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1. Introduction
The necessity of meeting the food demands of a rapidly 
growing global population expected to exceed 9 billion 
by 2050 presents critical challenges, intensified by climate 
change and the growing demand for biofuels (Kumar, 

2020; Ali et al., 2022; Ahmed et al., 2023). To address 
these concerns, it is estimated that grain production will 
need to increase by up to 50% by 2025, necessitating the 
development of crop varieties with improved agronomic 
traits (Kumar et al., 2020). These traits, which include stress 

Abstract: In modern plant breeding, molecular markers have become indispensable tools, allowing the precise identification of genetic 
loci linked to key agronomic traits. These markers provide critical insight into the genetic architecture of crops, accelerating the selection 
of desirable traits for sustainable agriculture. This review focuses on the advancements in quantitative trait locus (QTL) mapping and 
genome-wide association studies (GWASs), highlighting their effective roles in identifying complex traits such as stress tolerance, yield, 
disease resistance, and nutrient efficiency. QTL mapping identifies the significant genetic regions linked to desired traits, while GWASs 
enhance precision using larger populations. The integration of high-throughput phenotyping has further improved the efficiency and 
accuracy of QTL research and GWASs, enabling precise trait analysis across diverse conditions. Additionally, next-generation sequencing, 
clustered regularly interspaced short palindromic repeats (CRISPR) technology, and transcriptomics have transformed these methods, 
offering profound insights into gene function and regulation. Single-cell RNA sequencing further enhances our understanding of plant 
responses at the cellular level, especially under environmental stress. Despite this progress, however, challenges persist in optimizing 
methods, refining training populations, and integrating these tools into breeding programs. Future studies must aim to enhance genetic 
prediction models, incorporate advanced molecular technologies, and refine functional markers to tackle the challenges of sustainable 
agriculture.
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tolerance, yield optimization, and nutrient efficiency, are 
governed by complex interactions between multiple genes 
and environmental factors. Understanding these complex 
traits at the genetic level through quantitative trait locus 
(QTL) mapping and genome-wide association studies 
(GWASs) has become crucial for advancing plant breeding 
(Colasuonno et al., 2021; Zahid et al., 2022). These targeted 
approaches facilitate the integration of desirable traits 
through marker-assisted selection (MAS) and genomic 
prediction, driving the development of crop varieties that 
maintain high productivity under environmental stresses. 

QTL mapping is a powerful tool in plant breeding, 
employed to explore the genetic architecture of complex 
traits and identify candidate genes (Andrade et al., 2020). 
Significant and stable QTLs identified across diverse 
genetic and environmental contexts are valuable resources 
for future gene cloning efforts and the development 
of molecular markers relevant to breeding programs. 
Traditional breeding techniques, such as mutation 
breeding and MAS using molecular markers, have 
broadened the genetic pool for crop improvement by 
facilitating the introgression of desirable traits (Ahmar et 
al., 2020). Advanced methods including GWASs, clustered 
regularly interspaced short palindromic repeats (CRISPR) 
technology, next-generation sequencing (NGS), and meta-
analysis are poised to further enhance the precision and 
efficiency of modern plant breeding. Comparative studies 
have highlighted the distinct advantages of QTL mapping 
and GWASs in genetics (Mace et al., 2019; Alqudah et al., 
2020). While QTL mapping is effective for pinpointing 
genomic regions associated with traits within specific 
populations (Khan et al., 2021), it has limitations including 
a dependence on allelic variation between parental lines 
and limited mapping resolution (Figure 1) (Sahito et al., 
2024). GWASs overcome these limitations by assessing 
genetic associations across larger and more diverse 
populations. 

GWASs are considered to be highly effective and 
promising for understanding complex traits (Uffelmann et 
al., 2021). In recent years, GWASs have been increasingly 
utilized in the study of various crop species, including 
sorghum (Wondimu et al., 2023),  wheat (Hanif et al., 
2021),  soybean (Priyanatha et al., 2022),  rice (Ma et 
al., 2016),  pearl millet (Yadav et al., 2021b), and barley 
(Ogrodowicz et al., 2023), demonstrating its potential 
to enhance our understanding of genetics and trait 
improvement. The choice between QTL mapping and 
GWASs in breeding programs depends on the specific 
goals, trait complexity, and resources. QTL mapping is 
suitable for traits with major-effect loci in controlled 
crosses or with known parental lines, but lower resolution 
makes it less suitable for identifying minor-effect loci 
across diverse populations. GWASs are ideal for the study 
of polygenic traits influenced by multiple loci but they 
require large, well-characterized populations. This review 
aims to provide a comprehensive overview of recent 
advancements in QTL mapping and GWAS applications 
in plant improvement, with a specific focus on how these 
tools contribute to developing crop varieties resilient 
to environmental challenges with enhanced agronomic 
performance. By summarizing these innovations, this 
review seeks to underscore the transformative potential 
of QTL mapping and GWASs in addressing future food 
security and agricultural sustainability.

2. Advancements in sequencing technologies
2.1. Transcriptomics
The word “transcriptome” refers to all of the mRNA 
molecules produced by a cell or a group of cells 
(McGettigan, 2013). This concept was first introduced 
by Charles Auffray in 1996 (Piétu et al., 1999) and 
subsequently appeared in a scientific article in 1997 
(Velculescu et al., 1997). Transcriptomics encompasses 
the methods used to study an organism’s transcriptome, 

Figure 1. Comparison of QTL mapping and GWASs. 
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which includes all the RNA transcripts it generates. 
The genetic information of an organism is stored in its 
genomic DNA and expressed through a process called 
transcription. Understanding these transcripts, along 
with how genes are regulated and expressed, is crucial 
for addressing key issues in biology. Over the years, 
transcriptomics research has grown significantly due to 
rapid advancements in sequencing technologies (Abdel-
Ghany et al., 2016).

In particular, short-read sequencing technologies 
(e.g., Illumina and NGS) have transformed the field, 
offering greater accuracy and higher data output than 
earlier methods like microarrays. The introduction of 
NGS from 2004 to 2006 marked a turning point, leading 
to a dramatic increase in the amount of sequencing data 
available for research (Mardis, 2013). Nanotechnology 
innovations have increased output by enabling parallel 
DNA molecule sequencing, allowing for higher 
throughput and improved accuracy via miniaturized 
platforms that facilitate the simultaneous processing 
of multiple samples and the sequencing of single DNA 
molecules (Hu et al., 2021b). 

The dominance of RNA-Seq technology began in 2008 
with the publication of significant studies that utilized 
newly developed short-read technology from Solexa, now 
known as Illumina (Mortazavi et al., 2008). Illumina’s 
NGS technology utilizes sequencing by synthesis with 
fluorescently labeled reversible terminator technology 
(Mardis, 2013). Clonal amplification of DNA libraries 
is done through bridge amplification polymerase chain 
reaction (PCR), managed by the sequencing instrument. 
Sequencing involves optical detection of fluorescent 
nucleotides attached to a reversible terminator by DNA 
polymerase. Illumina NGS technologies assist in paired-
end sequencing, allowing the development of high-
quality data with deep coverage and numerous reads 
(Gandhi et al., 2017).

Third-generation sequencing platforms, such as 
Pacific Biosciences and Oxford Nanopore technologies, 
offer read lengths exceeding 10 kb, far surpassing those of 
Sanger and short-read sequencing methods. These “long-
read” technologies address the challenges associated 
with short-read sequencing, such as the resolution of 
genome-wide repeats or detection of structural variants. 
Unlike second-generation methods, third-generation 
sequencing requires minimal library preparation and 
directly targets unfragmented DNA molecules in 
real time, with the primary limitation being the need 
for high-molecular-weight DNA. While early third-
generation technologies had lower accuracy compared 
to second-generation methods, ongoing improvements, 
particularly in software analysis, have steadily enhanced 
their accuracy (Hu et al., 2021b).

PacBio sequencing employs SMRT technology, utilizing 
fluorescently labeled nucleotides to enable the sequencing 
of long DNA fragments extending to lengths of several tens 
of kilobases (Satam et al., 2023). At the heart of PacBio’s 
DNA sequencing innovation lies zero-mode waveguide 
(ZMW) technology, initially detailed in a 2003 Science 
article co-authored by Webb and Craighead (Wang et al., 
2023). This method employs PacBio’s SMRT technology, 
which involves affixing the polymerase enzyme to the 
base of a ZMW well. By utilizing a single DNA strand as 
a template, the polymerase integrates fluorescently labeled 
nucleotides. Each nucleotide carries a distinct fluorescent 
dye that emits a signal when it traverses the ZMW. A 
detector captures this fluorescent signal, identifying the 
nucleotide by analyzing the color of the emitted light. The 
polymerase incorporates the nucleotide and then removes 
the fluorescent tag, allowing the sequencing to proceed.

Plant transcriptomic approaches are widely used to 
examine how plants respond to different stress factors. 
Analyses in this field have revealed significant changes 
in gene expression when plants face environmental 
challenges (Javed et al., 2020). The growing adoption of 
transcriptomics for gathering genetic data is attributed to 
its rapid, comprehensive, and efficient capabilities. This 
technology facilitates the identification of new functional 
genes, exploration of secondary metabolite pathways, and 
understanding of plant developmental processes, offering 
essential insights for plant breeding (Tyagi et al., 2022). 
Transcriptomic studies have been performed on many 
plant species including Arabidopsis thaliana, rice, oat, and 
maize, and they have been conducted in diverse research 
areas such as stress responses, developmental biology, 
and disease resistance (Kumar, 2020; Ahmed et al., 2022). 
The dominance of RNA-Seq technology began in 2008, 
revolutionizing transcriptomic analyses by enabling the 
high-throughput sequencing of RNA, thereby facilitating 
a deeper understanding of gene expression dynamics in 
these species.
2.2. Single-cell sequencing
Recent advancements in sequencing technologies have 
created new opportunities for obtaining valuable insights 
into diverse biological systems (Pazhamala et al., 2021; Sun 
et al., 2022). Notably, single-cell RNA sequencing (scRNA-
Seq) enables the analysis of gene expression at the single-
cell level (Sun et al., 2024). This approach provides higher 
resolution compared to traditional bulk sequencing, 
allowing for the detection of cellular heterogeneity within 
various biological tissues and systems that was inaccessible 
by bulk sequencing (Kolodziejczyk et al., 2015; Lim et al., 
2024). Recently, reductions in cost and improvements in 
protocol efficiency have resulted in a significant rise in 
the number of scRNA-Seq datasets utilized in biological 
research (Svensson et al., 2020; Pullin and McCarthy, 
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2024). Concurrently, there has been a marked increase in 
the number of methods developed for analyzing scRNA-
Seq data. As of July 2023, over 1500 tools were available to 
perform various steps in scRNA-Seq data analysis (Zappia 
et al., 2018; Zappia and Theis, 2021).

The isolation of single cells in scRNA-Seq necessitates 
the use of precise techniques (Giacomello, 2021). Serial 
dilution, micropipette aspiration, fluorescence-activated 
cell sorting (FACS), and microfluidic systems are some 
of the options that can be used depending on the needs 
of the experiment (Arsenio et al., 2020; Pensold and 
Zimmer-Bensch, 2020). FACS is efficient for sorting 
cells but may cause damage, whereas laser capture 
microdissection maintains spatial information but is 
technically challenging (Kamme at al., 2003; Hu et al., 
2016). Microfluidic approaches offer high throughput and 
automation. The choice of method depends on the specific 
needs of the experiment, requiring a careful balance of 
precision, efficiency, and cost (Kolodziejczyk et al., 2015).

The capture of RNA and the synthesis of cDNA begin 
with reverse transcription. Most published protocols 
employ oligo(dT) priming, which selectively targets 
polyadenylated mRNAs and a subset of long noncoding 
RNAs (approximately 40%) (Yang et al., 2011). This method 
effectively avoids capturing ribosomal RNA (rRNA), which 
constitutes over 95% of the total RNA in mammalian 
cells (Slomovic, 2006). Unique molecular identifiers, or 
random sequences acting as barcodes to track individual 
transcripts, are incorporated into cDNA synthesis (Kivioja 
et al., 2011). Yang et al. (2024) added sequencing adapters 
to ensure compatibility with the sequencing platform. 
Several techniques can synthesize the second strand after 
converting RNA to first-strand cDNA. SMART technology 
is one way to do that. It uses the transferase and strand-
switching abilities of M-MLV reverse transcriptase (i.e., 
Moloney murine leukemia virus reverse transcriptase) 
to add template-switching oligonucleotides as adaptors 
for further PCR amplification (Zhu et al., 2001). This 
approach forms the basis of protocols such as Smart-
Seq2, Smart-Seq, and STRT-Seq. Alternatively, the 5′ end 
of cDNA can be ligated with poly(A) or poly(C) to create 
universal adaptors for PCR amplification. PCR remains a 
popular method for amplifying cDNA from low amounts 
of starting material.

Single-cell sequencing in plants is an innovative 
technique that facilitates the in-depth analysis of gene 
expression and cellular heterogeneity at the individual cell 
level (Ali et al., 2024b). This method is particularly useful 
for elucidating the complexities of plant tissues and their 
responses to various environmental stimuli. Researchers 
have used single-cell sequencing to explore the diversity 
of cell types in various plant tissues (Yu et al., 2023). For 
instance, it can distinguish among various cell types in 

leaves, roots, and flowers, thereby revealing specialized 
functions and regulatory mechanisms. This technique is 
also critical for understanding plant development, as it 
enables researchers to monitor changes in gene expression 
during key developmental phases, such as germination 
and flowering. Additionally, single-cell RNA sequencing 
has been utilized to examine how individual plant cells 
respond to environmental stresses, including drought, 
salinity, and pathogen attacks, thereby uncovering specific 
pathways activated in response to these stressors at the 
cellular level (Bawa et al., 2022).

