
R E S E A R C H Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 
International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you 
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the 
licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit ​h​t​​​​t​p​:​/​/​c​r​e​​a​​​t​i​
v​e​​c​​o​​m​​m​​o​n​s​.​o​r​g​/​l​i​c​e​n​s​e​s​/​b​y​-​n​c​-​n​d​/​4​.​0​/​​​​​.​​​

Gonca et al. BMC Medical Imaging          (2024) 24:294 
https://doi.org/10.1186/s12880-024-01478-z

BMC Medical Imaging

*Correspondence:
Merve Gonca
mervegonca@gmail.com
1Present address: Department of Orthodontics, Faculty of Dentistry, 
Eskisehir Osmangazi University, Eskişehir, Turkey
2Department of Oral and Maxillofacial Radiology, Faculty of Dentistry, 
Eskisehir Osmangazi University, Eskişehir, Turkey
3Eskisehir Osmangazi University Center of Research and Application for 
Computer Aided Diagnosis and Treatment in Health, Eskişehir, Turkey
4Department of Mathematics-Computer, Eskisehir Osmangazi University 
Faculty of Science, Eskişehir, Turkey
5Department of Orthodontics, Faculty of Dentistry, Recep Tayyip Erdoğan 
University, Rize, Turkey

Abstract
Background  We explored whether the feature aggregation and refinement network (FARNet) algorithm accurately 
identified posteroanterior (PA) cephalometric landmarks.

Methods  We identified 47 landmarks on 1,431 PA cephalograms of which 1,177 were used for training, 117 for 
validation, and 137 for testing. A FARNet-based artificial intelligence (AI) algorithm automatically detected the 
landmarks. Model effectiveness was calculated by deriving the mean radial error (MRE) and the successful detection 
rates (SDRs) within 2, 2.5, 3, and 4 mm. The Mann-Whitney U test was performed on the Euclidean differences 
between repeated manual identifications and AI trials. The direction in differences was analyzed, and whether 
differences moved in the same or opposite directions relative to ground truth on both the x and y-axis.

Results  The AI system (web-based CranioCatch annotation software (Eskişehir, Turkey)) identified 47 anatomical 
landmarks in PA cephalograms. The right gonion SDRs were the highest, thus 96.4, 97.8, 100, and 100% within 2, 
2.5, 3, and 4 mm, respectively. The right gonion MRE was 0.94 ± 0.53 mm. The right condylon SDRs were the lowest, 
thus 32.8, 45.3, 54.0, and 67.9% within the same thresholds. The right condylon MRE was 3.31 ± 2.25 mm. The AI 
model’s reliability and accuracy were similar to a human expert’s. AI was better at four skeleton points than the 
expert, whereas the expert was better at one skeletal and seven dental points (P < 0.05). Most of the points exhibited 
significant deviations along the y-axis. Compared to ground truth, most of the points in AI and the second trial 
showed opposite movement on the x-axis and the same on the y-axis.

Conclusions  The FARNet algorithm streamlined orthodontic diagnosis.
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Background
Posteroanterior (PA) cephalometric analysis usefully 
assesses craniofacial and dentofacial structures, and their 
growth patterns, in the transverse plane [1, 2]. Such anal-
ysis, combined with lateral cephalometric data, facilitate 
thorough three-dimensional assessments in clinical prac-
tice [3, 4].

Cone-beam computed tomography (CBCT) might pro-
vide detailed 3D data, but it is not always necessary or 
feasible in routine orthodontic evaluations, particularly 
for transverse assessments and facial asymmetry diagno-
ses [5]. While advanced imaging modalities like CBCT 
and facial scans have gained popularity due to their 
three-dimensional capabilities [6], PA cephalometric 
radiographs remain a vital diagnostic tool in many clini-
cal scenarios due to their lower radiation dose, accessi-
bility, and cost- effectiveness [7]. Thus, PA cephalograms 
play a central role in orthodontic evaluations and treat-
ment planning, and they are indispensable when plan-
ning comprehensive orthodontic treatments [1, 8].

Artificial intelligence (AI) is the ability of a machine to 
emulate intelligent human activities, thus problem-solv-
ing, object identification, and decision-making [9]. In the 
field of orthodontics, AI has been used to identify land-
marks, and to aid diagnosis and data analysis [10]. Ceph-
alometric analysis is required for precise orthodontic 
diagnosis and treatment planning; this commences with 
precise localization of cephalometric landmarks, and AI 
streamlines this process in a rapid and very consistent 
manner [11].

