADAPTIVE MOMENT ESTIMATION)
Adam is a widely used optimization algorithm in machine
learning and deep learning. It determines adaptive learning
rates using estimates of the first and second moments of the
gradients. This algorithm combines the principles of both
Momentum and RMSprop optimization algorithms [54]. The
set of mathematical equations for the Adam optimization
algorithm is shown sequentially in Equations (2), (3), (4), (5),
and (6).

mt+1 = β1mt + (1 − β1)gt (2)

vt+1 = β2vt + (1 − β2)g2t (3)

m̂t+1 =
mt+1

1 − β t+1
2

(4)

v̂t+1 =
vt+1

1 − β t+1
2

(5)

θt+1 = θt − α
mt+1

√
v̂t+1+ ∈

(6)

The parameters in the mathematical equations for the Adam
optimizer are as follows: mt and vt denotes the estimates of
the first and second moments, respectively. gt is the gradient
vector. β1 and β2 are parameters. α is the learning rate. ∈

is a very small number used to prevent division by zero
errors. These equations update moment estimates and adjust
weights, allowing Adam to handle diverse problems and
automatically adjust the learning rate.

3) RMSPROP (ROOT MEAN SQUARE PROPAGATION)
RMSprop [55] is an algorithm that modifies AdaGrad.
RMSprop was developed to address the problem of diminish-
ing learning rates encountered in AdaGrad. This optimization
technique uses the running average of the squared gradients
to adaptively adjust the individual parameter learning rates.
The mathematical equation for the RMSprop optimization
algorithm is presented in Equation 7.

θt+1 = θt −
η

√
vt+ ∈

⊙ gt (7)

The parameters in themathematical equation of the RMSprop
optimization algorithm are as follows: θt : model parameters
at step t, gt : gradient at step t, η: learning rate, vt :
exponentially weighted moving average of the squared
gradients, ∈: a very small number to prevent division by zero
errors, and ⊙: element-wise multiplication. In this equation,
a separate learning rate is calculated for each parameter. The
running average of the squares of the old gradients is updated
with the square of the current gradient. This dynamically
adjusts the learning rates based on the magnitudes of the
gradients.
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FIGURE 6. Technological advancements and applications of TiO2-based Memristive devices.

4) ADAGRAD (ADAPTIVE GRADIENT ALGORITHM)
AdaGrad optimizes the learning rates of individual param-
eters based on their recent gradients [56]. Parameters with
large derivatives experience a rapid decrease in learning rate,
while those with small derivatives decrease less significantly.
This is done by using past squared values of the gradients.
It is particularly useful for sparse data or data with features on
different scales. The mathematical equation for the AdaGrad
optimization algorithm is shown in Equation 8.

θt+1,i = θt,i −
η

√
Gt,ii+ ∈

.gt,i (8)

The parameters in the mathematical equations for the
AdaGrad optimizer are as follows: θt+1,i: parameter i at step
t+1, θt,i: parameter i at step t, η: learning rate,Gt,ii: sum of the
squares of the previous gradients for parameter i at step t, gt,i:
gradient for parameter i at step t, and ∈: a very small number
to prevent division by zero errors. In the AdaGrad equation,
a separate learning rate is calculated for each parameter.
The sum of the squares of the past gradients is updated
with the current gradient. Thus, the learning rate increases
for infrequently updated parameters, while it decreases for
frequently updated ones.

5) ADADELTA
AdaDelta is an adaptation of AdaGrad developed to address
the problem of diminishing learning rates [57]. This
algorithm eliminates the need for continuously decreasing
learning rates and selecting a global learning rate. AdaDelta
computes the moving average of squared gradients by
utilizing a sliding window of past gradients, giving equal
importance to all previous gradients while maintaining a
constant window size. The mathematical equations for the
AdaDelta optimization algorithm are shown in Equations (9),

(10), (11), (12), and (13).

