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Abstract. The present work is inherent to the NUMEN project that aims at providing data-driven information
for the nuclear matrix elements of the neutrinoless double beta decay through the study of heavy-ion induced
double charge exchange reactions. This is a formidable task since during a nuclear collision, the same final
states may be populated through various reaction mechanisms. In this respect, understanding the degree of
competition between successive nucleon transfer and charge exchange reactions is crucial for the proper de-
scription of the meson-exchange mechanism. To this purpose, the reaction dynamics in the 18O+48Ti collision
were sought by measuring a plethora of reaction channels under the same experimental conditions. The 48Ti
was chosen as target since it is the daughter nucleus of 48Ca in double beta decay. The relevant experiment was
performed at the MAGNEX facility of INFN-LNS in Catania. In this contribution, the status of the analysis for
the 48Ti(18O,18F)48Sc single charge exchange reaction will be presented.

1 Introduction

The interest of the Physics community in the neutrinoless
double beta (0νββ) decay is considerable [1]. If such a de-
cay was to be observed, it would confirm that neutrinos
are their own anti-particles. Furthermore, the decay rate
of this process would allow to determine the neutrino av-
erage mass, if the nuclear matrix elements (NMEs) were
known with sufficient precision, but the NMEs are not ex-
perimental observables and the various theoretical models
predict values for the NMEs which are consistent to each
other within a factor of 3 [2]. For this purpose, more ex-
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perimental data are necessary to provide the appropriate
constraints for reducing such discrepancies.

On the above grounds, the NUMEN (NUclear Matrix
Elements for Neutrinoless double β decay) project [3] pro-
poses a novel experimental approach for shedding light on
the nuclear aspects of 0νββ decay, through the study of
heavy-ion induced double charge exchange (DCE) reac-
tions at energies well-above the Coulomb barrier [4]. Con-
trary to the case of other large-scale experimental cam-
paigns [5–8], NUMEN aims at studying all the isotopes
candidates for 0νββ decay. The lightest isotope candidate
for this exotic process is 48Ca which decays to the ground
state of 48Ti [9]. In this sense, all possible information
about the structure of the 48Ti nucleus are important for
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Figure 1. Nuclear reaction network measured in the 18O+48Ti
collision at 275 MeV. Arrows indicate the reaction paths con-
necting the initial and final channels. The cyan curved arrow
represents the elastic and inelastic scattering reactions. Figure
taken from Ref. [10]

the determination of the corresponding NMEs. The choice
of DCE as surrogate reactions for studying the 0νββ decay
stems from the fact that, despite some differences, the two
processes probe the same initial- and final-state nuclear
wavefunctions [3, 11]. However, possible contributions
to the measured DCE cross-section from other competing
mechanisms cannot be "a priori" excluded.

In general, the DCE mechanism consists of three pos-
sible reaction modes: The direct meson-exchange DCE
reaction, the double single charge exchange (DSCE) reac-
tion [12] and the multi-nucleon transfer reactions [13–19].
All these reaction pathways may in principle populate the
same final states, but only the first is connected to the 0νββ
decay. Therefore, it is very important to quantify possible
contributions from DSCE and/or multi-nucleon transfer to
the measured DCE cross-sections [20], in order to provide
with meaningful constraints on the nuclear structure theo-
ries for the description of the 0νββ decay [4, 11].

On the above grounds, in the present work which is
part of the NURE project [21], the 18O+48Ti collision was
studied by measuring in the same experiment the DCE
reaction together with all competing processes. Further-
more, the study of elastic and inelastic scattering chan-
nels was performed for determining the initial state inter-
action [22]. A photo of the complete reaction network in-
vestigated in the present experimental campaign is shown
in Figure 1. This contribution provides for the first time
an overview of the analysis of the 48Ti(18O,18F)48Sc sin-
gle charge exchange reaction (SCE). The analyses of elas-
tic scattering [22] and single nucleon transfer reactions
[10, 23] have been already completed, while for the case
of the DCE and two-nucleon transfer reactions [24] the
analyses proceed in parallel to the present one.

2 Experimental details

The experiment was conducted at the MAGNEX facility
[25] of the Istituto Nazionale di Fisica Nucleare - Lab-
oratori Nazionali del Sud (INFN-LNS) in Catania. The
18O8+ ion beam of 275 MeV was provided by the K800
Superconducting Cyclotron and bombarded a 510 µg/cm2

thick 48Ti oxide target (TiO2) enriched at 99.8%, which
was evaporated onto a thin aluminum backing. Auxiliary
measurements using a self-supporting 27Al target and a
WO3 one with an aluminium backing were also repeated
for subtracting background events in the spectra obtained
with the TiO2 +

27Al target. The reaction products were
momentum analyzed by the MAGNEX large acceptance
magnetic spectrometer and identified with the Focal Plane
Detector (FPD) [26]. In more details, the energy loss
(∆Etot) and the horizontal position (X f oc) of the ions were
measured by means of a proportional drift chamber, while
a wall of 60 silicon detectors was used to measure the ions
residual energy (Eresid). Using the information provided
by the FPD, the particle identification (PID) is performed
following the prescription reported in Ref. [27]. Figure 2
shows two representative PID spectra for the case of the
48Ti(18O,18F)48Sc SCE reaction. Adopting the ∆E-E tech-
nique the ions are discriminated in atomic number consid-
ering that the stopping power of charge particles in matter
is mediated by the Bethe-Bloch formula, while in the X f oc-
Eresid representation ions with different ratio m/q2 lay on
a different band, since the position of the ions along the
dispersive axis of a spectrometer is related to the residual
energy as:

X f oc ∝

√
2mE
q

(1)

with m, E and q being the mass, kinetic energy and charge
state of the ion, respectively.