Traditional two-dimensional radiographs render three 
dimensions in two; the associated superimpositions 
may obscure crucial landmarks. These superpositioned 
structures affect the accuracy of landmark identification. 
Although PAs are an important diagnostic tool in orth-
odontic diagnosis, especially in evaluating the transversal 
direction, the user experience is less than that of lateral 
cephalometric radiographs. This is more evident at the 
PA cephalometric landmark, and its errors are greater 
than those of lateral cephalometric analyses. The exper-
tise and skill levels of the examiner play a major role in 
the accuracy of landmark identification because it is chal-
lenging to recognize landmarks with poor reproducibil-
ity. Such errors, thus empirical variances, significantly 
compromise cephalometric analyses. This may be why 
PA cephalometric analysis is not routinely performed 
in orthodontic practice [2, 5, 8]. AI-based programs are 
applicable, improvable, and time-saving for clinicians. 
Although the literature contains many studies on lateral 
cephalometric radiographs, studies examining PA land-
marks are limited.

Kim et al. reported that CNNs could effectively com-
pare conventional and automatic cephalometric analyses, 

demonstrating that AI could not sufficiently reach the 
clinically acceptable error range of less than 2 mm [8].

Here, we present a multi-stage convolutional neural 
network (CNN)-based automatic landmark prediction 
system.

Methods
The study protocol was approved by the Clinical 
Research Ethics Committee of the Osmangazi University 
Faculty of Medicine (decision date and decision num-
ber: 04.10.2022/22); we adhered to all relevant principles 
of the Declaration of Helsinki. The PA radiographs were 
those of patients treated in the Department of Orthodon-
tics, Faculty of Dentistry, Osmangazi University. Addi-
tional informed consent was obtained from all individual 
participants included in the study. The inclusion criteria 
were:

1)	 Mixed or permanent dentition,
2)	 Incomplete or complete facial growth; the use of 

orthodontic appliances, or/and dental prostheses, or/
and surgical screws, or/and plates; with no regard to 
skeletal asymmetry status;

3)	 No missing upper or lower permanent incisors 
or permanent upper or lower first molars, no 
craniofacial syndrome, and no dentofacial trauma.

4)	 Either sex.

The exclusion criteria were dentofacial trauma and 
any craniofacial syndrome or systemic disease. All PA 
radiographs were captured using the Planmeca ProMax 
panoramic-cephalometric device (Planmeca Oy, Hel-
sinki, Finland) operating at 64 kVp, 5 mA, and 18 s. One 
orthodontist with 10 years of experience (M.G.) labeled 
all 47 PA cephalometric landmarks using web-based Cra-
nioCatch annotation software (Eskişehir, Turkey) and a 
point identification tool (the “ground truth”) (Table 1).

The deep learning architecture
We applied a deep learning model based on a specific 
architecture known as the Feature Aggregation and 
Refinement Network (FARNet) developed by Ao et al. to 
detect cephalometric landmarks in posteroanterior (PA) 
radiographs [12]. The model is built using a type of neural 
network called a convolutional neural network (CNN), 
commonly used for analyzing medical images.

Our model has three main components: a backbone, 
a feature aggregation module, and a refinement mod-
ule. The backbone is a pre-trained model that has been 
trained to recognize common patterns in images using a 
large dataset called ImageNet. This part helps the system 
identify important features in PA radiographs across dif-
ferent scales or image sizes.
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Next, the feature aggregation module works by gather-
ing details from different parts of the image, both small 
and large areas, and combines them. This helps the 
model understand the relationships between various fea-
tures across different levels of detail. In this process, the 
system gives preference to clearer, high-resolution parts 
of the image, which helps in making more accurate pre-
dictions. The aggregated image details are then combined 
into a slightly smaller version of the original image.

Finally, to improve the accuracy of landmark detection, 
the feature refinement module adjusts the image features 
and brings them back to the original resolution, ensuring 
that the model can predict landmarks with better preci-
sion (Fig. 1).

Model development
The model was developed in the Dental-AI Labora-
tory of the Faculty of Dentistry, Osmangazi University, 
using a Precision 3640 Tower CTO BASE workstation 

featuring an Intel Xeon W-1250P processor (six cores, 
12  Mb cache, core processor frequency 4.1  GHz, max 
turbo frequency 4.8 GHz, 64 GB DDR4 [4 × 16 GB] oper-
ating at 2,666 MHz of UDIMM ECC memory, a 256-GB 
SSD SATA, a 2-GB Nvidia Quadro P620, a NVIDIA Tesla 
V100 graphics card, and a 27-inch IPS LCD monitor of 
resolution 1,920 × 1,080 pixels [Dell, TX, USA]). Model 
development employed the Python open-source pro-
gramming language (ver. 3.6.1; Python Software Founda-
tion, DE, USA) and the PyTorch library. A total of 1,431 
PA radiographs of various sizes, all labeled at 47 points, 
was employed. Each point corresponded to a row and all 
labels were saved in a specific order as 47 points in txt 
format; all images and labels were resized to 640 × 800 
pixels. The dataset was partitioned into three subsets: 
Training, validation, and testing (1,177, 117, and 137 
radiographs with 47-point labels). No testing data were 
used for training or validation. The Adam Optimizer was 
employed for training that ran over 300 epochs using a 