RMS[E
[
g2

]
]t =

√
E[g2]t+ ∈ (9)

RMS[1x2]t−1 =

√
E[1x2]t−1+ ∈ (10)

update = −
RMS[1x]t−1

RMS[E
[
g2

]
]t
gt (11)

1xt = ρ1xt−1 + (1 − ρ)update2 (12)

xt+1 = xt + update (13)

The parameters used in the mathematical equations of the
AdaDelta optimization algorithm and their functions and
meanings are as follows: E[g2]t : the anticipated value of the
gradient squared at step t, E[1x2]t−1: the expected value of
the square of the update amount at step t − 1, gt : the gradient
value at step t , ρ: a momentum term, ∈: a very small number
to prevent division by zero errors, xt : the parameter values
at step t , and 1x t : the update amounts at step t . In these
equations, an individual learning rate is computed for each
parameter. It is updated with the squares of the previous and
current gradients. The learning rate increases for infrequently
updated parameters, while it decreases for frequently updated
ones.

6) NADAM (NESTEROV-ACCELERATED ADAPTIVE MOMENT
ESTIMATION)
Nadam adds Nesterov momentum to Adam’s update rule.
This method calculates the gradient by considering a future
position in the direction of the momentum. Thus, it aims
to increase convergence speed and improve model quality.
The mathematical equations for the Nadam optimization
algorithm are shown in Equations (14), (15), (16), (17),
and (18).

mt = β1mt−1 + (1 − β1)gt (14)
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FIGURE 7. Nonlinear weight update for Ag:a-Si, (b) Nonlinear weight update for TiO2, (c) Schematic representation of the analog eNVM device
behavioral model with nonlinear weight updates labeled from −6 to 6.

vt = β2vt−1 + (1 − β2)g2t (15)

m̂t =
mt

1 − β t
2

(16)

v̂t =
vt

1 − β t
2

(17)

θt+1 = θt −
η

√
vt+ ∈

(β1m̂t + (1 − β1)gt (18)

The parameters in the mathematical equations of the Nadam
optimization algorithm are as follows: mt and vt : the
estimates of the first and second moments at step t ,
respectively. gt : the gradient vector. β1 and β2: exponential
decay rates for the moving averages. η: the learning rate.
m̂t and v̂t : the corrected estimates of the first and second
moments. ∈: a very small number used to prevent division
by zero errors. Nadam combines Nesterov Momentum and
the Adam algorithms to enhance the concept of previous
momentum, thereby reducing the risk of getting stuck in local
minima.

7) ADAMAX
AdaMax, developed as a variant of Adam, aims to improve
convergence stability by using the infinity norm [58]. In this
approach, the L-infinity norm of the exponential moving
averages of the gradients is computed and employed instead
of the gradient’s infinity norm in the Adam algorithm.
The mathematical equations for the AdaMax optimization
algorithm are shown in Equations (19), (20), and (21).

mt = β1mt−1 + (1 − β1)gt (19)

ut = max(β2ut−1,
∥∥gt∥∥∞

(20)

θt+1 = θt −
η

1 − β t
1

mt

ut+ ∈
(21)

The parameters in the mathematical equations of the AdaMax
optimization algorithm are as follows: θt : model parameters
at step t . gt : gradient at step t . η: learning rate. β1 and β2:

two parameters representing exponential decay rates for the
moving averages. mt : estimate of the first moment at step t .
ut : maximum value selected from the first moment estimate

and the infinity norm (maximum absolute value) at step t . ∈:
a very small number used to prevent division by zero errors.
AdaMax aims to provide more stable performance by using
the infinity norm instead of the second moment, similar to the
Adam optimization algorithm. This can lead to better results,
especially in deep networks.

8) MOMENTUM
The Momentum method [31] is similar to the concept of
physical momentum. The aim is to provide faster movement
in the direction of optimization by accounting for the velocity
of previous steps with a momentum term. This approach, the
information obtained from previous gradients is preserved
with a ’momentum’ effect, allowing for faster updates
each time. The mathematical equations for the Momentum
optimization algorithm are shown in Equations (22) and (23).

vt+1 = β1vt + αgt (22)

θt+1 = β1vt + αgt (23)

The parameters in the mathematical equations of theMomen-
tum optimization algorithm are as follows: vt+1: represents
themomentum and is a weighted average of past gradients. θt :
model parameters at step t . gt : gradient at step t . α: learning
rate. β1: it is a hyperparameter that controls the momentum.