3. Quantitative trait loci mapping
Identifying QTLs and associated genetic markers linked to 
key traits is crucial for enhancing genetic gains in breeding 
programs (Tables 1 and 2). QTL mapping serves as a 
fundamental method for pinpointing the genetic regions 
responsible for traits of interest, thereby accelerating 
the selection process and improving breeding efficiency 
(Kumar et al., 2017; Sharma et al., 2023; Altaf et al., 2024a). 
Mapping QTLs helps understand the contribution of QTLs 
to trait variation as well as their additive and dominant 
effects, genetic correlations, and interactions with 
environments (David et al., 2023). These investigations are 
related to quantitative genetics applications like MAS and 
marker-assisted gene introgression.
3.1. Prerequisites for QTL mapping
Mapping QTLs in populations based on familial 
relationships consists of the following essential steps: 1) 
establishing a suitable mapping population and accurately 
phenotyping traits; 2) choosing appropriate molecular 
markers and collecting molecular data with a sufficient 
quantity of evenly distributed polymorphic markers; and 
3) creating genetic linkage maps to pinpoint QTLs via 
statistical methods. The effectiveness of QTL mapping is 
determined by the size of the mapping population and the 
precision of both genotyping and phenotyping data (Snehi 
et al., 2024). The availability of comprehensive genomic 
resources, including molecular markers as well as genetic 
and physical maps, has enhanced the QTL and gene 
mapping processes (Vishwakarma et al., 2017).
3.2. QTL mapping strategies 
Marker-based mapping experiments follow a fundamental 
strategy across different studies (Altaf et al., 2024b). 
Initially, the selection of parents that differ in terms of the 
target trait is crucial. The next step involves screening the 
two parents for marker loci to identify polymorphisms. 
Once this is achieved, mapping populations such as F2 
populations, backcrosses, recombinant inbred lines (RILs), 
or double haploid lines are developed. These populations are 
then subjected to phenotype screening. Subsequently, the 
means of homozygous dominant (MM) and homozygous 
recessive (mm) lines are compared at each marker locus. 



ALTAF et al. / Turk J Bot

380

Table 1. List of QTLs for abiotic stress among various crops.

Stress Crop Population Traits Marker QTL/gene/
marker Chromosome Reference

Drought Wheat Cranbrook × 
Halberd

Osmotic stress 
spike  SNP IWB72377 2A Dolferus et al. 

(2019)

  Wheat   Stress tolerance 
trait SNP VRN-A1 5A  

  Wheat Excalibur × Kukri Yield -  QYld.aww-1B.2 1B Tura et al. 
(2020)

  Wheat

Chinese Spring × 
SQ1 
(Highbury × 
TW269/9/3/4)

Yield SSR Qyld.csdh.7AL 7A Gautam et al. 
(2021)

  Wheat Reeder × Albany Thousand-kernel 
weight SNP  QTW.ndsu.7B 7B Rabbi et al. 

(2021)

  Wheat   Yield SNP  QYL.ndsu.2B, 
QYL.ndsu.7B 2B, 7B  

  Rice MRQ74 and 
MR219 Grain yield SSR qDTY12.1 12 Mohd Ikmal et 

al. (2019)

    13 parents Grain yield RFLP, 
SSR

qDTY1.1, 
qDTY3.1 1,2, 3

Selamat and 
Nadarajh 
(2021)

    Cocodrie × N22 Grain number 
per panicle SNP, SSR qGN3.1, qGN3.2, 

qGN5.1 3, 5 Baisakh et al. 
(2020)

  Maize Langhuang × 
TSI41

Ear height/plant 
height ratio RFLP qEHPH-Ch.3-1 3 Zhao et al. 

(2019)

    H082183 × Lv28 Ear weight - qEW1s 1 Abdelghany et 
al. (2019)

      Hundred-kernel 
weight - qHKW7s 7  

    RILs - SSR, SNP Pv01 and 08 - Diaz et al. 
(2018)

  Lentil RILs - AFLP, 
SNP QRSAVII: 21.94 - Idrissi et al. 

(2016)

  Chickpea - - SSR

CaLG01, 
CaLG02, 
CaLG06, and 
CaLG08

- Varshney et al. 
(2013)

    RILs - SSR Q1-1 and Q3-1 - Rehman et al. 
(2011)

Cold stress Rice Dongnong422 × 
Kongyu131 Percent seed set SSR qPSST6 6 Sun et al. 

(2018)

  Maize B73 × Mo17 (IBM) Plumule length - qLTPL1-1 1 Han et al. 
(2022)

      Seedling length - qLTSL1-1 3  

    80 inbred lines 
W72 × W10

Peroxidase 
activity at 
seedling stage

SNP qPOD3 3 Jin et al. (2021)

  Wheat - Frost resistance RFLP FR-2 5A Würschum et 
al. (2017)
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Table 1. (Continued.)

    Norstar × Winter 
Manitau

Low-temperature 
tolerance SNP

QLT50.usw-
5A.1nm, QLT50.
usw-5A.2nm

5A

Fowler et al. 
(2016)

    Capelle Desprez × 
Norstar 

Low-temperature 
tolerance SNP QLT50.usw-

5A.1nc 5A

    Norstar × Winter 
Manitau

Low-temperature 
tolerance SNP QLT50.usw-5A.1 5A

   
Triticum spelta 
5A × 
Cheyenne 5A 

Frost resistance - FR2 5D Snape et al. 
(2001)

  Tomato - - -
qRGI-1-1, qRGI-
1-2,  
qRGI-12-1

 1, 4, 9, 12 Liu et al. 
(2016a)

Heat stress Tomato Biparental F2 - SNP

qPV11, qPN7, 
qSP1, qSP3, 
qAL1, qIN1, 
qIN8

1, 2, 3, 7, 8, 11 Xu et al. (2017)

    Diversity panel - SNP 15 markers - Ruggieri et al. 
(2019)

  Potato Diploid mapping 
population - SNP 3 QTLs - Trapero-Mozos 

et al. (2018)

  Bottle gourd F2 population - SNP qHT1.1, qHT2.1, 
and qHT8.1 1, 2, 5, 6, 7, 8 Song et al. 

(2020)

Salinity 
stress Maize

Xianyu335 
(PH6WC × 
PH4CV)

Root length SNP qRLS1, qRLR1 1 Luo et al. 
(2019)

      Shoot length SNP qSLS1-2 1 Luo et al. 
(2019)

      Full length SNP qSLS1-2 1 Luo et al. 
(2019)

      Root fresh 
weight SNP qRFS1 1 Luo et al. 

(2019)

      Full fresh weight SNP qRFS1 1 Luo et al. 
(2019)

    PH6WC × PH4CV Plant height SNP  qSPH1 1 Luo et al. 
(2017)

  Wheat Kharcia65 × 
HD2009 Plant height SSR QSph.iiwbr-6A 6A Devi et al. 

(2019)

      Date of flowering SSR  QSdth.iiwbr-2D 2D  

    WTSD91 × WN-
64 Na+ exclusion SNP qSNAX.2A.1, 

qRNAX.7A.3 2A, 7A Hussain et al. 
(2017)

    Line 149 × Tamaroi
Leaf blade low 
Na+ 
concentration

AFLP, 
RFLP NAX1  2A Lindsay et al. 

(2004)

  Rice Pokkali × IR29 Na/K+ 
absorption rate RFLP Salto 1 Karahara and 

Horie (2021)

Pea RILs - SNP LG3 3, 7 Leonforte et al. 
(2013)
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Table 1. (Continued.)

Tomato - - SSR 1 QTL 6 Liu et al. (2021)

Cucumber - - SSR - 3 Kere et al. 
(2017)

Chickpea RILs - SSR CaLG05 and 07 - Pushpavalli et 
al. (2015)

F2 Population - SSR LG1 - Chankaew et al. 
(2014)

RILs - SSR LG3, LG6, and 
LG4 - Vadez et al. 

(2012)

Cowpea F2:5 - RFLP, 
SSR LGN - Lee et al. (2004)

Flooding 
stress Rice ID72 × Madabaru Submergence 

tolerance SSR
qSub1.1, qSub2.1, 
qSub9.1, 
qSub12.1

1, 2, 9, 12 Septiningsih et 
al. (2012)

IR40931-26 × 
PI543851FR13A Dry weight - Sub1A 9 Xu and Mackill 

(1996)

Wheat USG3209 × Jaypee Chlorophyll 
content - QSpad3.ua-1D.5 1D Ballesteros et al. 

(2015)

W7984 × Opata85 Germination 
rate index SSR Xfbb264 7A Yu et al. (2014)

Maize Mo18W × B73 Submergence 
tolerance trait - Subtol6 6 Campbell et al. 

(2015)

HZ32 × K12 Plant height SSR ph1-1, ph1-3 1, 3 Qiu et al. (2007)

Shoot dry weight SSR sdw9-1 9

Total dry weight SSR tdw9-1, tdw9-2, 
tdw9-3 9

Root dry weight SSR rdw9-2 9

Heavy 
metal 
stress

Wheat UI Platinum × LCS 
Star

Cd content in 
grain SNP

QCd.uia2-5B, 
QCd.uia2-7B, 
QCd.uia2-7D

5B, 7B, 7D Qiao et al. 
(2021)

D041735 × Divide Cd absorption SNP QCdu.ndsu-5B 5B
Oladzad-
Abbasabadi et 
al. (2018)

Grenora × Haurani Grain Cd content SNP IWA1775 5B AbuHammad et 
al. (2016)

Chinese spring × 
‘Synthetic 6x’ Al tolerance SSR

Xgdm125-
Xgwm976, 
QaltCS.ipk-3B

4D, 3B Navakode et al. 
(2009)

Maize B73 × Mo17

Root fresh 
weight (Pb and 
Cd tolerance 
coefficient)

- qRFWLCTC2-1 1 Hou et al. 
(2021)

IBMSyn10 DH Leaf Cd 
accumulation SNP qLCd2 2 Zhao et al. 

(2018)
Zong3/87-1 × 
Yuyu22

Kernel As 
concentration RFLP XAsK1a 1 Fu et al. (2016)

Rice Dhusura × Sebati Fe toxicity 
tolerance SSR

qFeTox4.3, 
qFeTox6.1, 
qFeTox10.1

4, 6, 10 Pawar et al. 
(2021)
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Soybean RILs Aluminum 
toxicity SSR LG B1 - Korir et al. 

(2013)

RILs Aluminum 
toxicity

DNA 
markers LG F - Sharma et al. 

(2011)

Soybean RILs Aluminum 
toxicity

SSR, 
RFLP, 
AFLP

qAAC_04 and 
qRRE_04 - Wang et al. 

(2019a)

Table 1. (Continued.)

Table 2. List of QTLs for biotic stress among various crops.

Crop Biotic stress Mapping 
population Gene/QTL Markers Chromosome References

Common 
bean

Bean common mosaic 
virus – bc-u, bc-1, bc-12, bc-2, 

bc-22, and bc-3 – – Feng et al. (2018)

Common bacterial 
blight Rills population 2 QTLs SSR, SNP, 

SCAR Pv08, Pv03 Xie et al. (2017)

DOR364 × 
G19833 bc-1 SCAR – Blair et al. (2007)

– bc-u, bc-1, bc-2, and 
bc-3 – – Feng et al. (2018)

DOR364 × XAN 
176, RIL DOR 476 
× SEL 1309, RIL

BGY4.1, BGY7.1, and 
BGY8.1; bgm-1 SNP Chr 03 Soler-Garzón et al. 

(2021)
Candidate gene

Chickpea Fusarium wilt and 
Ascochyta blight Rills population 5 QTLs SSR, SNP

CaLG02, 
CaLG04, 
CaLG06

Garg et al. (2018)

Botrytis gray mold Rills population 3 QTLs SSR, RAPD, 
AFLP – Anuradha et al. 

(2011)

Cowpea Cowpea severe mosaic 
virus F1, F2, BC1, BC2 Three genes – – Umaharan et al. 

(1997)

Groundnut Tomato spotted wilt 
virus

Tifrunner × GT-
C20, RIL 11 QTLs SSR A04, A01A09, 

B02, B04, B10 Pandey et al. (2017)

SunOleic 97R 
× NC94022, 
RIL(140)

3 QTLs SNP A01 Agarwal et al. (2019)

Mung bean Mung bean yellow 
mosaic virus

Vigna radiata × V. 
umbellata

qMYMV4-1
SNP LG4 Mathivathana et al. 

(2019)
Interspecific and 
RILs

qYMIV5

Pigeon pea Pigeon pea sterility 
mosaic virus

ICPL 20096 
× ICPL 332 
(PRIL_B), ICPL 
20097 × ICP 8863 
(PRIL_C), and F2 
(ICP

qSMD11.1, qSMD10.1, 
qSMD3.1, qSMD7.1, 
qSMD11.2, qSMD11.3, 
qSMD11.4, qSMD2.1, 
qSMD2.2, qSMD2.3, 
and qSMD10.1

SNP
LG2, LG3, LG7

Saxena et al. (2017)

8863 × ICPL 
87119) LG10, LG11

BSMR 736 × 
ICP8863 SV1 and SV2 – – Daspute et al. (2014)

file:///E:\review for TJB\Final arranged data\QTL biotic stress (2).xlsx#RANGE!_bookmark6
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Table 2. (Continued.)

ICP 8863 × ICPL 
20097, TTB Six QTLs including 

qSMD4 SSR LG7 Gnanesh et al. 
(2011)

7 × ICP 7035, F2

ICP 7035 × ICP 
8863 and ICP 
7349 × ICP 8863

Single gene with three 
alleles – – Srinivas et al. 