Table 1  Landmark definitions
Landmarks Definitions
Bilateral skeletal landmarks
Supraorbitale (So) The most superior (sagittal perspective) and the middle (frontal perspective) point on 

the contour of the orbit
Lateroorbitale (Lo) the intersection of the lateral wall of the orbit and the greater wing of the sphenoid
Frontozygomatic suture (FZ) The intersection of the frontozygomatic suture and the inner rim of the orbit
Zygomatic arch (ZA) the most lateral point of the zygomatic arch
Lateral wall of nasal cavity (LWNC) the most lateral end of the nasal cavity
Jugal process (JG) The intersection of the tuberosity of the maxilla and zygomatic buttress
Condyle (Co) The most superior (sagittal perspective) and the middle (frontal perspective) point on 

the contour of the condyle head
Gonial (Go) gonion (the most inferior posterior point at the angle of the mandible)
Antegonial notch (AG) The antegonial notch at the lateral inferior margin of the antegonial protuberances
Midline skeletal landmarks
Crista Galli (CG) The middle point of crista galli
Nasal Septum (NS) The approximated midpoint on the nasal septum between crista galli and anterior 

nasal spine
Anterior Nasal Spine (ANS) Located at the anterior nasal spine, between the middle part of the bony portion of 

the nasal septum and the hard palate
A point (A) Point A
Menton (Me) The most inferior point of symphysis of the mandible
Bilateral dentoalveolar landmarks
Upper central incisor tip (UC1T) midpoint at the maxillary central incisor at the level of the incisal edges
Upper central incisor root (UC1R) Apex of maxillary central incisor
Upper central incisor mesial (UC1M) The most mesial point at the maxillary central incisor at the level of the incisal edges
Lower central incisor tip (LC1T) midpoint at the mandibular central incisor at the level of the incisal edges
Lower central incisor root (LC1R) Apex of mandibular central incisor
Lower central incisor mesial (LC1M) The most mesial point at the mandibular central incisor at the level of the incisal edges
Upper cuspid tip (UC3T) The cusp tip of the maxillary canine
Lower cuspid tip (LC3T) The cusp tip of the mandibular canine
Upper molar buccal cusp (UM6BC) The upper first molar mesiobuccal cusp tip
Upper molar buccal root (UM6BR) The point of the maxillary first molar root apex
Lower molar buccal cusp (LM6BC) The lower first molar mesiobuccal cusp tip
Lower molar buccal root (LM6BR) The point of the mandibular first molar root apex
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CNN-based deep learning approach implemented in 
PyTorch. The learning rate was 0.0001 (Fig. 2).

Performance evaluation
In this study, the performance of our AI model was 
evaluated by comparing its predicted landmark posi-
tions (AI detection) with those manually identified by 
a human expert (manual detection), which serve as the 
“gold standard” for cephalometric analysis. The primary 
metric used for comparison was the point-to-point error, 
which is the average absolute distance between the AI-
predicted landmarks and the manually determined land-
marks across the entire test dataset. We calculated the 
mean radial error (MRE) and standard deviation (SD) for 
each landmark to quantify these errors. The radial error 
(R) for any given landmark was defined as the distance 
between the AI-predicted position and the correspond-
ing manual position using the formula:

	 R =
√

∆ x2 + ∆ y2

In this formula, Δx represents the horizontal distance, 
and Δy represents the vertical distance between the AI-
predicted and manually identified landmark positions.

The MRE was calculated as the average of these radial 
errors across all test cases:

	 MRE =
∑

(
√

(∆x2 + ∆y2 )) / n

Where n is the total number of test samples, this metric 
measures the overall accuracy of the AI model compared 
to manual detection.

We also calculated the standard deviation (SD) of the 
errors to assess the variability in the model’s perfor-
mance. The SD measures the spread of individual land-
mark detection errors around the mean radial error 
(MRE). It was computed as follows:

	
SD =

√[
(
∑

(
√

[∆x2 + ∆y2])/n)2 − MRE2
]
/(n − 1)

We derived successful detection rates (SDRs), thus the 
percentages of estimated points within 2, 2.5, 3, and 
4  mm of the actual locations. For each PA cephalomet-
ric landmark, the AI-determined position was compared 
to the ground truth. If the difference did not exceed a 
defined value d, AI localization was viewed as successful, 
and the SDR was calculated.

The direction in which the deviations of the points in 
manual identification 1 (M1) -AI and manual identifica-
tion 1-manual identification 2 (M2) were evident (x or y) 
was examined. It was evaluated whether the movements 
in M2 and AI were in the same/opposite direction on the 
x and y axis relative to M1.

Fig. 1  The architecture of the feature aggregation and refinement network (FARNet). This includes a backbone (pink dashed box), a multi-scale feature 
aggregation (MSFA) module (black dashed box), and a feature refinement (FR) module (brown dashed box). The feature level labels (L0, L1, L2, L3, L4, L5) 
are shown on the left. The spatial resolutions of all feature maps at the same horizontal levels are identical
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Fig. 2  The AI model pipeline for automatic landmark detection (JSON: Java Script Object Notation)
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Measurement error
The same orthodontist with ten years of experience 
repeated the landmark localizations in the all test images 
one month after the initial evaluation. The distances to 
the right and upper edges of the radiographs were cal-
culated in pixels to determine the coordinates of the 
distances in the x and y axes. The distances in pixels of 
landmarks along the x-y axes were used to calculate 
intraclass correlation coefficients (ICC) for intra-rater 
reliability.