IV. DEVICE PROPERTIES AND APPLICATION
EXPERIMENTS
A. MATERIAL AND DEVICE PROPERTIES
Neuromorphic computing systems based on memristors are
more energy-efficient than software-based neural networks
[1]. Memristors, acting as natural analog resistors, perform
computations within memory, offering an alternative to the
von Neumann architecture. Simulations with NeuroSim are
needed to predict and optimize large-scalememristor designs.
Binary oxides are crucial for electronic memristors due
to their simple production and compatibility with CMOS
technology [59]. These memristors are easy to produce,
low-cost, and integrate well with existing semiconductor
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FIGURE 8. Spike-Timing-Dependent Plasticity (STDP) properties of the TiO2-Based synaptic device. (b) The graph illustrating the relationship
between normalized pulse count and normalized conductance for TiO2 weight adjustment data.

technologies. Oxides like Hf, Zn, V, Ni, and Ti [60] are
used in synaptic nano devices for their gradual resistance
switching. This synapse-like behavior makes memristors
ideal for neuromorphic computing and neural network
applications. There is significant interest in developing
nano-electronic devices that mimic synaptic functions [61].
TiO2 is promising for neuromorphic computing due to its
prominence in CMOS manufacturing. TiO2-based synaptic
devices effortlessly incorporate into crossbar architectures
for in-memory computation [62]. Fig. 5(a) details the
biological synapse counterparts and switching behavior of
the TiO2 memristor. Artificial synapse creation relies on the
electrochemical reactions of nanoparticles situated between
bipolar electrodes. Voltage application causes ion and atom
migration, providing bipolar switching [63]. Fig. 5(c) shows
voltage causing nanoparticles to grow, increasing current and
transitioning the memristor to a low-resistance state. When
voltage is withdrawn, as shown in Fig. 5(b), nanoparticles
shrink, reducing current and transitioning the memristor to
a high-resistance state. TiO2-based memristor devices can
dynamically change resistance and mimic the functionality
of biological synapses. These devices hold great potential for
advanced technological applications such as neuromorphic
engineering and artificial neural networks.

B. CHARACTERISTICS OF TiO2 SYNAPTIC DEVICE
The development of TiO2 memristors is linked to high-tech
applications like RRAM, biohybrid systems, and sensors.
These applications are shown in Fig. 6, reflecting the potential
of TiO2 memristors. TiOx is among the earliest materials
studied for RRAM applications. However, memristors are
generally used as resistive switching memory devices that
change between ON or OFF states [64]. Memristor-based
RRAM devices store data by switching between two states
and remain accessible when needed, even when power is
off [65]. Some nano-scale metal oxide memristors allow fine
adjustments in resistance, enabling precise data processing

and storage. This makes them ideal for advanced neuromor-
phic computing and innovative memory applications.

Theoretically, synaptic weight changes should linearly
correlate with the number of write pulses, but real-world
devices deviate from this behavior. Conductivity changes
rapidly during initial stages of LTP and LTD, gradually
reaching saturation. Fig. 7 ((a), (b), and (c)) illustrates
these deviations, which affect the accuracy and efficiency
of neuromorphic systems. This necessitates detailed char-
acterization and optimization. To model nonlinear weight
updates, a device model was developed. MLP + NeuroSim
models power usage, training delay, and spatial requirements
of neuromorphic systems with analog eNVM synapses, such
as the TiO2 device [66]. Conductance change is related to
write pulses (P) and is expressed by the following equations:

GLTP = B
(
1 − e

(
−

P
A

))
+ Gmin (24)

GLTP = −B
(
1 − e

(
−

P-Pmax
A

))
+ Gmax (25)

B = (Gmax − Gmin)/(1 − e−Pmax/A) (26)

GLTP and GLTD represent the conductance values for the
LTP and LTD processes, respectively. Gmax , Gmin, and
Pmax are values directly derived from experimental results
and signify the peak conductance, the lowest conductance,
and the maximum pulse count needed for the device to
transition between the highest and lowest conductance states,
respectively. The parameter A controls the nonlinear nature of
the weight update behavior and can be either positive (blue)
or negative (red). In Fig. 7(a) and Fig. 7(b), the magnitudes
of the A values for LTP and LTD are the same, but their
signs are different. B is defined as a function of A and is
used to fit the functions within the scope of Gmax , Gmin,
and Pmax . Using Equation ((24), (25) and (26)), various
non-linear weight augmentation (blue) and weight reduction
(red) behaviors can be obtained by adjusting the value of
A, as shown in Fig. 7 (c). Each nonlinear curve is labeled
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with nonlinearity values ranging from +6 to −6 [35]. Upon
examining Equation (24) and (25), it can be proven that
they are equivalent except for the sign of A. Therefore, only
Equation (24) will be used for both nonlinear LTP and LTD
weight updates. Unlike Fig. 8 ((a) and (b)), all LTD curves are
mirrored and shifted horizontally to ensure the curves start
from pulse number 0 for simpler formulation.