(1997a)

ICP 7035 × BDN1 
and ICP 7349 × 
BDN1, ICP7349 
× LRG30 and 
ICP8850 × LRG30

Two genes – – Srinivas et al. 
(1997b)

ICPL 20096 × 
ICPL 332, RIL

C. cajan_01839, C. 
cajan_07067, C. 
cajan_15535, and C. 
cajan_01839

SNP

LG2, LG8

Singh et al. (2016)LG11

Soybean Soybean mosaic virus Raiden × Williams 
82, F2

Glyma.13g184800 SSR and SNP Chr 13 Wu et al. (2019)

Urdbean Mung bean yellow 
mosaic virus MDU 1 × TU 68 qMYMVD_60 LG10 Subramaniyan et al. 

(2022)

Tomato YLC virus Ty-3 ACY (indel) - Nevame et al. (2018)

Bacterial wilt Bwr-6, Bwr-12 SNP 6, 12 Kim et al. (2018)

Fusarium wilt 
(Fusarium oxysporum) I-3 CAPS/SCAR 7

Catanzariti et al. 
(2015); Zhang and 
Panthee (2021)

Frl TG101 (RFLP) 9 Devran et al. (2018)

Meloidogyne javanica Mi3 RAPD - Yaghoobi et al. 
(1995)

Late blight QTL SNP 9, 12 Panthee et al. (2017)

Cucumber Powdery mildew Pm-s pmsSR27, 
pmSSR17s 5 Liu et al. (2017)

CMV cmv6.1 SSR11 6 Shi et al. (2018)

ALS Psl5.1, psl5.2 IS_16325300 
1, SSR 5 Slomnicka et al. 

(2018)

Pepper 
(Capsicum 
spp.)

Powdery mildew Double haploid 5 QTLs AFLP, RAPD, 
RFLP 5, 6, 9, 10, 12 Lefebvre et al. 

(2003)

F2:3 96 QTLs SNP 4 Jo et al. (2017)

Phytophthora root rot Two BC1; one F2 PhR10 SLAF-Seq 10 Xu (2016)

Anthracnose disease BC1 12 QTLs CAPS, 
INDEL, SSR 3, 5, 7, 10, 12 Sun et al. (2015)

Pea
Fusarium oxysporum

Fo SSP Wechter et al. (1998)
f. sp. melonis
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Pea common mosaic 
virus Mo RFLP - Dirlewanger et al. 

(1998)
Erysiphe polygoni Er RAPD -

Rice Sheath blight resistance F2 population 9 QTLs SSR 1, 6, 7, 8, 9 Yadav et al. (2015)
RILs 10 QTLs SSR 1, 2, 3, 5, 6, 9 Liu et al. (2009)

Brown planthopper 
resistance F2 population 2 QTLs SSR 12 Tamura et al. (2014)

Wheat Powdery mildew 
resistance

BC2DH 
population 2 QTLs SNP 1BL, 2BL Mohler and 

Stadlmeier (2019)
Spot blotch RILs 6 QTLs SNP - Ayana (2017)
Crown rot resistance RILs 2 QTLs SSR, DArT 3B, 4B Ma et al. (2010)

Strip rust RILs 19 QTLs SNP
1B, 1D, 2A, 2B, 
2D, 4B, 4D, 5A, 
5B, 6A, 6B, 7B

Cheng et al. (2022)

Septoria tritici blotch 
resistance DH population 4 QTLs SNP 4B, 5A, 7B Karlstedt et al. 

(2019)
Black point disease 
resistance RILs 5 QTLs SSR 4B, 5A, 5B, 5D Gao et al. (2023)

RILs 9 QTLs SNP
2AL, 2BL, 3AL, 
3BL, 5AS, 6A, 
7AL, 7BS

Liu et al. (2016a)

Cyst nematode 
resistance DH population 1 QTL (Cre8) SNP 6B Jayatilake et al. 

(2015)

Root lesion nematode DH population 8 QTLs SSR, SNP 2A, 2B, 2D, 5D, 
6D Linsell et al. (2014)

Bacterial leaf streak 
resistance RILs 5 QTLs SNP 1AL, 1BS, 3AL, 

4AL, 7AS.
Ramakrishnan et al. 
(2019)

RILs 4 QTLs SNP 2B, 6D, 7A, 7B Ayana (2017)

Hessian fly resistance RILs 11 QTLs - 1A, 2A, 3D, 
6A, 6D Hao et al. (2013)

RILs 2 QTLs SNP 1A, 6B Li et al. (2013)

Orange wheat blossom 
midge resistance RILs 7 QTLs SNP 2D, 4A, 4D, 7D Zhang et al. (2020a)

Russian wheat aphid 
resistance RILs 27 QTLs SSR

1A, 1B, 1D, 2D, 
3A, 4A, 5A, 5B, 
6A, 6B, 6D, 7A

Kisten et al. (2020)

Table 2. (Continued.)

A greater difference in means between MM and mm lines 
suggests a higher likelihood of detecting a QTL. The QTL 
is declared at the locus where the difference (MM – mm) 
is the greatest, with larger differences indicating a stronger 
QTL effect.
3.3. Mapping a population’s development 
3.3.1. Biparental populations
The development of mapping populations is a critical 
step in the process of QTL mapping. These populations 
are designed to reveal the genetic architecture of traits 
by linking phenotypic variation to specific genetic loci. 

The traditional method for QTL mapping primarily 
utilizes biparental populations, such as F2 populations, 
backcrosses, doubled haploids, RILs, and near-isogenic 
lines, each with distinct advantages and limitations, as 
illustrated in Figure 2. The standard biparental QTL 
mapping process involves the following steps: 1) selecting 
parental lines that differ in the traits of interest; 2) choosing 
molecular markers such as SSRs, RFLPs, or SNPs that can 
differentiate the parent lines; 3) developing the mapping 
population; 4) conducting genotyping and phenotyping 
of the population; and 5) applying statistical analyses to 
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detect QTLs. While biparental mapping has been valuable 
in crop breeding, it also has limitations (Morrell et al., 2012; 
Hasan et al., 2021). Due to limited recombination events, 
these populations usually demonstrate QTL localization 
within intervals of 10–20 cM. However, they may only 
show a small part of the genetic diversity in the species. For 
instance, in Arabidopsis and maize, a 10-cM interval can 
encompass approximately 440 and 310 genes, respectively 
(Salvi and Tuberosa, 2005). Many genes contribute to 
the identification of QTLs for a target trait, necessitating 
further fine mapping to pinpoint closely linked markers 
within 1 cM. This process helps in identifying functional 
QTLs and candidate genes. Various crops have mapped and 
functionally characterized several QTLs for agronomically 
important traits (Kumar et al., 2009; Mohan et al., 2009; 
Xu, 2016). Recently, Liu et al. (2022b) identified 43 QTLs 
from 209 RILs and 537 multiparent advanced generation 
intercross (MAGIC) lines, with three major QTLs (i.e., 
qPH13-3, qPH17-1, and qLW20-1) consistently found 
across environments. qLW20-1 was validated for the 
improvement of leaf width in tobacco, useful for MAS. 
Mazumder et al. (2020) identified 23 additive QTLs across 
10 traits in 68 RILs, with 1895 genes mapped, including 
some in the region of 22.09–38.29 Mb, potentially 
improving rice stress tolerance. Recent advances such as 
QTL-Seq have addressed these limitations by providing 
high-resolution genome-wide mapping, as demonstrated 
in chickpea with the identification of a major genomic 
region for seed weight (Das et al., 2015) and in Sorghum 
bicolor for anthracnose resistance. These advancements, 
combined with classical methods, have enhanced the 
precision of QTL detection and are facilitating the 
identification of candidate genes for targeted traits.
3.3.2. Multiparent mapping populations 
Multiparent mapping populations such as nested association 
mapping (NAM) and MAGIC have been developed to 

address the limitations of biparental populations (Li et al., 
2024b). These populations leverage the genetic diversity of 
multiple parents, leading to great phenotypic diversity and 
enabling high-resolution QTL mapping. NAM, proposed 
by Yu et al. (2008), involves crossing multiple inbred lines 
with a common reference line, such as the B73 inbred in 
maize, resulting in a large population suitable for detecting 
QTLs with high resolution. In maize, a NAM population 
has been extensively utilized for large-scale genetic 
mapping of key traits such as disease resistance and leaf 
structure (Kump et al., 2011; Poland et al., 2011; Tian 
et al., 2011). Similarly, another maize NAM population 
consisting of 5000 individuals was developed to identify 
QTLs for traits such as time to flowering, disease resistance, 
plant architecture, and a set of 12 metabolites (Buckler et 
al., 2009; McMullen et al., 2009; Peiffer et al., 2013; Zhang 
et al., 2015). Moreover, NAM populations have played a 
critical role in enhancing QTL analysis, as exemplified by 
Nice et al. (2016), who employed an advanced backcross 
NAM population in barley to identify QTLs associated 
with seed protein content and qualitative attributes. Saade 
et al. (2016) leveraged NAM populations in barley to 
clarify flowering time under saline conditions, identifying 
beneficial alleles for improved yield. The NAM population 
in sorghum developed by Bouchet et al. (2017) further 
illustrates the broad application of these populations in 
mapping complex traits.

The use of MAGIC populations for QTL mapping 
was first introduced by Threadgill et al. (2002) in mice. 
Kover et al. (2009) developed the first MAGIC population 
in Arabidopsis thaliana, with 527 lines from 19 founder 
strains. Since then, MAGIC populations have been used 
for QTL identification in various crops such as wheat 
for traits like plant height and hectoliter weight (Huang 
et al., 2012) and rice for both QTL mapping and varietal 
improvement using indica and japonica parents (Bandillo 

Figure 2. Commonly used biparental populations 
along with their strengths and weaknesses.
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et al., 2013). Unlike other multiparent populations, MAGIC 
populations involve the intermating of several inbred 
founders over multiple generations before inbred lines are 
developed. This process enhances QTL detection accuracy 
by increasing genetic diversity and recombination events, 
which allows for a more comprehensive exploration of the 
genetic landscape. The greater genetic variability captured 
in MAGIC populations facilitates the identification 
of favorable alleles and their interactions, providing 
insights into complex traits that are often obscured in 
traditional breeding methods. Additionally, statistical 
methods for QTL mapping in MAGIC populations, such 
as the general linear model used in biparental populations 
(Zeng, 1994), have been specifically tailored to account 
for this complexity, further improving the precision of 
trait mapping and accelerating the breeding of improved 
varieties. Although QTL mapping has a significant role 
in crop improvement, it also entails challenges due to the 
complexity of traits, which often involve multiple QTLs 
with small effects that are difficult to detect and map 
accurately. Additionally, environmental interactions can 
obscure these effects, complicating the reproducibility and 
limiting the application of QTL findings across diverse 
environments.
4. Genome-wide association studies (GWASs)
QTL mapping and GWASs are complementary methods 
in plant breeding for analyzing the genetic architecture 
of complex traits. QTL mapping, used in controlled 
populations, identifies major-effect loci, while GWASs 
use natural variation across diverse populations to locate 
minor-effect loci. Both methods offer comprehensive 
insights for gene discovery. The GWAS approach 
represents an advancement in association mapping, 
employed to identify genetic markers in close proximity 
to genes of interest. Initially introduced for human genetic 
research by Klein et al. (2014), GWASs involve scanning 
the entire genome using a high density of markers to 
detect genetic variations associated with specific traits. 
Over time, GWASs have become a widely adopted method 
for identifying genotype–phenotype associations in plants, 
with certain methodological adaptations to suit plant 
genomics (Susmitha et al., 2023). GWASs are a highly 
effective approach in plant genetics for identifying the 
genes associated with specific traits (Tables 3–5). Table 3 
summarizes the significant loci related to stress tolerance 
identified in recent studies, while Table 4 presents findings 
on yield-related traits. Table 5 highlights candidate genes 
associated with nutrient efficiency, illustrating the breadth 
of GWAS applications in pinpointing genetic markers 
essential for crop improvement. This method enables the 
precise mapping of genomic regions where genotypic and 
phenotypic variations show significant correlation. Unlike 
approaches based on traditional biparental populations, 

GWASs provide superior mapping resolution, facilitating 
the detection of interactions between molecular markers 
and desirable traits across diverse crop species (Liu et al., 
2016b). Its foundation on the mixed linear model (MLM) 
framework together with advancements in computational 
speed and statistical power have made the GWAS approach 
indispensable in modern agricultural genetics (Alamin et 
al., 2022). The general procedure for conducting a GWAS 
is given in Figure 3.
4.1. Prerequisites for GWASs
Before conducting a GWAS, several prerequisites need to 
be considered to ensure the validity and reliability of the 
results:

• Well-defined phenotype: The accurate and 
consistent measurement of the phenotype of interest is 
crucial. This could include clinical traits, physiological 
measures, or other quantifiable characteristics.

• Large sample size: GWASs require many samples 
to detect small genetic effects and achieve sufficient 
statistical power. Larger sample sizes increase the ability to 
identify true associations and reduce the likelihood of false 
positives.

• High-quality genotype data: Genotyping should 
be performed using reliable methods to ensure accurate 
and comprehensive coverage of the genome. High-density 
single-nucleotide polymorphism (SNP) arrays and NGS 
are commonly used.

• Population structure control: It is essential to 
account for population stratification, which can lead to 
spurious associations if not properly controlled. This can 
be done using statistical methods or by carefully matching 
case and control groups.