Statistical analysis
The normality of data distribution was evaluated using 
the Kolmogorov-Smirnov test. The Mann Whitney U test 
and intraclass reliability tests were performed using IBM 
SPSS (version 21.0) software (SPSS, Chicago, IL, USA).

The Mann Whitney U test was used to compare the 
Euclidean differences between manual identification 
1-auto-identification, and Euclidean differences between 
manual identification 1–2. The P value < 0.05 was consid-
ered to be statistically significant.

Results
Table  2 presents the intra-class correlation coefficient 
(ICC) values for the 47 landmarks detected by the first 
and second manual identifications. ICC values less than 
0.5 are indicative of poor reliability, values between 0.5 
and 0.75 indicate moderate reliability, values between 
0.75 and 0.9 indicate good reliability, and values greater 
than 0.9 indicate excellent reliability [13] The ICC values 
for all landmarks were above 0.75, except for the x-coor-
dinate of the lower cuspid tip (LC3T) L-R. These points 
had moderate reliability.

The AI system (web-based CranioCatch annotation 
software (Eskişehir, Turkey)) identified 47 anatomi-
cal landmarks in PA cephalometric radiographs. The 
AI- (blue), human-located 1 (gold standard; red), and 
human-located 2 (green) locations were superimposed 
on all images. (Figures 3 and 4). Tables 3 and 4 summa-
rize the SDR and MRE values of all test landmarks and 
show them in the supplementary content.

Between manual identifications 1 and 2, the right 
gonion point exhibited the highest 2-, 2.5-, 3-, and 4-mm 
SDRs of 94.2, 97.8, 99.3, and 100%, respectively. The aver-
age MRE (± SD) was 1.81 ± 1.61  mm. The lowest MREs 
(1.01 ± 0.71) were that for the both right upper central 
incisor tip, and the right lower central incisor tip. The 
left condyle point exhibited the lowest SDRs (36.5, 48.2, 
53.3, and 67.2%) at 2, 2.5, 3, and 4 mm; and the highest 
MRE ± SD was 3.37 ± 2.34.

Between manual identification 1 and AI, the right 
gonion point exhibited the highest 2-, 2.5-, 3-, and 4-mm 
SDRs of 96.4, 97.8, 100.0, and 100.0%, respectively. The 
average MRE (± SD) was 1.84 ± 1.60  mm. The lowest AI 

MRE (0.94 ± 0.53) was that for the right gonion. The right 
condyle point exhibited the lowest SDRs (32.8, 45.3, 
54.0, and 67.9%) at 2, 2.5, 3, and 4 mm; and the highest 
MRE ± SD was 3.31 ± 2.25.

Artificial intelligence showed significantly higher accu-
racy than manual identification of the left and right lat-
eroorbitale points, left frontozygomatic suture, and left 
antegonial notch points (P = 0.001, P = 0.005, P = 0.015, 
and P = 0.011, respectively). Although AI showed low 
accuracy in the identification of left jugal process, right 
upper central incisor tip, right lower central incisor tip, 
right upper cuspid tip, left and right upper molar buc-
cal cusp, left and right lower molar buccal cusp points 
(P = 0.035, P = 0.002, P = 0.002, P = 0.007, P = 0.007, 
P < 0.001, P = 0.006 and P = < 0.001, respectively) (Table 4). 
However, there was no difference in accuracy except for 
the measurements above between AI and manual identi-
fication (P > 0.05).

Most of the points in both M1-AI and M1-M2 exhib-
ited significant deviations along the y-axis. When the 
differences M1-AI and M1-M2 were compared, the 
directions of seven points ((R) Frontozygomatic suture, 
(R) Zygomatic arch, (L, R) Gonial, (R) Upper central inci-
sor tip, and (L, R) Lower molar buccal cusp) were found 
to differ. Compared to M1, most of the points in AI and 
M2 showed opposite movement on the x-axis and the 
same on the y-axis.

Discussion
Although PA cephalometric analysis allows comprehen-
sive evaluation of cranial-dentofacial features, more ana-
tomical structures are superimposed and layered than in 
lateral cephalograms, rendering precise landmark identi-
fication difficult. Accurate human identification requires 
high-level expertise, perhaps explaining why PA cephalo-
metric analysis is not common in orthodontic settings [1, 
14].