3 Data reduction

Having completed the identification of the SCE events, the
analysis of the final space parameters was performed. In
Figure 3, a typical θ f oc-X f oc correlation plot is shown. The
first group of events appears in the spectrum at X f oc∼ 0.20
m, while some intense loci are well-pronounced at X f oc∼

0.10 m. Since in the present experiment a TiO2 +
27Al tar-

get was used, the event distribution on the θ f oc-X f oc plot
is a convolution of events coming from three different re-
action channels. The identification of each reaction chan-
nel was performed by means of Monte Carlo simulations,
taking into account the reaction kinematics and the spatial
distribution of the dipole and quadrupole magnetic fields.
A comparison between experimental and simulated spec-
tra is shown in the right-hand panel of Figure 3. As it can
be seen, the agreement between experimental and simu-
lated data is very good suggesting the validity of the dipole
and quadrupole magnetic fields which are important ingre-
dients for the trajectory reconstruction [28]. As regards the
SCE reaction on 48Ti, it can be seen that the ground state
(g.s.) region (i.e. cyan simulated locus) is characterized
by low statistics, while the intense loci at X f oc∼ 0.10 m
are originated from the 16O(18O,18F)16N reaction.
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Figure 2. Particle identification for the 48Ti(18O,18F)48Sc single charge exchange reaction at 275 MeV. Left panel) A representative
∆Etot - Eresid plot gated by one silicon detector of the FPD. The fluorine contour is highlighted with the solid black line. Right panel)
A correlation plot between the horizontal position at the focal plane of the spectrometer, X f oc, and the Eresid for the identified fluorine
ions of the left panel. The 18F9+ events are indicated by the solid red line.

Figure 3. Left panel) Correlation plot between the horizontal angle (θ f oc) and position (X f oc) at the focal plane of MAGNEX for the
identified 18F9+ ions. Right panel) Comparison between experimental and simulated data in the θ f oc-X f oc representation. The red, cyan
and green curves correspond to the simulated SCE events originating from the interaction of the beam with the 27Al, 48Ti and 16O
target components, respectively. For the reaction on 16O, transitions to the first 4 excited states of 18F ejectile were simulated while, for
reasons of clarity, only the g.s. to g.s. transition was simulated for the case of the SCE reaction on 27Al and 48Ti.

After the determination of the dipole and quadrupole
magnetic fields, a software ray reconstruction was applied
to the identified data and the initial phase space parame-
ters at the laboratory reference frame (θlab, kinetic energy)
were obtained from the measured parameters at the ref-
erence frame of the focal plane (θ f oc, ϕ f oc, X f oc). Since
the reaction we are interested in is binary one, the exci-
tation energy, Ex, of the system was determined adopting
the missing mass method [25]:

Ex = Q0 − Q, (2)

with Q0 being the g.s. to g.s. Q-value and Q a kine-
matic term including the reconstructed kinetic energy of
the ejectiles and the masses of the nuclei at the exit chan-
nel. The reconstructed scattering angle as a function of
the excitation energy for the SCE events measured with
the TiO2 +

27Al target is shown in Figure 4. As it is

known, the excitation energy does not depend on the scat-
tering angle and thus, one should expect only vertically-
oriented loci for the various excited states. However, since
all events were reconstructed considering the kinematics
of the 48Ti(18O,18F)48Sc reaction, events coming from the
reaction of the beam with the aluminum and oxygen com-
ponents of the target appear as inclined loci due the dif-
ference in mass. In correspondence to Figure 3, the solid-
red curve corresponds to the g.s. in the 27Al(18O,18F)27Mg
reaction, while the dashed-green curve to the g.s. in the
16O(18O,18F)16N reaction. Additionally, the loci corre-
sponding to the ground states in the reactions on aluminum
and oxygen appear shifted with respect to zero, due to the
difference in the Q0 with respect to the reaction on 48Ti tar-
get which is ∆Q0= -1.4 and +6.5 MeV, respectively. The
analysis of the experimental data is still ongoing. The next
step includes the subtraction of the background yields us-
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ing the data obtained with the self-supporting aluminum
target as well as the WO3 +

27Al one and subsequently de-
duce the SCE energy distribution corresponding solely to
the 48Ti(18O,18F)48Sc reaction.

Figure 4. Preliminary reconstructed θlab-Ex correlation plot for
the SCE events measured with the TiO2 +

27Al target. The in-
clined loci denoted with the solid-red and dashed-green curves
correspond to the g.s. events from the 27Al(18O,18F)27Mg and
16O(18O,18F)16N reactions, respectively.

4 Summary

A global study of the 18O+48Ti collision was performed
under the NUMEN and NURE experimental campaigns
by measuring a wide ensemble of reaction channels.
The present manuscript is dedicated to the study of the
48Ti(18O,18F)48Sc single charge exchange reaction. The
experiment was conducted at INFN-LNS in Catania em-
ploying the MAGNEX large acceptance magnetic spec-
trometer. The 18F9+ ions were well-discriminated among
other reaction products by means of the ∆E-E technique
in conjunction with the X f oc-Eresid plot, the latter for the
isotope separation. A preliminary spectral analysis in-
dicates low-yields for the g.s. to g.s. transition in the
48Ti(18O,18F)48Sc reaction presumably with a continuous
energy distribution due to the high density of states of 18F
and 48Sc nuclei. The latter remains to be confirmed after
the subtraction of background yields is completed. The re-
sults of this analysis are important to the NUMEN project,
since they will help to clarify the degree of competition be-
tween sequential and direct meson-exchange mechanisms.
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