• Statistical methods: Appropriate statistical 
models and methods should be employed to analyze the 
data, including correction for multiple testing, which is a 
significant concern given the large number of SNPs tested 
in GWASs. The factors affecting GWAS accuracy and 
resolution power are summarized in Figure 4.
4.2. Single-locus versus multiple-locus GWASs
GWASs have become a key method for investigating 
yield-related traits and genetic variation in crops. Initially, 
single-locus models like the MLM (Zhang et al., 2005; Yu 
et al., 2006) were widely used. More recently, MLM-based 
models have advanced with the integration of novel traits 
and omics data due to developments in bioinformatics 
and sequencing (He et al., 2024a). However, single-locus 
models such as the generalized linear model are prone 
to high false-positive rates. Bonferroni corrections in 
MLMs reduce the false-positive rate but may also lead to 
important loci being missed. To address this, multiple-
locus GWAS models including mrMLM, ISIS EM-
BLASSO, and pLARmEB have been introduced (Cui et al., 
2018; Peng et al., 2018; Zhong et al., 2021). These methods, 
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Table 3. List of genome-wide association studies of biotic stress among various crops.

Stress (disease/
pathogens) Crops Markers Traits p-values Chromosomes Reference

Xanthomonas vasicola Maize (Zea 
mays L.) SNP Leaf streak resistance

–log10 (p-value) 
> 3.5 (p-value < 
0.0003165)

1, 2, 5, 7, 8, 9 Ruiz et al. (2023)

Late blight and potato 
cyst nematodes (PCN)

Potato 
(Solanum 
tuberosum L.)

SNP
Late blight and 
potato cyst nematode 
resistance

≥0.053 1, 2, 3, 4, 5, 6, 7, 
8, 9, 10, 11, 12

Sood and 
Chauhan (2023)

Tobacco rattle virus 
(TRV) and potato 
mop-top 
virus (PMTV)

Potato 
(Solanum 
tuberosum L.)

SNP TRV and PMTV 
resistance _ 1, 2, 3, 5, 11 Anglin et al. 

(2024)

Root knot nematode 
(Meloidogyne 
graminicola)

Rice (Oryza 
sativa L.) SNP/QTL

Number of galls, 
eggs/egg mass, and 
multiplication factor/
plant

<0.01 1, 2, 3, 4, 6, 10, 
11

Hada et al. 
(2020)

Bacterial leaf streak 
(Xanthomonas oryzae)

Rice (Oryza 
sativa L.) QTN Lesion length <0.001 1, 2, 3, 4, 5, 6, 8, 

9, 11, 12 Xie et al. (2021)

Tan spot (Pyrenophora 
tritici-repentis)

Wheat 
(Triticum 
aestivum L.)

SNP Tan spot resistance <0.05 3AS, 3AL, 3BS, 
6AL

Kokhmetova et 
al. (2021)

Leaf rust (Puccinia 
triticina)

Wheat 
(Triticum 
aestivum L.)

SNP Leaf rust resistance 1.06 × 10–5 6D, 6A, 6B, 5A, 
1B, 2A, 2B, 7A

Leonova et al. 
(2020)

Septoria tritici blotch 
and powdery mildew

Wheat 
(Triticum 
aestivum L.)

SNP/QTL
Septoria tritici blotch 
and powdery mildew 
resistance

_ 1A, 1B, 1D, and 
7B for PM

Alemu et al. 
(2021)

Stripe or yellow rust 
(Puccinia striiformis)

Wheat 
(Triticum 
aestivum L.)

SNP Stripe rust resistance <5%
1A, 2A, 2B, 3A, 
3B, 4B, 4B, 7D 
(2BS and 6AL)

Shahinnia et al. 
(2022)

Bacterial wilt of 
common bean 
(Curtobacterium 
flaccumfaciens)

Common bean 
(Phaseolus 
vulgaris)

SNP Bacterial wilt 
resistance _

Pv02, Pv04, 
Pv07, Pv08, 
Pv09

Zia et al. (2022)

Fusarium wilt 
(Fusarium oxysporum)

Common bean 
(Phaseolus 
vulgaris)

SNP Fusarium wilt 
resistance

1.50 × 10–5 to 5.81 
× 10–6

Pv01, Pv03, 
Pv11

Paulino et al. 
(2021)

Yellow mosaic disease 
(YMD)/heat stress

Mung bean 
(Vigna radiata 
L.)

SNP
Flowering time, YMD 
resistance, trichome 
density, and leaf area

p = 0.0001 
[–log(p) = 3.0]

1, 2, 3, 4, 5, 6, 7, 
8, 9, 10, 11

Kohli et al. 
(2024)

Phoma medicaginis 
infection

Alfalfa 
(Medicago 
sativa L.)

SNP

Number of healthy 
leaves, number of 
ramifications, and 
length of main stem

_ 1, 2, 3, 4, 6, 7 
and 8 

Mnafgui et al. 
(2024)

Cercospora leaf blight 
infection

Soybean 
(Glycine max L.) SNP Cercospora leaf blight 

resistance
–log10 (p-value) 
= 3.5 1 to 20 Patel et al. (2024)

Pythium sylvaticum Soybean SNP/QTL Pythium sylvaticum 
resistance _ 10, 18, 20 Lin et al. (2020)

Xanthomonas citri pv. 
Glycines Soybean SNP Xanthomonas citri pv. 

Glycines resistance _ 3, 5, 8, 10, 13 Capobiango et al. 
(2022)

Fusarium oxysporum Soybean SNP Fusarium oxysporum 
resistance

p ≤ 1/30,602 or –
log10(p) ≥ 4.49 6 Sang et al. (2023)
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Phytophthora sojae Soybean SNP Phytophthora sojae 
resistance _ 1 Niu et al. (2018)

 Coniothyrium glycines Soybean SNP Red leaf blotch disease 
resistance _ 1, 5, 20 Lukanda et al. 

(2023)

Phytophthora sojae Soybean SNP Phytophthora sojae 
resistance <0.001 3, 4, 5, 7, 10, 13, 

14, 18 Qin et al. (2017)

Corynespora cassiicola 
infection Soybean SNP Corynespora cassiicola 

resistance –log10(p) ≥ 3.5 3, 4, 5, 6, 10, 12, 
13, 20 Patel et al. (2023)

Ascochyta rabiei Chickpea (Cicer 
arietinum L.) QTL

Ascochyta blight 
(Ascochyta rabiei) 
resistance

_ Ca1, Ca2, Ca6, 
Ca7

Farahani et al. 
(2022)

Pythium ultimum Chickpea SNP/QTL Pythium ultimum 
resistance _ 2, 4, 6, 7, 8 Agarwal et al. 

(2022)

F. oxysporum Chickpea SNP Fusarium wilt 
resistance

–log10 p-value ≥ 
2.3 (p ≤ 0.005) 2, 4, 5, 6, 7, 8 Alsamman et al. 

(2024)

Ascochyta blight 
(Ascochyta rabiei) Chickpea SNP Ascochyta blight 

resistance _ 1, 4 Raman et al. 
(2022)

Ascochyta blight 
(Ascochyta rabiei) Chickpea SNP Ascochyta blight 

resistance _ 1, 2, 3, 4, 7, 8 Şahin et al. 
(2023)

 Verticillium dahliae
Cotton 
(Gossypium 
hirsutum L.)

SNP Verticillium dahliae 
resistance

p = 1/n (n = 
198,736) A10 Zhang et al. 

(2023)

Fusarium oxysporum f. 
sp. vasinfectum

Cotton 
(Gossypium 
hirsutum L.)

SNP/QTL Fusarium wilt 
resistance _ A04, A06, A11 Abdelraheem et 

al. (2024)

Pest - Aphis gossypii
Cotton 
(Gossypium 
hirsutum L.)

SNP Aphis gossypii 
resistance _ A08 Yang et al. (2023)

Fusarium oxysporum f. 
sp. vasinfectum

Cotton 
(Gossypium 
hirsutum L.)

SNP/QTL Fusarium wilt 
resistance _ D02 Zhu et al. (2022)

Verticillium dahliae
Cotton 
(Gossypium 
hirsutum L.)

KASP 
markers

Verticillium wilt 
resistance _ Ghir_A01, Ghir_

A05, Ghir_D13
Zhao et al. 
(2021)

Verticillium dahliae
Cotton 
(Gossypium 
hirsutum L.)

SNP Verticillium wilt 
resistance _ A03 Gong et al. 

(2018)

Verticillium dahliae
Cotton 
(Gossypium 
hirsutum L.)

SNP/QTL Verticillium wilt 
resistance _ A01, D02, D08, 

A13, D01
Zhang et al. 
(2020b)

Table 3. (Continued.)

Table 4. List of genome-wide association studies of different traits among various crops.

Crops Markers Traits p-values Chromosomes Reference

Maize SNP Ear traits (ear length, diameter, kernel length 
and width, cob diameter) _ 1, 2, 3, 4, 5, 6, 7, 8, 

9, 10
Zhu et al. 
(2018)

Maize SNP Leaf angle and leaf orientation _ 1, 3, 4, 5, 6, 7, 9 Lu et al. 
(2018)

Rice SSR Seedling vigor index, root- and yield-related 
traits <0.05 2, 3, 12 Padmashree 

et al. (2023)
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Table 4. (Continued.)

Wheat (Triticum 
aestivum L.) SNP

Winter survival rate; days to heading and 
maturity; stem, spike, and awn length; liter- 
and thousand-kernel weight; number of seeds 
per spike

0.001 
(log10(p) = 3) 2, 3, 4, 5, 6, 7 Jung et al. 

(2021)

Wheat SNP/QTL Grain weight –log10(p) = 3 1B, 5B, 7B, 5A, 6A Wang et al. 
(2021a)

Mung bean SNP
Agronomic traits (flowering time, plant 
height, pod characteristics, nitrogen status, 
seed traits, and yield)

>0.0001 1, 2, 3, 4, 5, 6, 7, 8, 9, 
10, 11

Manjunatha 
et al. (2024)

Mung bean SNP

Phenological (days to heading and days to 
maturity) and agronomic traits 
(leaf nitrogen status using SPAD, plant height, 
number of primary branches, pod 
length, number of pods per plant, seeds per 
pod, 100-seed weight, and yield per 
plant)

<0.00001 1, 2, 8 Manjunatha 
et al. (2023)

Mung bean SNP

Grain micronutrients (grain 
iron and zinc concentration) and 
antinutritional factors (grain phytic acid and 
tannin content)

_ 1, 2, 3, 4, 5, 6, 7, 8, 9, 
10, 11

Sinha et al. 
(2023b)

Mung bean SNP/QTN Seed size-related traits (seed width and seed 
length) <0.05 1, 2, 3, 4, 5, 6, 7, 8, 9, 

10, 12
Liu et al. 
(2022a)

Alfalfa SNP Forage quality _ 1, 2, 3, 4, 5, 6, 7, 8 Lin et al. 
(2021)

Alfalfa SNP Leaf length and width <0.001 1, 3, 4, 5, 6, 7, 8 Xu et al. 
(2023a)

Soybean 
(Glycine max L.) SNP

Shoot length, shoot dry weight, root dry 
weight, root dry weight per shoot dry weight, 
total plant biomass, total root length, surface 
area, average diameter, root volume, and 
branching number

_ 2, 6, 8, 9, 13, 16, 18 Mandozai et 
al. (2021)

Chickpea (Cicer 
arietinum L.) SNP/QTL Four seed micronutrients (Zn, Cu, Fe, and 

Mn) ≤0.05 1 to 8 Fayaz et al. 
(2022)

Chickpea (Cicer 
arietinum L.) SNP/QTL Vigor and vigor-related traits _ 1, 3, 4 Nguyen et al. 

(2022)
Chickpea (Cicer 
arietinum L. and 
C. reticulatum)

SNP Seed molybdenum (Mo) and selenium (Se) 
concentrations _ 1, 2, 5, 6 Agarwal et 

al. (2022)

Chickpea (Cicer 
arietinum L.) SNP Iron and zinc concentrations _ 1, 4, 6, 7 Diapari et al. 

(2014)
Chickpea (Cicer 
arietinum L.) SNP Protein, fiber, and fat concentrations; 100-seed 

weight _ 1 to 8 Sari et al. 
(2024)

Sorghum 
(Sorghum 
bicolor)

SNP Fe and Zn concentration in grains _ 1, 3, 5 Thakur et al. 
(2024)

Sorghum 
(Sorghum 
bicolor)

SNP/QTN Number of nodal roots, nodal root angle, 
nodal root length, root dry weight _ SBI-05, SBI-01, SBI-02 Elias et al. 

(2024)

Cotton 
(Gossypium 
hirsutum L.)

SNP
Yield and fiber traits, boll weight, seed index, 
lint percentage,, fiber length, fiber elongation, 
micronaire, fiber strength, and flowering data

–log10(p) > 
5.27 A06, A07, D11 Wang et al. 

(2021b)

Cotton (G. 
arboreum L.) SNP Root color A02, A04, A08, A09, 

A13
Zhao et al. 
(2021)



ALTAF et al. / Turk J Bot

391

Cotton 
(Gossypium 
hirsutum L.)

QTL
Weight and lint percentage in 13 field 
environments, and boll number per plant and 
seed index

0.0001 A08 Zhu et al. 
(2021)

Gossypium 
hirsutum L. SNP Fiber traits (lint percentage) _ D05 Song et al. 

(2019)
Cotton 
(Gossypium 
hirsutum L.)

QTL 5 fiber traits (myristic acid, palmitic acid, 
stearic acid, oleic acid, and linoleic acid) _

A2, A6, A7, A9, A10, 
A13, D1, D5, D6, D7, 
D8, D10, D11, D12

Yuan et al. 
(2019)

Cotton 
(Gossypium 
hirsutum L.)

SNP

13 fiber traits (fiber length, fiber strength, 
micronaire value, elongation ratio, length 
uniformity, maturity, spinning consistency 
index, boll weight, lint percentage, seed index, 
lint index, fiber weight per boll, and flowering 
date)

_ A10, A07, A08, D11 Ma et al. 
(2018)

Cotton 
(Gossypium 
hirsutum L.)