We present several novel findings: (1) We assessed the 
automated identification accuracy of 47 PA cephalomet-
ric landmarks. (2) We built a comprehensive algorithm 
featuring a multi-stage CNN. (3) The average SDRs for 
AI were 68.2, 78.4, 85.3, and 92.5% within 2.0, 2.5, 3.0, 
and 4.0  mm, respectively (4). The mean point-to-point 
error was 1.84 mm, which is clinically acceptable. Several 
studies have found that deep learning algorithms accu-
rately and rapidly detect landmarks with a precision that 
attained 2.0 mm. Our SDRs for the 2- and 4-mm thresh-
olds exceeded 70 and 90% respectively [15–17]. However, 
most prior studies used lateral cephalograms. We calcu-
lated the 2-, 2.5-, 3-, and 4-mm SDRs of 47 landmarks in 
PA cephalograms [15, 18–21].

To the best of our knowledge, few studies have used 
AI to determine automatically landmarks in PA radio-
graphs [8, 22, 23]. The multi-center study of Gil et al. 
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Table 2  Intraobserver agreement of the first and second trial
X-axis Y-axis

Anatomik Landmarks ICC Lower 95% CI Upper 95% CI ICC Lower 95% CI Upper 95% CI
Bilateral skeletal landmarks
Supraorbitale (So), L 0.885 0.843 0.917 0.994 0.992 0.996
Supraorbitale (So), R 0.895 0.850 0.926 0.994 0.992 0.996
Lateroorbitale (Lo), L 0.974 0.964 0.982 0.951 0.887 0.974
Lateroorbitale (Lo), R 0.984 0.977 0.989 0.959 0.931 0.974
Frontozygomatic suture (FZ), L 0.946 0.923 0.962 0.957 0.934 0.971
Frontozygomatic suture (FZ), R 0.957 0.937 0.970 0.953 0.922 0.970
Zygomatic arch (ZA), L 0.957 0.933 0.972 0.918 0.888 0.941
Zygomatic arch (ZA), R 0.957 0.939 0.969 0.910 0.877 0.935
Lateral wall of nasal cavity (LWNC), L 0.902 0.770 0.949 0.949 0.928 0.964
Lateral wall of nasal cavity (LWNC), R 0.953 0.934 0.967 0.961 0.942 0.973
Jugal process (JG), L 0.933 0.908 0.952 0.946 0.926 0.961
Jugal process (JG), R 0.949 0.930 0.964 0.950 0.931 0.964
Condyle (Co), L 0.924 0.893 0.946 0.812 0.746 0.862
Condyle (Co), R 0.931 0.900 0.952 0.841 0.758 0.893
Gonial (Go), L 0.991 0.987 0.994 0.99 0.987 0.993
Gonial (Go), R 0.991 0.984 0.995 0.992 0.989 0.994
Antegonial notch (AGL), L 0.972 0.946 0.984 0.991 0.983 0.995
Antegonial notch (AGL), R 0.980 0.972 0.986 0.992 0.989 0.994
Midline skeletal landmarks
Crista Galli (CG) 0.938 0.913 0.956 0.924 0.895 0.945
Nasal Septum (NS) 0.953 0.935 0.966 0.933 0.908 0.952
Anterior Nasal Spine (ANS) 0.957 0.934 0.971 0.970 0.958 0.979
A point (A) 0.958 0.936 0.972 0.946 0.925 0.961
Menton (Me) 0.902 0.861 0.930 0.994 0.992 0.996
Bilateral dentoalveolar landmarks
Upper central incisor tip (UC1T), L 0.969 0.930 0.983 0.991 0.987 0.994
Upper central incisor tip (UC1T), R 0.973 0.962 0.981 0.993 0.990 0.995
Upper central incisor root (UC1R), L 0.948 0.927 0.962 0.973 0.962 0.980
Upper central incisor root (UC1R), R 0.953 0.934 0.967 0.974 0.962 0.981
Upper central incisor mesial (UC1M), L 0.976 0.965 0.983 0.989 0.980 0.994
Upper central incisor mesial (UC1M), R 0.979 0.961 0.988 0.988 0.977 0.993
Lower central incisor tip (LC1T), L 0.943 0.908 0.963 0.972 0.961 0.980
Lower central incisor tip (LC1T), R 0.941 0.919 0.958 0.956 0.936 0.969
Lower central incisor root (LC1R), L 0.971 0.959 0.979 0.973 0.960 0.982
Lower central incisor root (LC1R), R 0.974 0.963 0.981 0.977 0.967 0.984
Lower central incisor mesial (LC1M), L 0.952 0.932 0.966 0.963 0.930 0.978
Lower central incisor mesial (LC1M), R 0.942 0.919 0.958 0.964 0.926 0.980
Upper cuspid tip (UC3T), L 0.874 0.827 0.909 0.954 0.933 0.969
Upper cuspid tip (UC3T), R 0.841 0.784 0.884 0.957 0.941 0.970
Lower cuspid tip (LC3T), L 0.704 0.609 0.780 0.964 0.951 0.974
Lower cuspid tip (LC3T), R 0.715 0.623 0.788 0.968 0.955 0.977
Upper molar buccal cusp (UM6BC), L 0.914 0.861 0.945 0.967 0.954 0.977
Upper molar buccal cusp (UM6BC), R 0.916 0.869 0.945 0.975 0.966 0.982
Upper molar buccal root (UM6BR), L 0.788 0.617 0.873 0.943 0.920 0.959
Upper molar buccal root (UM6BR), R 0.880 0.836 0.913 0.955 0.938 0.968
Lower molar buccal cusp (LM6BC), L 0.877 0.832 0.911 0.959 0.943 0.971
Lower molar buccal cusp (LM6BC), R 0.921 0.889 0.944 0.979 0.971 0.985
Lower molar buccal root (LM6BR), L 0.862 0.757 0.916 0.938 0.914 0.956
Lower molar buccal root (LM6BR), R 0.922 0.892 0.944 0.962 0.944 0.973
ICC; Intraclass Correlation Coefficient