In biological neural networks, synaptic weight is mod-
ulated by STDP, measured by cell conductance [67].
These mimics learning in artificial neural networks. The
TiO2 device’s synaptic weight change is determined by
conductance changes from spike timing pulses, leading to
potentiation or depression based on pre- and post-synaptic
spike timing. TiO2-based memristive devices can mimic
biological synapses’ functionality. The amount and direction
of synaptic weight change relate to the relative conductance
change between spike timings, reflecting STDP principles
and neural network learning mechanisms. Equation (27)
defines the relative conductance change mathematically as
follows:

1G = (Gafter − Gbefore)/Gbefore (27)

According to this equation, 1 G represents the synaptic
weight change, while, Gafter and Gbefore represent the
conductance values following and preceding the activation of
the pre-post spikes, in that order [68]. This ratio determines
synaptic modulation effectiveness and direction. Fig. 8(a)
presents the spike-timing dependent plasticity (STDP) char-
acteristics of the TiO2-based synaptic device, illustrating how
the timing between pre- and post-synaptic spikes influences
changes in synaptic conductance. The STDP mechanism
plays a key role in modulating synaptic strength, either
reinforcing or weakening connections. TiO2 memristors show
promise in emulating the behavior of biological synapses
and their applicability in neuromorphic systems. Fig. 8(b)
depicts the device’s performance across various timing
intervals and demonstrates the dynamics of synaptic weight
modification.

MLP + NeuroSim is widely used for comparing online
learning processes [66]. It simulates metrics like power
consumption, training latency, and area utilization of neuro-
morphic hardware with TiO2-based analog eNVM synapses.
Normalization parameters were determined by re-arranging
and normalizing experimental weight data. LTP and LTD
data were mirrored and fitted using the NeuroSim nonlinear-
fitting script, yielding nonlinearity values of 0.19 and 3.42,
respectively. These values were used in the simulator,
and the results are shown in Fig. 8(b). These simulations
help optimize the performance of TiO2-based neuromorphic
hardware.

C. DATASETS AND EXPERIMENTAL CONFIGURATIONS
The performance of the optimisation algorithms was eval-
uated on datasets called MNIST [69] and CIFAR-10 [70].
The MNIST dataset is a widely known and used reference
dataset developed for the purpose of recognizing handwritten

digits. The dataset includes 60,000 training samples and
10,000 test samples. Training samples develop the model,
while test samples evaluate its performance. The MNIST
dataset is standard for recognizing handwritten digits, ideal
for comparing optimization algorithms. A new dataset of
computer-generated characters was created by digitizing
text images into 28 × 28 pixels, shown in Fig. 9(a)
and Fig. 9(b). Input vectors for the neural network were
constructed by combining perpendicular and parallel vectors
of the images, resulting in a single input vector with
56 features for both computer-generated and handwritten
characters. This provides the information richness needed for
effective recognition. CIFAR-10 is an image dataset widely
used in machine learning and computer vision research,
consisting of small colour images categorized into 10 dif-
ferent classes. The dataset contains 60,000 32 × 32 colour
(RGB) images. These images are divided into two main
groups: train (training) and test: 50.000 training images and
10.000 test images.

D. PROPOSED APPROACH
This study presents the implementation of neural networks
in hardware using TiO2-based nano-synaptic devices and
evaluates this method in terms of accuracy, area usage,
and energy consumption by utilizing various optimization
algorithms. The proposed hardware-based model possesses
features recognition and classification capabilities. This
application maps inputs to outputs using feedforward (FF)
and backpropagation (BP) processes to recognize computer-
generated and handwritten digits. Fig. 10 shows the overall
structure. The training process consists of two components:
FF and BP. In FF, input data enters the input layer, passes
through hidden layers via weighted sums and activation
functions, and reaches the output layer [71]. The output is
compared with the correct label to calculate the prediction
error. In BP, this error propagates backward, adjusting
weights to minimize the error using Adadelta, AdaGrad,
Adam, AdaMax, Momentum, Nadam, RMSprop, and SGD
optimization methods. Unlike traditional gradient descent,
BP updates weights for individual images immediately after
FF. The testing process involves only FF phase, using learned
weights to make predictions on new data, evaluating the
model’s performance and generalization ability.