SNP/QTL Oil content _ D12 Yuan et al. 
(2018)

Cotton 
(Gossypium 
hirsutum L.)

SNP Early maturation _ A6, A7, A8, D01, D02, 
D09

Li et al. 
(2018a)

Cotton 
(Gossypium 
hirsutum L.)

QTL
Fiber quality traits (fiber length, fiber strength, 
fiber micronaire, fiber uniformity, and fiber 
elongation)

_ Dt11, At07 Sun et al. 
(2017)

Table 4. (Continued.)

Table 5. List of genome-wide association studies of abiotic stress among various crops.

Stress Crops Markers Traits p-values Chromosome Reference

Maize SNP Drought resistance <1.02 × 10–5 1, 3, 4, 5, 6, 8, 9 Chen et al. 
(2023)

Maize SNP

Days to 50% anthesis, days to 50% 
silking, anthesis silking interval, stalk 
lodging, husk cover, plant aspect, leaf 
death, plant height, root lodging, ear 
height, ear rot, ear aspect, ears per 
plant, tassel blasting, leaf firing, and 
grain yield

–log10(p) ≥ 
3.89 1, 2, 3, 4, 5, 6, 7 Osuman et al. 

(2022)

Maize SNP

Ear leaf structure (leaf size of the first 
leaf above the first ear, first ear leaf 
size, leaf size of the first leaf below 
the first ear, leaf angle of the first leaf 
above the first ear, first ear leaf angle, 
leaf angle of the first leaf below the 
first ear, leaf orientation value of the 
first leaf above the first ear, first ear 
leaf orientation value)

1.00E-04 to 
2.71E-06 2, 5, 8, 9, 10 Li et al. 

(2024a)

Potato 
(Solanum 
tuberosum L.)

SNP

Drought tolerance, yield, tuber fresh 
weight, tuber number, starch content, 
dry matter, reducing 
sugars, chlorophyll content and 
fluorescence, stomatal conductance, 
NDVI, and leaf area and 
circumference

<7.05 × 10–6 4, 11
Alvarez-
Morezuelas et 
al. (2023)
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Table 5. (Continued.)

Drought

Potato SNP/QTL
Drought tolerance, proline 
concentration, water consumption, 
and yield

–log10(p) ≥ 
4.35 1, 4, 10 Tagliotti et al. 

(2021)

Potato SNP Drought tolerance <0.05 1, 2, 4, 5, 6, 8 Fofana et al. 
(2024)

Rice SNP/QTL

Drought tolerance, days to 50% 
flowering, plant height, panicle 
length, flag leaf area, number 
of effective panicles, biomass at 
maturity, grain yield, 1000-grain 
weight, harvest index, and spikelet 
fertility 

1e-6 and 1e-4 1, 2, 5, 6, 9, 11, 12 Bhandari et al. 
(2020)

Common 
bean SNP Drought tolerance _ 6, 7, 10, 11 Valdisser et al. 

(2020)

Common 
bean SNP

Drought tolerance, relative 
germination vigor, and relative 
germination rate

<1 × 6–10 (–
log10(p) = 6) 6 Wu et al. 

(2021)

Common 
bean SNP Drought tolerance, root morphology <0.01 11/PvXIP1;2 Wu et al. 

(2022)

Common 
bean SNP

Drought tolerance agronomic 
(genetic architecture of yield 
component) and photosynthetic 
traits

<0.05
Pv02, Pv03, 
Pv04, Pv06, 
Pv09, Pv10, Pv11

Dramadri et al. 
(2021)

Mung bean SNP

Seed mineral concentrations 
(calcium, iron, potassium, 
manganese, phosphorous, sulfur, 
zinc)

–log10 (7.7 × 
10–6) = 5.11 
or = 0.05

Vr01, Vr05, Vr06, 
Vr07, Vr08, Vr09

Wu et al. 
(2020b)

Mung bean SNP

Drought tolerance-related 
agronomic traits (seed weight, plant 
height, number of branches, node 
number of main stem, number of 
pods per plant, pod length, number 
of seeds per pod, number of seeds 
per plant, yield per plant, biomass 
per plant, plot yield)

7.62 × 10–7 to 
2.23 × 10–5 / 
7.32 × 10–6 to 
3.16 × 10–5

1, 2, 3, 4, 5, 6, 7, 
8, 9, 10, 11

Chang et al. 
(2023)

Soybean SNP
Yield-related traits including pod 
number per plant, biomass per plant, 
and seed weight per plant

<7.36E-07 1, 3, 4, 8, 15, 17, 
18, 19, 20 Li et al. (2023)

Soybean SNP/QTL Drought tolerance, canopy 
architecture, and seed hardness <0.01

4, 5, 6, 7, 9, 11, 
12, 13, 14, 17, 18, 
19, 20

Liu et al. 
(2020)

Chickpea 
(Cicer 
arietinum L.)

SNP

Drought tolerance, grain yield per 
hectare, hundred-seed weight, seed 
number per plant, empty pod ratio, 
harvest index, biomass dry weight, 
flowering time score, podding time 
score, maturity score, emergence 
score, early vigor score, and plant 
height

_ 1 to 8 Li et al. 
(2018c)

Chickpea 
(Cicer 
arietinum L.)

SNP/QTL
100-seed weight, harvest index, 
biomass, days to 50% flowering, days 
to maturity, plant height

9.18 × 10–8 1 to 8 Thudi et al. 
(2024)
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as shown by Li et al. (2017), effectively identify quantitative 
trait nucleotides (QTNs) in crops such as Brassica napus.

The mrMLM method improves the detection of loci 
by more than 55% across the examined genomic regions. 
Misra et al. (2017) utilized both ML-GWAS and SL-
GWAS to identify key rice variants associated with grain 
traits. This combined approach successfully revealed 
genetic loci such as GWi7.1 and GWi7.2, in addition to 
identifying new genes. Similarly, Xu et al. (2018) employed 
both ML-GWAS and SL-GWAS to assess the importance 
of newly identified QTNs related to starch pasting 
attributes in maize. The ML-GWAS method, referred to 
as FASTmrEMMA, detected 29 new QTNs, while the SL-
GWAS method, referred to as GEMMA, identified only 7 
(Xu et al., 2018). Peng et al. (2018) applied six ML-GWAS 
techniques to explore the genetic basis of 20 amino acid 
concentrations in wheat, highlighting the robustness 
and versatility of ML-GWAS models. Xu et al. (2018) 

further corroborated those findings, showing that most 
QTNs were detected with the ISIS EM-BLASSO method 
in multiple-locus GWASs. Su et al. (2018) also identified 
70 QTNs in upland cotton, concluding that ML-GWAS 
methods outperformed SL-GWAS methods (MLM) 
while using TASSEL v5.0 in terms of power and accuracy. 
These studies collectively confirm the superiority of ML-
GWAS approaches over SL-GWAS methods, although 
recent evidence suggests that combining both strategies 
significantly improves the reliability and robustness of 
GWAS outcomes (Xu et al., 2018; Zhang et al., 2019).

5. Development of functional markers
Functional markers (FMs) are located within genic regions 
and are directly linked to phenotypic traits, making them 
highly efficient for evaluating germplasm diversity and 
stabilizing advantageous alleles in breeding populations 
(Andersen and Lubberstedt, 2003; Salgotra and Stewart, 

Chickpea 
(Cicer 
arietinum L.)

SNP

Drought tolerance, nodule dry 
weight, nodule biomass, nodule 
fresh weight, plant height, height 
index, days to maturity, days to 50% 
flowering, grain yield, biological 
yield, 100-seed weight

–log10 
p-value ≥ 2.5, 
p ≤ 0.003

1, 4, 7 Istanbuli et al. 
(2024)

Chickpea 
(Cicer 
arietinum L.)

SNP

Ten morphological traits, including 
days to 50% flowering, plant height, 
number of primary branches, 
number of secondary branches, 
number of pods per plant, biological 
yield, harvest index, 100-seed weight, 
seed yield, and drought susceptible 
index, and three physiological 
traits, including relative water 
content, membrane stability index, 
and canopy temperature depression

_ 1 to 8 Harish et al. 
(2024)

Chickpea 
(Cicer 
arietinum L.)

SNP Grain nutrients (protein, Fe, and Zn) ≤0.05 1, 4 Samineni et al. 
(2022)

Cotton 
(Gossypium 
hirsutum L.)

SNP

Yield-related traits and agronomic 
traits (seed cotton, single boll weight, 
lint cotton, plant height, fruit branch 
number, effective fruit branch 
number, boll number, and effective 
boll number)

_ D04, D08 Sun et al. 
(2023)

Sorghum SNP
Flowering time, plant height, grain 
weight, forage biomass, drought 
tolerance, and water use

_ 6, 7 Maina et al. 
(2022)

Sorghum SNP Leaf senescence, drought tolerance, 
and plant height _ 1 Wang et al. 

(2020)

Sorghum SNP Grain weight, flowering time, plant 
height, and drought tolerance _ 6 Faye et al. 

(2022)

Table 5. (Continued.)
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2020). FMs are especially useful for selecting complex 
traits due to their associations with target genes (Bagge 
et al., 2007). The development of FMs begins with the 
identification of a gene affecting a specific trait, followed by 
functional characterization and sequencing to find allelic 
variations that cause phenotypic differences (Thornsberry 
et al., 2001; Amom and Nongdam, 2017). Advances in 
NGS have accelerated the identification of QTLs through 
mapping populations like RILs, DHs, and association 
mapping (Soto-Cerda and Cloutier, 2012). This technique 
detects genetic polymorphisms and facilitates MAS 
(Breseghello and Sorrels, 2006). GWASs have identified 

SNPs linked to traits in crops including rice, wheat, finger 
millet, and peaches (Forcada et al., 2019; Puranik et al., 
2020). Genotyping by sequencing (GBS) further supports 
breeding efforts by generating SNPs across the genome, 
aiding in genomic selection.

RNA-Seq provides insights into gene expression and 
facilitates the development of FMs, even in nonmodel 
species without sequenced genomes (Chen et al., 2013). 
Additionally, functional genomics techniques such as 
RNA interference and CRISPR-Cas9 have enhanced 
our understanding of gene function, with CRISPR 
offering significant advantages in gene editing for crop 

Figure 3. The basic steps involved in a GWAS (Sahito et al., 2024).

Figure 4. Factors that affect GWAS accuracy and resolution.
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improvement (Schaeffer and Nakata, 2015; Romay and 
Bragard, 2017). When integrated with the GWAS method, 
CRISPR can target specific genetic variations identified 
through GWASs, allowing for precise editing of alleles 
associated with desirable traits. This synergistic approach 
not only accelerates the development of improved crop 
varieties but also deepens our understanding of the genetic 
basis of complex traits, paving the way for more holistic 
crop improvement strategies. These advancements are 
critical for modern molecular breeding strategies aimed at 
improving agricultural traits.

TILLING is a rapid, cost-effective method for detecting 
induced point mutations in mutagenized populations. 
It enables the analysis of multiple alleles at specific loci, 
offering an advantage over functional genomics. Using 
ethyl methane sulfonate as a mutagen causes A/T to G/C 
transitions, leading to a high frequency of random point 
mutations across the genome. Endonucleases effectively 
cut DNA duplexes containing multiple mismatches, 
and the resulting heteroduplex DNA can be compared 
to known sequences to identify polymorphic sites. As a 
result, TILLING is proficient at identifying nucleotide 
alterations as well as minor insertions or deletions, all at 
a lower expense compared to comprehensive sequencing 
techniques typically employed for SNP identification. 
Additionally, numerous crops have established and 
validated TILLING protocols, such as lotus (Perry et al., 
2003); common bean, barley, maize, and field mustard (Till 
et al., 2004); pea, oat, potato, rice, and peanut (McCallum 
et al., 2000); and sorghum, rapeseed, soybean, wheat, 
and tomato (Slade et al., 2005). In summary, TILLING 
is a compelling approach for a wide range of applications 
from essential functional genomic investigations to 
practical crop breeding initiatives (Mohapatra et al., 2023). 
Regardless of the DNA source, once FMs are established, 
the next phase involves validating these markers 
functionally in relation to a specific target gene of interest 
(Kage et al., 2016). The functionality of newly created FMs 
can be assessed through gene expression analyses, which 
encompass methods such as virus-induced gene silencing 
(VIGS) and gene knockdown or knockout experiments 
(Tadege et al., 2005; Rodenburg, 2018; Ali et al., 2024a). 
Notably, the VIGS technique offers significant advantages 
over other methods, particularly in its ability to silence 
multiple genes within gene families, thereby providing 
enhanced analytical capabilities for polyploid species 
(Gupta, 2019). 
5.1. Kompetitive allele-specific PCR (KASP) genotyping
KASP is a refined PCR-based homogeneous fluorescent 
genotyping technology that facilitates the swift and 
accurate identification of codominant alleles linked to 
SNPs and indels at a designated locus in both parent and 
offspring populations, utilizing fluorescence resonance 

energy transfer (Rahman et al., 2023). Relative to 
alternative technologies, KASP’s primary advantages are 
its robustness and cost-effectiveness (Semagn et al., 2014). 
KASP is a customizable high-throughput genotyping 
platform suitable for various experimental designs 
incorporating diverse target loci and sample sizes.

6. Marker-assisted selection (MAS)
MAS entails the targeted modification of genomic regions 
associated with a specific desirable trait by utilizing DNA 
markers (Ribaut and Hoisington, 1998). This approach 
represents a new era in molecular breeding for crop 
enhancement (Baloch et al., 2023). MAS offers advantages 
over traditional phenotypic selection based solely on 
visual traits, as the desired trait is directly associated with 
a molecular marker, thereby enhancing the efficiency of 
selecting for the targeted characteristic (Jiang, 2013).