CI; Confidence Interval
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[22] examined 16 landmarks. The single-center work of 
Kim et al. [8] synthesized PAs from cone beam computed 
tomographic data and examined 22 PA cephalometric 
landmarks. Lee et al. [23] examined 19 PA landmarks in 
a single-center study on directly observed PAs. Kim et al. 
[8] used only the MRE to assess accuracy; the other two 
groups employed both the MRE and SDR [22, 23]. Our 
present single- center investigation of directly observed 
PAs derived both the MREs and SDRs for 47 PA cephalo-
metric landmarks.

The average SDR within the 2 mm threshold was 68.2%, 
similar to the 67.5% of Lee et al. [23]; the figure of Gil et 
al. [22] came to 83.3%. As some landmarks are identified 
less accurately than others, the same numbers of points 
in particular locations must be used when comparing the 
average SDRs. Our landmark numbers were 2–2.5-fold 
more than those of the 47 landmarks of the cited Works 
[22, 23]. Hence, a comparison of the average SDRs may 
not reliably assess model efficacies.

The MREs of all PA cephalometric landmarks were 
under 4  mm for AI. However, the point-to-point errors 
of the (L) jugal process, (L, R) condyles, crista galli, (L, 
R) upper cuspids, and all (L, R) molar measurements 
exceeded 2  mm. The lowest MRE and the highest SDR 
was that of the right gonial point. The highest MRE and 
the lowest SDR was the right condyle point.

The CNN model replicates the landmark identifica-
tion performed by human examiners when identifying 
the landmarks of test scans. Thus, difficulties encoun-
tered by humans affect model accuracy; the AI predic-
tions mirror challenges encountered by observers [8]. 
Landmarks that lie on pronounced curves or where two 
curves converge tend to be more readily discernible 
than points in flat regions or on gentle curves. Points 

in high-contrast regions are more obvious than those 
in low-contrast regions. Identification is difficult when 
other structures are superimposed on a landmark [8, 
14, 24]. Auto-identification was associated with high 
MREs and low SDRs for the condyle (L-R), and jugal 
processes (L), in contrast to the skeletal points. These 
results are similar to those of prior studies; auto-identi-
fication errors were higher for the the condyles because 
these overlapped with other anatomical structures [8, 
23]. Our (L, R) condyle MREs were similar to those of 
Kim et al. [8] (4.05 ± 2.44, 4.24 ± 2.21  mm), and Lee et 
al. [23] (3.16 ± 1.88, 3.47 ± 2.09  mm). The condyle points 
(3.21 ± 2.03, 3.31 ± 2.25 mm) exhibited the highest MREs 
of all PA skeletal landmarks.

The landmarks that are most difficult to define lie on 
curved trajectories, within regions of poor contrast, or 
overlap with other structures [25]. Here, certain midline 
landmarks contrasted poorly, rendering them difficult 
to distinguish. These landmarks frequently overlapped 
or were obscured by adjacent anatomical structures. 
Note that the crista galli serves as the central point of 
the asymmetric quadrilateral construct [2]. We found 
that the midline landmarks exhibited mean MREs of 
less than 2  mm, with the exception of the crista galli 
(2.03 ± 1.77  mm). Our crista galli MREs were higher 
than those of Kim et al. [8] (1.33 ± 1.59  mm) and Gil et 
al. [22] (1.89 ± 1.61 mm) but similar to those of Lee et al. 
[23] (2.57 ± 1.63 mm). We included images of individuals 
who wore appliances, or who had brackets or impacted 
canines, perhaps explaining why the MREs of the canines 
and molars sometimes exceeded 2  mm. maxillary and 
mandibular molar root MREs over 2  mm may reflect 
multiroot overlaps.

Fig. 3  Automatic detection of cephalometric points by the AI model. (A) Original image. (B) Demonstration of landmark detection. (C) A comparison of 
landmark detection by an expert in the first trial and AI. Red: The expert locations in the first trial. Blue: The AI locations
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Gil et al. [22] and Lee et al. [23] evaluated the most 
lateral point of the crown. Kim et al. [8] focused on the 
molar mesiobuccal cusp tip, as did we. In this work, the 
molar teeth MREs exceeded 2  mm, as also reported by 
Kim et al. [8]. Molar roots on PA radiographs were pre-
viously assessed only by Gil et al. [22] The reason why 
the dental MREs in the cited works were lower than ours 
may be because the test sets included only pretreatment 
radiographs [22].