E. IMPLEMENTATION OF MEMRISTOR-BASED NEURAL
NETWORK USING TiO2 SYNAPTIC-BASED DEVICE
Recent studies highlight memristive synaptic devices in
hardware-based neural networks for better brain function
mimicry and compact, scalable structures [13], [72]. These
devices improve performance in digit recognition and
image classification using advanced algorithms and high-
quality datasets, offering reduced power consumption and
increased processing speed, ideal for AI andmachine learning
innovations. This study focuses on optimizing speed, energy
efficiency, and accuracy using various algorithms. Address-
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FIGURE 9. (a) Binarisation of a computer written digit (b) Binarisation of a hand written digit (c) CIFAR-10 dataset.

FIGURE 10. The overall structure of the developed application.

ing the gap in TiO2-based nano-synaptic devices’ properties
and learning performances, this study details a neuro-inspired
hardware solution for neural networks. The TiO2-based
device, using feedforward (FF) and backpropagation (BP)
methods, enhances efficiency and performance through
its memristive properties. A simple two-layer multilayer
perceptron (MLP) neural network was designed to compare
performance and serve as a reference. As shown in Fig.
11(a), the network comprises input, hidden, and output layers,
with each neuron in one layer being fully connected to all
neurons in the subsequent layer, enhancing the network’s

ability to learn complex data patterns. This structure offers
high flexibility and computational power, with connections
represented by weighted synapses. The matrix representing
the connection weights between the input and hidden layers
are referred to as WIH, while the matrix representing the
weights of the connections between the hidden and output
layers is referred to as WHO. The MNIST handwritten digits
dataset, with images resized to 28x28 pixels, was used as
input data. The network’s default topology includes an input
layer with 784 neurons, a hidden layer with 128 neurons,
and an output layer with 10 neurons, corresponding to
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FIGURE 11. MLP neurol network. The architecture of the employed BPNN and its neurons. (a) Binary matrix (28)-by-28) representing a
computer-generated digit and (b) handwritten digit.

FIGURE 12. SMU/Pulse Source. The layout of the TiO2 synaptic device
and experimental setups.

the 10 digits classes. This setup enables the network to
process each image and determine the appropriate digit class.
Changes to these parameters may require new optimizations.
Fig. 11(b) illustrates a neuron node that computes the
weighted sum from incoming synapses and applies a 1-bit
low-precision activation function for offline classification.
However, higher precision is necessary for weight updates
during backpropagation to correct small errors.

Optimization methods were applied to the designed TiO2
synaptic device [28]. The synaptic weight change results,
which occurred during the learning process on this device,
were collected using a specially designed probe station. The
synaptic analyses of the TiO2 device were finalized using
specially tailored software. The primary energy consumption
in memristive eNVM synaptic cores is primarily due to
static power utilization, as opposed to the dynamic power
consumption seen in conventional memory types. Current
flow through the memristive synapses contributes to the

energy expenditure. Total energy use is the sum of the energy
consumed by both synaptic nuclei and peripheral circuits.
The peripheral circuit energy consumption was calculated
using the predictive technology model (PTM) for 32 nm
node technology [73]. The energy consumption for the neural
network application on the computer was measured using a
system with i7-10750H CPU (2.90 GHz) and 8 GB RAM.
The energy analysis followed the guidelines given in [74] and
the DeLight [75] tool shown in Fig. 12 was used to estimate
the energy usage of the neural network application on the
computer.