The primary objective of any crop enhancement 
initiative is to identify plants that exhibit desirable traits of 
interest. In traditional plant breeding methods, there is an 
increased risk of overlooking traits that are crucial, which 
consequently prolongs the timeline for developing new 
cultivars with preferred characteristics. In contrast, MAS 
has demonstrated its effectiveness in enhancing various 
traits in crop plants by mitigating environmental influences 
and improving selection efficiency for traits of interest 
(Simko et al., 2021). Nevertheless, the effectiveness of MAS 
in selection may be hindered by the genetic background as 
well as the reliability and precision of QTLs (Melchinger 
et al., 1998). Additionally, inadequate linkages between 
the gene of interest and the corresponding markers can 
pose challenges (Sharp et al., 2001). Other considerations 
include relatively high input costs, a limited number of 
molecular markers with narrow polymorphic ranges, and 
the existing knowledge gap between plant breeders and 
molecular biologists (Collard and Mackill, 2008).

Various markers, including morphological, 
isoenzymatic, chromosome-specific, and DNA markers, 
have been used in plant improvements. However, 
these markers are most widely employed in MAS for 
different traits in pivotal crops (Madina et al., 2013). 
Recent molecular breeding advancements, such as PCR-
based techniques (e.g., SSRs and indels), SNPs, genomic 
sequencing, and GBS, have been extensively applied in 
crop improvement programs globally (Platten et al., 2019). 
Figure 5 presents the steps involved in MAS.

7. Genomic selection and genomic prediction
Genomic selection (GS), which involves using genomic 
prediction (GP) models to choose potential individuals, has 
made substantial progress in the last 20 years, dramatically 
speeding up improvements in plant breeding (Crossa et 
al., 2017). GS has become a powerful technique in plant 
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breeding, especially with the availability of genome-wide 
SNPs (Figure 6). It involves the application of developed 
GP models in practical selection (Haley and Visscher, 
1998; Krishnappa et al., 2021). Meuwissen et al. (2001) 
were the first to extensively develop the concept of GS. In 
their innovative study, they introduced a new approach to 
plant breeding, proposing that by predicting genetic values 
using marker profiles, significant improvements could be 
made in genetic gain in both plant and animal breeding. 
This approach can be further enhanced by combining it 
with reproductive techniques to reduce the time between 
generations. Traditional MAS methods often prioritize 
a narrow range of markers associated with extensively 
studied large QTLs while disregarding most minor-
effect QTLs. In contrast to those methods, GS is a crucial 
approach in breeding efforts due to its ability to accurately 
measure the genetic value of individual plants using a 
large number of genome-wide SNPs (Alemu et al., 2024). 
It reduces breeding costs, increases selection intensity 
and accuracy, and shortens the time needed to establish 
a cultivar compared to traditional methods (Crossa et al., 
2017; Edwards et al., 2019). GP is a recently developed 
data-driven approach that has gained widespread 
acceptance and is being extensively utilized as a beneficial 
tool to enhance the rate of genetic improvement in 
plant-breeding programs (Farooq et al., 2021). Genetic 
programming leverages advanced statistical machine 
learning algorithms to pinpoint specific individuals 
within a breeding population. This selection process is 
grounded in breeding values derived from genome-wide 
markers. The approach relies on data collected from a 
training population, which encompasses both phenotypic 
and genotypic information. Following a comprehensive 
training phase, these models forecast breeding or 
phenotypic values for traits in a given population based 
solely on genotypic data. Prior to implementing selection, 
it is essential to assess the performance of prediction 
models through cross-validation. Evaluating the efficacy 

of predictive models and contrasting various statistical 
machine learning frameworks is an essential phase in 
GP. This assessment entails examining diverse situations, 
including the integration of numerous traits, established 
key genes, marker-trait associations (QTLs), genotype–
environment interactions, and other omics data such as 
transcriptomics, metabolomics, and proteomics. Factors 
like training population composition and machine 
learning models can affect the accuracy of GP for wheat, 
tomato, rice, maize, lentils, and potato traits. Pearson’s 
correlation coefficient is used to evaluate the accuracy of 
GP, indicating the correlation between predicted and actual 
genetic values. This measurement allows an assessment of 
selection accuracy (Merrick et al., 2022). The precision 
of selection is strongly correlated with the selection 
response (R), also known as genetic gain. GP considers the 
breeding values of parental averages and the deviations of 
Mendelian sampling to ascertain the genomic estimated 
breeding values (GEBVs) of the progeny. This method 
serves two functions: it efficiently identifies favorable traits 
in early generations by forecasting additive effects, as seen 
in a biparental cross at the F2 stage, and it selects lines in 
advanced breeding stages by estimating the genotypic 
values of individuals, accounting for both additive and 
nonadditive effects (Dreisigacker et al., 2023).
7.1. Prerequisites for genomic selection (GS)
GS is an advanced method in plant improvement that 
uses high-density genomic data and complex statistical 
models to speed up breeding processes and increase 
trait development (Alemu et al., 2024; Veerendrakumar 
et al., 2024). To conduct GS efficiently, it is crucial to 
have numerous advanced prerequisites. The utilization 
of modern genotyping technologies, including high-
throughput sequencing and SNP genotyping, is necessary 
to obtain high-quality genomic data. Additionally, the 
availability of complete reference genomes and genetic 
maps is vital. Utilizing strong statistical and computational 
methods, such as Bayesian models and machine learning 

Figure 5. Steps involved in marker-assisted selection.
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algorithms, is essential for the precise prediction of genetic 
values from genomic data (Lourenço et al., 2024; Zeng et 
al., 2024). Furthermore, there is a requirement for advanced 
phenotyping technologies that can handle large amounts 
of data and provide accurate and thorough evaluations 
of traits. The successful integration of phenotypic and 
genomic data also necessitates the use of complex data 
management systems. A strong understanding of genetics, 
statistics, and plant breeding, together with training 
programs and interdisciplinary collaboration, is essential 
for effectively implementing GS (Gerullis et al., 2023; Blue 
et al., 2024). To ensure appropriate procedures, it is vital to 
examine ethical and regulatory aspects, such as compliance 
with legislation on genetic alterations and data protection. 
Public participation and stakeholder communication are 
important in promoting acceptance of GS developments. 
Securing sufficient funds and establishing specialized 
infrastructure, like laboratories and data centers, are 
crucial for enabling the implementation and advancement 
of GS projects. Meeting these requirements allows for 
the successful implementation of GS to improve plant 
breeding programs, resulting in the creation of crops 
with exceptional characteristics and enhanced ability to 
withstand challenges (Chaudhary et al., 2024).
7.2. Genomic versus phenotypic selection
Classical breeding has made significant advancements, 
particularly in enhancing crop quality. It was instrumental 
in the development of high-yielding, nutrient-responsive 
semidwarf cereals during the Green Revolution and 
hybrid rice in the 1970s. Since the mid-20th century, these 
strategies have improved nearly all major crops, boosting 
both production and productivity. Despite this, however, 
the annual genetic gain of 1% in potential grain production 
is insufficient to meet the demands of a population growing 

at 2% per year, which heavily depends on crop products 
for food (Fischer et al., 2014). Traditional breeding, based 
on phenotypic selection (PS), is less effective for complex 
traits like yield and stress resistance, which are influenced 
by the environment and gene–environment interactions 
(G × E). Moreover, it faces challenges such as being 
time-consuming, labor-intensive, and imprecise (Jeon 
et al., 2023). In response, GS, which relies on reduced 
phenotyping and marker-based selection, was proposed 
by Meuwissen et al. (2001). GS uses a model combining 
genetic and physical data to calculate the GEBVs of 
individuals, predicting their potential as breeding parents 
(Poland et al., 2012). This approach accelerates breeding 
cycles by skipping late filial generations and increases 
genetic gains per year compared to PS, particularly for 
traits like insect resistance and quality, which are harder 
to assess (Zhong et al., 2009; Heffner et al., 2011). GS 
enhances selection accuracy, intensity, and efficiency 
while reducing time and costs, making it a more reliable 
and environmentally independent method (Budhlakoti et 
al., 2022). To integrate GS into breeding programs, cost-
effective high-density molecular markers are essential 
(Sinha et al., 2023a).
7.3. Training populations versus breeding populations
Advanced training populations and breeding populations 
have unique but complementary functions in the process 
of plant improvement. For training prediction models to 
evaluate the performance of new genotypes, advanced 
training populations are utilized in GS (Lamichhane and 
Thapa, 2022). These populations comprise a wide variety 
of plant genotypes, encompassing a comprehensive set 
of phenotypic and genotypic data. By using high-density 
molecular markers and powerful statistical methodologies, 
these populations improve the accuracy of their predictions 

Figure 6. Basic scheme of the genomic selection process.
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and speed up the breeding cycle. Breeding populations, 
on the other hand, are directly involved in the process of 
generating new plant varieties (Salgotra and Stewart, 2020; 
Swarup et al., 2021). These populations include segregating 
populations such as F2 or RILs, as well as more advanced 
forms such as MAGIC populations (Arrones et al., 2020; 
Scott et al., 2020). Field trials are conducted to select for 
characteristics such as yield, quality, and resistance, which 
ultimately results in the development of superior plant 
types. These populations are assessed through rigorous 
field experiments. Breeding populations concentrate 
on the more practical aspects of variety generation in 
contrast to advanced training populations, which enhance 
selection efficiency through data-driven approaches. In 
contemporary plant breeding, both are essential, with 
sophisticated training populations improving selection 
precision and breeding populations driving the creation 
of new varieties, hence accelerating progress towards 
sustainable agricultural goals (Werner et al., 2020).
7.4. Genomic selection models
A straightforward linear model commonly referred to 
as least-squares regression or ordinary least-squares 
regression, serves as a starting point for selecting 
appropriate individuals in GS. The starting point for the 
process of picking the appropriate individuals in GS is based 
on Y = 1nµ + Xβ + ε, where Y is the vector of observations; 
µ is the mean; β is the vector of marker effects; ε is the 
vector of random residual effects; X is the design matrix 
of order n × p, where each row represents the genotype/
individuals/lines (n) and each column corresponds to the 
marker (p); and ε is the vector of random residual effects. 
One significant issue with linear models when using 
genome-wide markers is that the number of markers (p) 
exceeds the number of observations (n), leading to the “big 
p, small n” problem, which can be addressed by selecting 
a subset of significant markers. Ridge regression assumes 
equal marker contributions, which may not reflect the 
genetic architecture of traits. To address this, various 
Bayesian models (e.g., Bayes A, B, Cπ, and Dπ; Bayesian 
LASSO; and BRR) incorporate the prior distributions of 
marker effects using posterior distributions to estimate 
parameters (Habier et al., 2011). Additionally, BLUP and 
its derivatives, GBLUP, ssGBLUP, RRBLUP, and rrGBLUP, 
are widely used in GS, with GBLUP leveraging genomic 
relationships estimated via markers instead of pedigrees 
(Meuwissen et al., 2001). While these models work well for 
additive genetic traits, nonparametric and semiparametric 
methods (e.g., NW estimator, RKHS, SVM, ANN, and 
RF) better account for complex epistatic architectures 
(Gianola et al., 2006; Holliday et al., 2012). STGS methods, 
which predict single traits, may lose vital information in 
cases of pleiotropy, where one gene affects multiple traits. 
Multitrait genomic selection (MTGS) approaches, such as 