In clinical practice, patients often undergo cephalomet-
ric evaluations while wearing orthodontic appliances or 
after undergoing surgeries involving screws and plates. 
Excluding these patients would not accurately represent 
the diversity of routine orthodontic treatment planning 

cases. Including these images allows to evaluate the 
robustness and adaptability of the AI-based program to 
handle complex cases, including those with increased 
radiopacity due to appliances or surgical hardware [26].

Research has shown that AI-based systems, particularly 
those using convolutional neural networks (CNNs), can 
identify landmarks even in obstructions or noise, such as 
those caused by orthodontic hardware or surgical mate-
rials [26, 27]. The ability of AI systems to adapt to such 
conditions is a key factor in their utility. While a more 
uniform sample may have improved the algorithm’s base-
line accuracy, it would have limited the study’s generaliz-
ability. Including these patients provided a more realistic 
evaluation of the program’s performance and ensured 

Fig. 4  Demonstration of landmark detection Red: The expert locations in the first trial. Green: The expert locations in the second trial. Blue: The AI 
locations
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Table 3  The SDR value of landmarks obtained from test data
Anatomik Landmarks (Manual 1-AI) (Manual 1-Manual 2)

<=2.0 <=2.5 <=3.0 <=4.0 <=2.0 <=2.5 <=3.0 <=4.0
Supraorbitale (So), L 80.3 92.0 96.4 97.8 79.6 88.3 94.9 99.3
Supraorbitale (So), R 75.2 88.3 92.7 97.8 65.0 78.8 87.6 95.6
Lateroorbitale (Lo), L 83.9 94.2 96.4 98.5 67.9 81.0 88.3 95.6
Lateroorbitale (Lo), R 81.0 90.5 94.9 100.0 63.5 80.3 86.9 95.6
Frontozygomatic suture (FZ), L 78.1 86.9 94.2 99.3 67.2 78.8 85.4 96.4
Frontozygomatic suture (FZ), R 68.6 80.3 89.1 95.6 59.1 76.6 83.9 93.4
Zygomatic arch (ZA), L 76.6 84.7 89.8 91.2 72.3 82.5 86.9 91.2
Zygomatic arch (ZA), R 70.1 78.8 86.1 90.5 67.2 78.1 83.9 86.9
Lateral wall of nasal cavity (LWNC), L 61.3 72.3 84.7 94.9 66.4 74.5 81.8 92.0
Lateral wall of nasal cavity (LWNC), R 68.6 73.7 83.2 94.9 73.0 81.8 88.3 94.2
Jugal process (JG), L 57.7 70.8 80.3 92.7 69.3 76.6 80.3 89.8
Jugal process (JG), R 70.8 78.8 83.2 94.9 66.4 73.0 81.8 91.2
Condyle (Co), L 32.8 45.3 52.6 68.6 36.5 48.2 53.3 67.2
Condyle (Co), R 32.8 45.3 54.0 67.9 38.7 48.9 55.5 70.1
Gonial (Go), L 92.7 97.8 98.5 99.3 90.5 97.1 97.8 100.0
Gonial (Go), R 96.4 97.8 100.0 100.0 94.2 97.8 99.3 100.0
Antegonial notch (AGL), L 95.6 98.5 98.5 100.0 81.0 90.5 94.9 99.3
Antegonial notch (AGL), R 93.4 96.4 99.3 100.0 86.9 93.4 97.1 100.0
Crista Galli (CG) 62.8 73.0 79.6 87.6 59.1 68.6 76.6 86.1
Nasal Septum (NS) 70.8 79.6 86.9 92.7 67.9 78.8 85.4 92.7
Anterior Nasal Spine (ANS) 76.6 84.7 90.5 97.8 81.8 90.5 93.4 96.4
A point (A) 69.3 81.0 85.4 91.2 65.7 73.7 83.2 92.0
Menton (Me) 82.5 92.0 98.5 98.5 80.3 92.7 96.4 99.3
Upper central incisor tip (UC1T), L 87.6 94.2 97.8 100.0 92.7 96.4 97.8 99.3
Upper central incisor tip (UC1T), R 90.5 95.6 99.3 99.3 88.3 94.9 98.5 100.0
Upper central incisor root (UC1R), L 68.6 86.9 93.4 97.8 69.3 82.5 90.5 95.6
Upper central incisor root (UC1R), R 78.8 87.6 94.9 97.8 67.9 76.6 89.1 97.8
Upper central incisor mesial (UC1M), L 84.7 94.9 97.1 100.0 85.4 91.2 95.6 100.0
Upper central incisor mesial (UC1M), R 89.8 93.4 96.4 98.5 85.4 91.2 94.2 99.3
Lower central incisor tip (LC1T), L 71.5 83.9 91.2 97.8 71.5 81.0 86.9 92.7
Lower central incisor tip (LC1T), R 67.9 81.8 89.8 96.4 71.5 78.8 86.9 93.4
Lower central incisor root (LC1R), L 70.1 81.0 90.5 97.8 67.2 78.8 88.3 94.9
Lower central incisor root (LC1R), R 71.5 83.2 90.5 97.8 75.9 83.2 89.1 95.6
Lower central incisor mesial (LC1M), L 63.5 79.6 87.6 95.6 58.4 70.8 82.5 89.1
Lower central incisor mesial (LC1M), R 67.2 81.0 88.3 96.4 58.4 73.0 80.3 88.3
Upper cuspid tip (UC3T), L 50.4 62.0 73.0 85.4 53.3 67.2 74.5 88.3
Upper cuspid tip (UC3T), R 49.6 64.2 73.0 85.4 61.3 72.3 81.0 86.9
Lower cuspid tip (LC3T), L 62.8 76.6 82.5 90.5 66.4 78.1 84.7 94.9
Lower cuspid tip (LC3T), R 67.9 75.9 82.5 89.8 69.3 78.8 84.7 92.7
Upper molar buccal cusp (UM6BC), L 61.3 73.7 82.5 89.1 68.6 82.5 87.6 92.7
Upper molar buccal cusp (UM6BC), R 52.6 62.0 73.0 89.1 70.1 80.3 86.9 92.0
Upper molar buccal root (UM6BR), L 32.8 48.9 63.5 76.6 38.7 52.6 63.5 79.6
Upper molar buccal root (UM6BR), R 38.7 51.8 67.2 86.1 48.9 59.9 67.9 84.7
Lower molar buccal cusp (LM6BC), L 55.5 72.3 80.3 88.3 68.6 75.9 83.9 91.2
Lower molar buccal cusp (LM6BC), R 59.9 68.6 81.8 89.8 70.8 81.0 89.1 92.7
Lower molar buccal root (LM6BR), L 41.6 50.4 61.3 76.6 44.5 56.9 65.0 79.6
Lower molar buccal root (LM6BR), R 44.5 53.3 58.4 74.5 48.9 59.9 68.6 83.2
Average 68.2 78.4 85.3 92.5 68.1 78.2 84.7 92.1
SDR, Success Detection Rate
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that the results apply to a broader clinical population 
rather than to an idealized subset [26].