Fig. 13 illustrates the circuit block diagram for the
hardware-based implementation of the two-layer MLP neural
network. In this implementation, the weighted sum calcu-
lations are performed through synaptic cores. However, the
weights utilized in a standard synaptic array can only take
non-negative values, with a range of WH = 0 ∼ 1, whereas
in the neural network algorithm, both positive and negative
weight values are present, i.e., WA = −1 ∼ 1. This situation
presents certain challenges in hardware design and requires
special solutions to represent negative weights. In this imple-
mentation, an algorithmic structure is used to convert the
weights from the rangeWA = −1∼ 1 to the rangeWH = 0∼

1. The weighted sum calculation in the algorithm is expressed
as follows:

WAV = 2 (WH − 0.5J)V = 2WHV − JV) (28)

in this expression, V represents the input vector, and J
is a matrix of the same size as WA and WH, with all
elements equal to one. In Equation (4), WHV represents
the result of the weighted sum obtained from the synaptic
core. Therefore, WA is converted from the range (−1 ∼ 1)
to the range of WH (−1 ∼ 0). In summary, Fig. 13 shows
the architecture of a neural network. A portion of the MNIST
and CIFAR-10 datasets is used as input vector and processed
through synaptic nuclei (WIH and WHO) to predict the
output vector. In the intermediate layer, the weights are set
by hardware control logic and processed by MSB (most
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FIGURE 13. Block diagram of the circuit for implementing the 2-layer MLP network in hardware.

FIGURE 14. Comparative: (a) Error Rate graphs for AdaDelta-AdaGrad optimization algorithms, (b) Error rate graphs for
Adam-momentum optimization algorithms, (c) Error rate graphs for Adamax-SGD optimization algorithms, and (d) Error rate graphs for
Nadam-RMSprop optimization algorithms.

significant bit). As a result, the output layer provides the
prediction. Fig. 13 illustrates the hardware implementation
of neural networks.

V. EVALUATION METRICS AND OUTCOMES
The key performance metrics for evaluating hardware-based
learning include accuracy, test error rate, precision, and
specificity. Accuracy measures the proportion of correct
predictions, while the test error rate indicates misclassifica-
tions. Precision evaluates the model’s capability to accurately
identify true positives, while specificitymeasures its accuracy
in recognizing true negatives [76]. This study focuses on

learning in optimization algorithms, starting with calculating
the accuracy metric for each method.

Accuracy plays a critical role in evaluating model
performance and, alongside other metrics, provides a com-
prehensive assessment of overall effectiveness. These metrics
form the basis of this research, offering insights into model
performance across datasets and facilitating comparative
analyses, thus contributing to more efficient and accurate
model development. Below are the mathematical equations
for these metrics:

Accuracy =
TP + TN

TP + TN + FP + FN
(29)
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FIGURE 15. Comparative: (a) Accuracy graphs for AdaDelta-AdaGrad optimization algorithms, (b) Accuracy graphs for Adam-momentum
optimization algorithms, (c) Accuracy graphs for Adamax-SGD optimization algorithms, and (d) Accuracy graphs for Nadam-RMSprop
optimization algorithms.

Error Rate =
FP + FN

TP + TN + FP + FN
(30)

Sensitivity =
TP

TP + FN
(31)

Specificity =
TN

TN + FP
(32)

the terms used in calculating these metrics are defined
as follows: TP (true positive) refers to the number of
cases where handwritten digits are correctly recognized.
FP (false positive) indicates the number of cases where
digits are incorrectly recognized as correct. TN (true
negative) denotes the number of cases where incorrect digits
are correctly identified as incorrect. FN (false negative)
represents the number of cases where digits that should
have been recognized as correct are incorrectly identified.
These terms are used to evaluate the model’s prediction
performance in detail, each having its unique meaning and
importance.

VI. RESULTS AND DISCUSSION
This paper employed a neural network (NN) model utilizing
TiO2 synaptic devices for handwritten digit recognition. The
model was trained and tested on the MNIST dataset, which
comprises 60,000 training samples and 10,000 test samples
of digits ranging from 0 to 9. Besides the MNIST dataset,
a neural network (NN) model using TiO2 synaptic devices
for image classification is used in this paper. The model was