multivariate mixed models (Klápště et al., 2020), Bayesian 
multitrait models (Cheng et al., 2018), MRCE (Rothman 
et al., 2010), and cGGM (Chiquet et al., 2017), offer higher 
accuracy by considering multiple traits simultaneously. 
Studies comparing STGS and MTGS methods have 
confirmed improved prediction accuracy for traits with 
low heritability when leveraging related traits (Budhlakoti 
et al., 2019). 
7.5. Genome estimated breeding values (GEBVs)
GEBVs constitute a revolutionary method in the field of 
plant breeding. This method makes use of genomic data to 
forecast the genetic potential of plants to exhibit desirable 
characteristics. This idea incorporates cutting-edge genetic 
technologies and statistical models in order to improve the 
effectiveness and precision of breeding programs, which in 
turn speeds up the process of developing new crop varieties 
(Grattapaglia, 2017; Sood and Chauhan, 2023; Ranjan et 
al., 2024). GEBVs are determined by evaluating genetic 
markers that are spread out across the genome of a plant. 
These markers, which include SNPs, offer a comprehensive 
map of the genetic variation that exists in the plant. 
Through the process of connecting these markers with 
trait data from breeding populations, breeders are able to 
assess the genetic potential of new individuals for specific 
qualities (Singh et al., 2022; Joshi et al., 2024). These traits 
include yield, disease resistance, and stress tolerance. To 
complete the process, phenotypic data must be collected, 
traits of interest must be measured, and genetic data 
must be gathered using high-throughput sequencing or 
genotyping technologies. Following this, statistical models 
such as GBLUP or Bayesian approaches are utilized 
to establish a connection between genotypic data and 
phenotypic observations (Yin et al., 2023; Strandén and 
Jenko, 2024). This allows for the estimation of breeding 
values based on the contribution of each genetic marker 
to the trait of interest. Compared to traditional breeding 
values, which are simply based on phenotypic data, GEBVs 
offer several benefits, one of which is higher accuracy. 
This is because they predict genetic potential with greater 
precision than traditional breeding values. For traits that 
are influenced by environmental variables, they also enable 
shorter breeding cycles by allowing early and informed 
selection decisions. This leads to increased genetic gain 
and more precise identification of superior genotypes, 
particularly for traits that are influenced by environmental 
factors. In several different crop species, including cereals, 
legumes, and vegetables, GEBVs have been effectively 
implemented, which has contributed to the development 
of variants that have better yield, resilience to disease, 
and tolerance to stress (Chawla et al., 2023). As genomic 
technologies continue to improve, it is anticipated that 
the precision and utility of GEBVs will further alter the 
process of plant breeding. In summary, GEBVs are a huge 
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step forward in the field of plant improvement. They make 
use of genomics to increase the accuracy, efficiency, and 
efficacy of breeding programs, which in turn drives the 
development of crops that are more adapted to the issues 
that modern agriculture faces.
7.6. Factors affecting genomic prediction (GP)
A higher density of markers typically improves the accuracy 
of predictions when employing various genomic selection 
models such as LASSO, BLUP, and machine learning-
based approaches. However, it is possible that approaches 
such as Bayesian methods (Bayes A, Bayes B, Bayes Cπ, 
and Bayes Dπ) may experience sluggish convergence, 
particularly considering the required Markov chain Monte 
Carlo iterations (Arruda et al., 2016; Norman et al., 2018; 
Zhang et al., 2022). In certain cases, small numbers of 
low-density markers, ranging from a few hundred to 
a few thousand, can still yield accurate predictions for 
breeding populations as long as there is a significant level 
of linkage disequilibrium among the markers. However, 
it is important to note that this accuracy may depend 
on the specific trait being studied, as well as the genetic 
architecture and heritability of the traits under investigation 
(Werner et al., 2020). Incorporating economic restrictions 
into the evaluation of GS methods is crucial for ensuring 
profitability and efficiency, as maintaining a very high 
density of markers might be economically challenging. 
Establishing a definitive standard for genomic markers 
is challenging, but maintaining a moderate density of at 
least 2000 SNPs is recommended for accurate predictions 
(Abed et al., 2018). Nevertheless, the expense of genotyping 
can be substantially decreased by increasing the level 
of multiplexing without compromising the accuracy of 
genomic prediction. Intergenic regions contain crucial 
regulatory sequences, making the genomic positioning 
of SNPs more effective in capturing haplotype diversity 
compared to genes (Contreras-Soto et al., 2017). High-
quality SNP genotyping data with minor allele frequencies 
greater than 0.1 are recommended for high prediction 
accuracy, with population size influencing accuracy 
in conventional MAS and genomic selection. Small 
population sizes or training populations lead to a decrease 
in accuracy due to the inadequate estimation of marker 
effects in the model. If the size of the training population 
is reduced to 1NeL, the prediction accuracy drops to 0.7. 
Nevertheless, in the majority of circumstances, there 
is a correlation between the training population and 
the breeding population. As a result, a smaller training 
population size can still yield a high level of accuracy in 
genomic prediction, contrary to the previously mentioned 
need (Meuwissen, 2009). In addition to these parameters, 
the accuracy of predictions can also be influenced by the 
heritability of traits, particularly when the heritability is 
low (h2 < 0.4) (Hayes et al., 2009). Recent studies have 

consistently demonstrated that the precision of genomic 
selection is significantly impacted by the heritability of the 
trait being studied. Heritability signifies the proportion of 
the total variation in a characteristic that can be attributed 
to genetic factors. Typically, it is assumed that a trait with 
high heritability is likely to have accurate predictions, and 
the opposite is also true. Nevertheless, the presence of 
low to moderate heritability in most agricultural variables 
presents a significant obstacle for genomic selection 
studies, particularly in the context of plants. Traits with 
low heredity necessitate a larger training population to 
achieve prediction accuracy comparable to that of traits 
with moderate to high heritability. In efforts to accomplish 
this objective, the cost may occasionally serve as a 
constraining element, particularly in developing countries. 
Furthermore, the literature to date suggests that even for 
traits with low heritability and complexity, methods such 
as BLUP and its derivatives, Bayesian methods, and RKHS 
appear to be more robust compared to their counterparts. 
These findings have been reported in various studies 
(Spindel et al., 2015; Juliana et al., 2019; Michel et al., 2019; 
Crossa et al., 2022). Additionally, the majority of models 
do well with features that have a significant degree of 
heritability, but the most appropriate approach typically 
depends on the specific scenario. Estimating the GEBVs 
might be challenging when there are missing observations. 
Simultaneously addressing the problem of lowly heritable 
traits and missing observations is possible if data on many 
characteristics are available. When dealing with many 
characteristics, if we have a few traits that reflect low 
inbreeding but are strongly correlated with other qualities 
that have high heritability, we can utilize a suitable MTGS 
model to leverage knowledge from those other characters. 
By employing MTGS, we can obtain a more exact and 
accurate estimation of the GEBVs in such situations.

8. Genomic selection: implications in crop improvement
Breeding programs are typically designed to have fewer 
repetitions in the initial generations, when the offspring 
are being separated, and more repetitions with larger 
experimental plots and testing in many locations in later 
generations (Bernardo, 2022). Efforts to integrate GS 
should consider the important system characteristics 
of the breeding program, which affect both genetic gain 
and costs. In early generations, GS can significantly 
reduce breeding cycles by skipping one or two selfing 
cycles. Selecting individuals with high GEBVs shortens 
the breeding process, while using GS in later generations 
improves selection precision without shortening the cycle. 
The reduced cost of genotyping later generations makes 
GS appealing, although it shows only minor advantages 
over PS (Endelman et al., 2014). To optimize genetic 
improvement, various GS strategies must be employed 
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while balancing cycle length and selection precision. Bassi 
et al. (2016) found that applying GS to the F2 generation in 
wheat breeding provided a significant annual genetic gain 
of 0.47, but the high genotyping costs in early generations 
made the F3 and F4 generations more cost-effective. High 
prediction accuracies can be obtained with multiple GS 
cycles, and when the prediction accuracy is low, GS can 
eliminate poorly performing individuals (Longin et 
al., 2015). To balance the benefits and costs, one or two 
GS cycles followed by PS are recommended. Empirical 
studies across crops such as wheat, maize, pearl millet, 
and rice show the growing role of GS in enhancing genetic 
improvement (Guo et al., 2012; Srivastava et al., 2020). 
For example, an assessment of 206 wheat landraces for 
rust resistance using the GBLUP and Bayes R techniques 
yielded promising prediction accuracies (Cui et al., 2020).

A lentil GS study using single-trait and multiple-
trait models showed higher prediction accuracies when 
considering genotype × environment interactions for 
low-heritability traits, with within-population predictions 
being more accurate than those across populations 
(Haile et al., 2020). A soybean GS study obtained 
higher prediction accuracies for traits like protein and 

oil compared to yield, with a larger training population 
proving more impactful than increased marker density 
(Stewart-Brown et al., 2019). Similarly, chickpea breeding 
research conducted with 320 lines and multiple GS 
models showed that GS within environments performed 
better than GS across environments, especially for traits 
like seed yield and days to maturity (Roorkiwal et al., 
2018). Groundnut studies also confirmed the advantages 
of integrating genotypic information and genotype 
× environment interactions in improving prediction 
accuracies for traits like oleic acid and rust resistance 
(Pandey et al., 2020). Other examples include sorghum, 
for which GS outperformed PS in terms of genetic gain and 
cost efficiency, particularly for polygenic traits and large 
populations (Muleta et al., 2019). Similarly, pearl millet 
GS studies found tGBS to be more efficient than RAD-
Seq for genotyping, improving the accuracy for traits like 
flowering time and plant height. Therefore, the choice 
of suitable genomic selection models and genotyping 
platforms is crucial for enhancing prediction accuracy 
and expediting the progress of crop improvement 
initiatives. Other examples of the successful application 
of GS are presented in Table 6. 

Table 6. Genomic selection studies on crop plant improvements.

Crop Population Model Markers Traits Reference

Soybean 1284 lines G-BLUP and 
Bayesian models 4141 markers (SNPs) Enhanced biological yield and 

protein contents
Duhnen et al. 
(2017)

Soybean 483 elite lines RR-BLUP 5403 markers (SNPs) Enhanced biological yield and 
protein contents

Rajsic et al. 
(2016)

Chickpea 320 elite lines
RR-BLUP, kinship 
GAUSS, Bayes Cπ, 
Bayes B, BL, RF

3000 DArT-Seq Enhanced biological yield and 
protein contents

Roorkiwal et al. 
(2016)

Wheat 659 inbred lines RR-BLUP - Enhanced biological yield and 
protein contents

Michel et al. 
(2016)

Wheat 1127 lines G-BLUP 38,894 markers (SNPs) Enhanced biological yield and 
protein contents

Isidro et al. 
(2015)

Wheat 156 RILs, 239 lines, 
100 DHs RR-BLUP 5665, 1187, and 2780 

markers (SNPs)
Enhanced biological yield and 
protein contents

Lozada et al. 
(2019)

Wheat 365 and 503 G-BLUP 17,178 GBS Resistance to fungal pathogen Rutkoski et al. 
(2015)

Wheat 1100 lines G-BLUP 27,000 markers (SNPs) Enhanced biological yield Belamkar et al. 
(2018)

Wheat 8416 and 2403 G-BLUP 40,000 DArTs Abiotic stress Crossa et al. 
(2016)

Wheat 324 lines G-BLUP, RR-BLUP, 
Bayes A, RKHS B, BL 9752 markers (SNPs)

Enhanced biological yield, 
protein contents, and gluten 
index

Haile et al. 
(2018)

Wheat 470 soft winter RR-BLUP, BL, RF 4858 markers (SNPs) Enhanced biological yield and 
protein contents

Hoffstetter et al. 
(2016)

Maize 255 inbreds, 150 
hybrids RR-BLUP 37,404 and 18,795 

markers (SNPs)
Enhanced biological yield and 
protein contents

Juliana et al. 
(2018)

Maize 788 from 4 inbreds RR-BLUP 857 markers (SNPs) Enhanced biological yield and 
protein contents

 Zhao et al. 
(2012)
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Table 6. (Continued.)

Maize 257 inbreds G-BLUP 48,814 markers (SNPs) Enhanced biological yield and 
protein contents

Guo et al. 
(2014b)

Wheat 365 lines G-BLUP, BL, Bayes 
Cπ 4040 markers (SNPs) Adult plant stem rust 

resistance
Rutkoski et al. 
(2014)

Wheat 374 lines G-BLUP and BRR 18,653 GBS Resistance to stem rust Rutkoski et al. 
(2015)

Wheat 1739 genotypes RR-BLUP, Bayes Cπ, 
W-BLUP 1280 SNPs markers Enhanced heading time and 

plant height
Zhao et al. 
(2014)

Maize 240 subtropical lines RR, RF, Bayes B and 
A 29,610 markers (SNPs) Enhanced biological yield and 

protein contents
Shikha et al. 
(2017)

Maize 300 inbreds BL, RKHS 1150 markers (SNPs) Fungal pathogen resistance Crossa et al. 
(2011)

Maize 100 dent and 97 flint G-BLUP 37,908 markers (SNPs) Fungal pathogen resistance Technow et al. 
(2013)

Maize 1073 and 857 DH 
lines G-BLUP 15,732 and 16,846 SNPs Enhanced biological yield and 

protein contents
Albrecht et al. 
(2011)

Maize 238 lines RR-BLUP 23,155 DArTs Fusarium resistance dos Santos et al. 
(2016)

Maize 4699 from 25 crosses RR-BLUP, Bayes A 
and B 1107 markers (SNPs) Days to silking, anthesis, 

anthesis–silking interval
Guo et al. 
(2014b)

Rice 343 lines LASSO, RR-BLUP, 
BRR, BL, G-BLUP 8337 markers (SNPs) Enhanced biological yield and 

protein contents
Grenier et al. 
(2015)

Rice 280 rainfed 
accessions G-BLUP, RKHS 2858 markers (SNPs) Enhanced biological yield and 

protein contents
Bhandari et al. 
(2019)

Maize 294 RILs and 441 
hybrids BLUP, RR-BLUP 261 SSRs 10 agromorphological traits Guo et al. 