This work introduced a new method for accurately and 
automatically detecting PA cephalometric landmarks 
using a deep learning system. The suggested model’s 
accuracy and reliability were compared to an human 
examiner.

Our study’s findings indicate that the accuracy and 
reliability of the developed AI model are at the similar 
level as that of a human expert. While AI identification 
was superior in four skeletal points, manual identifica-
tion was superior in one skeletal point and seven dental 
points. Differences (M1-M2)—(M1-AI) varied between 
0.18 mm and 0.66 mm. Although statistically significant 
differences were demonstrated, they were not clinically 
important. These results suggest that using AI technol-
ogy significantly enhances the efficiency and precision of 
cephalometric analysis by automatically identifying land-
marks, lowering the time and effort needed.

It is important to note that the deviation of distance 
errors along a certain axis holds greater significance for 
some points. Therefore, the distribution of errors in the 
horizontal and vertical planes has been addressed sepa-
rately. Most of the points in both M2 and AI varied in the 
y-axis direction according to the M1 in the present study.

Both vertical and horizontal deviations of points on 
PAs are important for assessing facial skeletal asymme-
try, especially in diagnosis. The amount of chin deviation 
was associated with the absolute differences of the left 
and right antegonial point to the y-axis and the zygomati-
cofrontal suture to the x-axis in the study by Fong et al. 
[28].

Turning to the limitations of our work: The gold stan-
dard PA cephalometric landmark measurements were 
those of a single (not several) orthodontist(s), and single-
center data may not be generalizable. One limitation of 
this study is that the average SDRs for AI were calculated 
within 2.0, 2.5, 3.0, and 4.0  mm, respectively; however, 
they were not assessed within 1.0  mm. The localiza-
tions of the points were evaluated, but the study was not 
focused on clinical diagnosis.

Conclusions

1.	 The cascade CNN algorithm auto-identified 47 
PA cephalometric landmarks. The point-to-point 
error (mean 1.84 mm) was clinically acceptable. The 
landmark average SDRs were 68.2% within 2.0 mm 
and 92.5% within 4.0 mm.

2.	 The algorithm automatically identified PA 
cephalometric landmarks; this is an effective 
alternative to manual identification.
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3.	 Although all MREs were below 4 mm, the thresholds 
of only 33 landmarks were below the acceptable 
upper bound of 2 mm.

4.	 The MREs of the (L, R) condyles, the crista galli, the 
(L) jugal processes, the (L, R) upper cuspids, and all 
(L, R) molars exceeded 2 mm, and differed markedly 
between the AI- predicted and manual methods.
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