trained and tested on the CIFAR-10 dataset which includes
50,000 training samples and 10,000 test samples across 10
classes. The circuit-level performance was analyzed using
Neurosim, evaluating metrics such as energy consumption,
latency, and area requirements. Various optimizationmethods
were applied to the TiO2-based machine learning model,
including Adadelta, AdaGrad, Adam, AdaMax, Momentum,
Nadam, RMSprop, and SGD. Each method updates weights
differently to improve accuracy. Experimental results showed
accuracy rates of 89.48% (Adadelta), 79.00% (AdaGrad),
79.13% (Adam), 79.68% (AdaMax), 88.55% (Momentum),
81.20% (Nadam), 84.91% (RMSprop), and 89.47% (SGD).
Fig. 16(a) and Fig. 16(b) presents these accuracy rates and
error rates graphs. These findings emphasize the critical
impact of optimization methods on model performance and
the importance of selecting the right optimization strategies
for training neural networks. Fig. 14(a) compares AdaDelta
and AdaGrad, Fig. 14(b) compares Adam and Momentum,
Fig. 14(c) compares AdaMax and SGD, and Fig. 14(d)
compares Nadam and RMSprop in terms of accuracy and
epoch numbers, grouped in pairs. As can be seen from
the graphs, the epoch numbers are same, but the accuracy
values show significant differences. The data presented
graphically include accuracy and epoch values obtained
using optimization algorithms. It was observed that the
Adadelta optimization algorithm achieved higher accuracy
values compared to the other algorithms. These findings
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FIGURE 16. This figure compares the accuracy rates of different optimization algorithms. AdaDelta (89.48%), SGD (89.47%), and Momentum (88.55%)
have the highest accuracy, while AdaGrad (79.00%) shows the lowest accuracy.

TABLE 2. Comparative performance results of various optimization models with MNIST dataset.

TABLE 3. Comparative accuracy performance results of various optimisaPtion models with MNIST and CIFAR dataset.

provide important insights into the selection of optimization
algorithms to balance accuracy.

Similarly, error rate comparisons are shown in Fig. 15.
Fig. 15(a) illustrates the comparison between AdaDelta
and AdaGrad, while Fig. 15(b) shows the comparison
betweenAdam and Momentum. Fig. 15(c) presents a com-
parison between AdaMax and SGD, and Fig. 15(d) depicts
the comparison between Nadam and RMSprop. These figures
evaluate the performance of these optimization algorithms
based on error rate and epoch numbers, displayed in
pairs. Experimental studies on the MNIST dataset show
that the TiO2-based nano-synaptic device’s classification
accuracy varies with different optimization algorithms. These

findings reveal the interaction between TiO2-based synaptic
devices and optimization techniques, demonstrating the
method’s broad applicability in neuro-inspired hardware
solutions. TiO2-based synaptic devices were preferred due
to their compatibility with existing CMOS technology and
widespread use in semiconductor chip production. TiO2
is cost-effective and suitable for sub-nanometer produc-
tion, enabling higher-density, energy-efficient neuromorphic
devices [77]. TiO2-based synaptic cores, especially compat-
ible with 10-nanometer and below technologies, promise
energy efficiency and scalability. Current findings with 32-
nanometer CMOS suggest even greater energy gains and area
savings at 10 nanometers and below.
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Thus, the learning performance results of the neuromor-
phic models based on synaptic devices and the optimization
methods are compared. Table 3 shows the comparative
accuracy performance results of various optimisation models
on the MNIST and CIFAR-10 datasets. The table presents
the accuracy percentages of popular optimisation algorithms
such as AdaDelta, AdaGrad, Adam, AdaMax, Momentum,
Nadam, SGD and RMSprop on both datasets. On the CIFAR-
10 dataset, the AdaDelta algorithm performed the best
with an accuracy of 92.51%, while in the MNIST dataset,
the AdaDelta algorithm achieved the highest accuracy of
89.48%.

VII. CONCLUSION
In conclusion, the performance of the neural network based
on TiO2 synaptic devices was thoroughly evaluated using
various optimization methods on the MNIST and CIFAR
datasets. Different optimization algorithms, including SGD
and its variants, were tested, achieving a 90% accuracy
rate. The model demonstrated robustness and generalization
ability across various optimization methods. This high
performance under these optimization methods highlights its
adaptability and effectiveness across datasets, indicating its
potential for diverse applications. This evaluation confirms
the effectiveness of combining TiO2-based synaptic devices
with various optimization algorithms for neuromorphic com-
puting and hardware-based AI applications. These findings
guide future studies, contributing to the creation of more
energy-efficient and precise neural network models.
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