(2015)

Maize 31 parents, 1380 DHs G-BLUP 588 SNPs, 734 markers 
(SNPs)

Enhanced biological yield and 
protein contents

Albrecht et al. 
(2011)

Maize 300 inbred lines BL, RBFNN, RKHS 55,000 markers (SNPs) Enhanced biological yield and 
protein contents

González-
Camacho et al. 
(2012)

Maize 413 inbreds G-BLUP 36,901 markers (SNPs) Enhanced biological yield and 
protein contents

Guo et al. 
(2014b)

Rice 309 and 327, japonica 
and indica G-BLUP, GK

Indica: 92,430 and 
japonica: 44,598 markers 
(SNPs)

Enhanced biological yield and 
protein contents

Monteverde et 
al. (2018)

Rye 201 and 219 lines Multitrait RR-BLUP 584 and 394 DArTs Enhanced biological yield and 
protein contents

Schulthess et al. 
(2016)

Rye 2 sets, each 220 RR-BLUP 1048 DArTs Enhanced biological yield and 
protein contents

Wang et al. 
(2014)

Rice 210 RILs LASSO 270,820 markers (SNPs) Enhanced biological yield and 
protein contents Xu et al. (2013a)

Rice 369 elite lines RR-BLUP 73,147 markers (SNPs) Enhanced biological yield and 
protein contents

Spindel et al. 
(2015)

Barley 2 datasets, DH lines 
(160 and 140)

G-BLUP, Bayes A 
and B

224 RFLP, 108 AFLP/
RFLP

Enhanced biological yield and 
protein contents

Lorenzana et al. 
(2009)

Barley 647 lines RR-BLUP, GAUSS, 
EXP, Bayes Cπ 1536 markers (SNPs) Fusarium head blight 

resistance, yield, plant height
Sallam et al. 
(2015)

Barley 691 lines RR-BLUP, Bayes Cπ, 3072 markers (SNPs) Fusarium head blight 
resistance

Lorenz et al. 
(2012)

Sorghum 114 genotypes GBLUP, Bayesian RR, 
BL, Bayes B 61,976 markers (SNPs)

Polyphenols, enhanced 
biological yield, protein 
contents

Habier et al. 
(2011)

Wheat 816 breeding lines RR-BLUP 21,643 markers (SNPs) Enhanced biological yield and 
protein contents

Xu et al. 
(2013b)
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8.1. High-throughput phenotyping: boosting QTL 
mapping and GWAS precision for crop improvement
High-throughput phenotyping (HTP) has emerged as 
a transformative tool for modern crop improvement, 
offering advanced capabilities to capture complex plant 
traits under diverse environmental conditions quickly and 
accurately (Jangra et al., 2021). HTP uses advanced imaging 
and sensor technologies for the noninvasive assessment of 
plant traits, including spectral imaging, LIDAR, RGB, and 
multispectral imaging, which provide three-dimensional 
measurements of plant architecture and growth stages (He 
et al., 2024b). By enhancing the precision and throughput 
of phenotypic data collection, HTP significantly boosts the 
effectiveness of QTL mapping and GWASs, both of which 
are essential for identifying the genetic basis of traits related 
to yield, disease resistance, and environmental resilience 
(Sahito et al., 2024). This integration has streamlined the 
development of high-yield climate-resilient crop varieties, 
accelerating the pace of agricultural innovation.
8.2. Precision in QTL mapping through HTP
QTL mapping aims to pinpoint genome regions linked 
with specific traits, traditionally depending on manual 
phenotyping methods that are labor-intensive and 
susceptible to inconsistency. HTP significantly enhances 
QTL mapping by providing higher precision and 
repeatability, enabling researchers to gather detailed, 
high-resolution data on essential traits like leaf area 
index, chlorophyll content, and water-use efficiency 
(Kumari et al., 2024). This accuracy fosters more precise 
QTL identification and facilitates the capture of dynamic 
traits over time, such as growth rates and stress responses, 
which are crucial for understanding traits with temporal 
variability (Jamann et al., 2015). 

A total of 89 QTLs were identified for root structure 
in rice using a specialized 3D root imaging and analysis 
platform, which captures detailed images of root systems 
for in-depth trait analysis (Topp et al., 2013). This platform 
enables the precise measurement of root characteristics 
like length, branching, and architecture, which are critical 

for improving water and nutrient uptake efficiency in 
rice. SmartGrain, an automated imaging system, was 
used to identify 13 QTLs associated with rice seed shape. 
This platform allows for high-precision analysis of seed 
dimensions, including length, width, and roundness, 
making it a powerful tool for selecting desired seed 
traits in rice (Tanabata et al., 2012). The Rice Automatic 
Phenotyping Platform (RAP) was utilized to map 141 
QTLs linked to traits related to plant morphology, biomass, 
and yield. The RAP automates the measurement of these 
traits, reducing the need for manual labor and improving 
accuracy in identifying yield-related markers (Yang et al., 
2014). A specialized agar-based high-throughput root 
phenotyping system identified 38 QTLs associated with 
root architecture and biomass in Brassica napus. This setup 
supported root trait mapping under controlled conditions, 
allowing the researchers to focus on genetic factors 
influencing root structure and resource allocation, which 
are crucial for breeding resilient plants (Shi et al., 2013). 
With the RAP adapted for maize, researchers identified 
988 QTLs across three QTL hotspots related to plant 
growth traits. This approach allowed for the simultaneous 
measurement of 106 distinct traits, providing an extensive 
phenotypic dataset to improve maize breeding for growth-
related traits (Zhang et al., 2017).

In maize, 12 marker–trait associations related to plant 
size and biomass accumulation were mapped using an 
automated noninvasive phenotyping platform. This setup 
measures biomass accumulation without destructive 
sampling, enabling precise quantification of growth 
dynamics and aiding in the selection of high-yielding maize 
varieties (Muraya et al., 2017). This precision facilitates 
a better understanding of complex traits by accurately 
linking genotype to phenotype, ultimately accelerating the 
development of improved crop varieties with enhanced 
yield, stress tolerance, and resource use efficiency.
8.3. Precision in GWASs through HTP
GWASs are crucial for linking genetic markers to trait 
variations across diverse populations, and HTP enhances 

Wheat 329 genotypes G-BLUP 7748 markers (SNPs) Enhanced biological yield and 
protein contents

Ward et al. 
(2019)

Pearl millet 320 hybrids, 37 
inbreds RR-BLUP 14,306 and 33,463 

markers (SNPs)
Enhanced biological yield and 
protein contents

Liang et al. 
(2018)

Chickpea 324 genotypes RR-BLUP, BL, BRR 4947 markers (SNPs) Enhanced biological yield and 
protein contents

Matei et al. 
(2022)

Oat 446 lines RR-BLUP, Bayes Cπ 1005 DArTs Enhanced biological yield, 
beta-glucan, protein contents

Asoro et al. 
(2011)

Sorghum 453 diverse sets G-BLUP 59,264 markers (SNPs) Biomass, moisture, height Fernandes et al. 
(2018)

Wheat 247 landraces G-BLUP, Bayes R 5568 markers (SNPs) Enhanced resistance to leaf, 
stem, and stripe rust

Daetwyler et al. 
(2014)

Table 6. (Continued.)
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their precision and scope. By providing high-resolution 
trait data, HTP allows researchers to detect subtle 
phenotypic differences across many genotypes, thereby 
increasing the statistical power of GWASs. HTP also 
enables multitrait analysis by capturing a range of traits 
simultaneously, such as canopy temperature, plant height, 
and greenness, facilitating the discovery of genomic 
regions tied to complex trait interactions. Studies on the 
integration of HTP in GWASs are presented below. 

Yang et al. (2014) developed an automated phenotyping 
system for greenhouse-grown rice, combining X-ray 
computed tomography with visible light imaging to 
measure 15 agronomic traits including plant height, tiller 
count, and shoot fresh weight. This integration enabled 
the identification of 141 loci, with 25 loci positioned 
near known genes such as SD1, Hd1, and OsGH3-2. 
Similarly, Crowell et al. (2016) made advancements in 
field-based inflorescence phenotyping by introducing 
an image skeletonization technique that allowed the 
capture of 49 panicle traits and led to the discovery of 10 
candidate genes in proximity to significant GWAS peaks 
among 242 rice accessions. Wang et al. (2019b) revealed 
that plant height-related QTLs vary at different growth 
stages. In that study, plant growth rates were recorded by 
aerial imaging and used in a GWAS. Multiple candidate 
genes involved in plant height regulation, including 
SAUR61, which encodes an auxin response protein, were 
identified. Similarly, growth rates were measured in a 
GWAS of biomass, which accumulates gradually during 
plant growth (Muraya et al., 2017). A microscopic RGB 
imaging-assisted GWAS effectively identified candidate 
genes linked to bulliform cell characteristics, including 
cell column number and width, with the analysis of tens 
of thousands of leaf epidermal glue-impression images 
using convolutional neural networks (Qiao et al., 2019). 
Similarly, microcomputed tomography imaging has been 
applied to explore the genetic architecture of maize stem 
vascular bundles, offering insights into traits critical to 
structural integrity (Zhang et al., 2020c). In maize, the 
integration of HTP with GWASs has proven successful 
for the analysis of complex traits, such as cell and root 
architecture, and the identification of genetic markers 
associated with male inflorescence transformation. This 
approach reflects the potential for uncovering evolutionary 
shifts in genetic information (Gage et al., 2018), advancing 
our understanding of trait selection and adaptation.

A GWAS of 231 synthetic hexaploid wheat accessions 
(Triticum aestivum L.) employed visible light/RGB imaging 
to measure 29 traits associated with grain morphology, 
successfully identifying QTLs linked to these traits 
(Rasheed et al., 2014). Notable candidate genes such as 
TaCwi-2A, TaSus-6B, TaCKX-6D, and TaGW2-2B, which 
influence grain size and weight, were discovered, together 

with key favorable allele associations with specific grain 
phenotypes (Rasheed et al., 2014). Using a semiautomated 
system with spectrometers, the canopy reflectance 
of wheat under both optimal nitrogen-sufficient and 
nitrogen-deficient conditions was measured, yielding three 
vegetation indices for the GWAS, which identified loci 
associated with canopy traits and photoperiod regulator 
PPD-D1 (Jiang et al., 2019). Another GWAS utilizing 
unmanned aerial systems identified significant genetic 
markers on chromosome 2A associated with lodging traits 
(Singh et al., 2019). Similarly, unmanned aerial vehicles 
combined with multispectral imaging facilitated NDVI 
measurements, identifying 46 QTLs linked to NDVI-
related traits (Condorelli et al., 2018). Furthermore, 
LiDAR technology was instrumental in a wheat GWAS in 
assessing genetic responses to temperature changes during 
stem elongation (Kronenberg et al., 2021). Aerial systems 
are anticipated to greatly enhance phenotyping capabilities 
for traits such as canopy coverage and lodging, potentially 
enabling the discovery of new loci. Additionally, RGB 
imaging combined with the GWAS approach was used to 
explore genetic resistance to diseases, with flatbed scanning 
revealing 26 chromosome intervals linked to Septoria 
tritici blotch resistance traits (Yates et al., 2019). For root 
trait genetics, Beyer et al. (2019) utilized a scanner and 
WinRHIZO software to evaluate five root traits, identifying 
63 marker–trait associations for root morphology through 
a GWAS of 20,881 polymorphic sites.

Herritt et al. (2016) pinpointed genetic loci linked to 
a photosynthetic trait in soybean using photochemical 
reflectance index (PRI) data derived from canopy spectral 
reflectance measured in the field via visible/near-infrared 
spectroscopy. They identified 15 loci with significant 
associations to PRI, several of which mapped near genes 
involved in photosynthesis, nonphotochemical quenching, 
and sugar transport. Dhanapal et al. (2016) also employed 
visible/near-infrared spectroscopy and the GWAS method 
to investigate chlorophyll content traits, finding 27 loci 
associated with total chlorophyll, with four confirmed 
across both extract-based and canopy spectral reflectance 
methods. Furthermore, ground-based and aerial RGB 
imaging was used to assess canopy coverage, revealing a 
QTL on chromosome 19 with a notable positive impact 
on yield (Xavier et al., 2017). The dark green color index 
(DGCI), analyzed through aerial imagery and a GWAS, 
identified 43 loci associated with greenness, 21 of which 
overlapped with previously identified nitrogen and ureide 
concentration loci (Kaler et al., 2020). Similarly, Wang 
et al. (2021a) explored the genetic underpinnings of 
growth and yield traits in a Chinese soybean population 
using hyperspectral imaging to assess NDVI and the 
chlorophyll index (CHL). Collectively, GWASs combined 
with HTP have revealed key genetic regions linked to 
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spectral traits such as NDVI, CHL, and DGCI, which are 
often correlated with growth and yield (Kaler et al., 2020; 
Wang et al., 2021a). Wang et al. (2021a) also noted that 
investigating upstream traits such as NDVI and CHL can 
yield further insights into the control of key agricultural 
traits, underscoring the utility of HTP for advancing crop 
functional genomics and breeding potential.

In spinach, aerial RGB imaging has been effectively 
utilized for time-course analysis of growth traits across 
the crop cycle. A GWAS identified 99 SNPs, some located 
in genes associated with transcription factors and stress 
responses, suggesting potential roles in developmental 
regulation (Awika et al., 2019). Similarly, in cotton, 
combining RGB imaging with the GWAS method 
enabled the identification of 390 loci related to drought 
resistance using 119 image-based traits. Notably, some 
previously known loci and genes potentially negatively 
affecting drought response were also highlighted (Li et 
al., 2020). In sorghum, near-infrared spectroscopy was 
applied to quantify total phenolic content, procyanidins, 
and 3-deoxyanthocyanins in grain samples from 381 
accessions. That study identified novel QTLs linked to 
polyphenol synthesis, with some homologous to flavonoid 
genes in Zea mays and Arabidopsis (Pr1 in maize and 
TT16 in Arabidopsis) (Rhodes et al., 2014). Visible light 
and fluorescence imaging have further facilitated genetic 
variation analyses of growth traits for crops like canola 
(Knoch et al., 2020) and Arabidopsis thaliana, for which 
GWASs identified 23 genes implicated in pathogen 
responses, including resistance to Botrytis infection and 
immunity to P. syringae effectors (Martel et al., 2020; 
Fordyce et al., 2018). Additional applications include 
visible light/RGB imaging, near-infrared reflectance 
spectroscopy, and NMR-based GWASs of seed traits, such 
as germination and vigor, as well as biochemical traits like 
glucosinolate and oil content (Hatzig et al., 2015; Wang 
et al., 2018). These studies underscore the potential of 
HTP techniques integrated with GWASs to enhance our 
understanding of complex traits across diverse species.

9. Conclusion and future perspectives 
Over the past two decades, GS has demonstrated 
considerable promise in plant and animal breeding 
research, driven by the advent of affordable NGS 
technologies. This progress has facilitated the completion 

of numerous genomes and the development of high-
density SNP genotyping chips. However, further 
advancements are necessary, including methodological 
refinements, the updating of training sets, and assessments 
of training populations under controlled conditions. 
Looking ahead, the integration of emerging technologies 
such as gene editing, and particularly CRISPR, alongside 
HTP and AI-based predictive modeling could significantly 
enhance current genomic approaches. These innovations 
promise to improve crop resilience and productivity by 
enabling precise modifications of genetic material and the 
prediction of trait performance with greater accuracy. A 
structured program for GS, encompassing human resource 
development and enhanced data collection practices, is 
essential for successfully harnessing these technologies 
and achieving effective outcomes in breeding programs.
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